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1 The Alternating Group

1.1 Lemma (a) For n > 3, the group Alt(n) is generated by the 3-cycles of
the form (i, i+ 1, i+ 2), i = 1, . . . , n− 2.

(b) For n > 5, any two 3-cycles of Alt(n) are conjugate in Alt(n).

Proof (a) Each element in Alt(n) is a product of an even number of trans-
positions. Since

(a, b)(c, d) = ((a, b)(b, c))((b, c)(c, d)) and (a, b)(a, c) = (a, c, b) ,

the group Alt(n) is generated by its 3-cycles. Each 3-cycle or its inverse is of
the form (a, b, c) with a < b < c. We can reduce the difference c − a by the
formulas

(a, b, d) = (a, b, c)(b, c, d)2 and (a, c, d) = (a, b, c)2(b, c, d)

whenever a < b < c < d. This proves the result.
(b) Let π1 and π2 be two 3-cycles in Alt(n). Then there exists σ ∈ Sym(n)

with π2 = σπ1σ
−1. Since n > 5, there exists a transpositions τ ∈ Sym(n)

which is disjoint to π1. Thus τπ1τ
−1 = π1 so that also (στ)π1(στ)−1 = π2.

but either σ or στ is an element of Alt(n).

1.2 Theorem For n > 5, the group Alt(n) is simple.

Proof Assume that 1 < N E Alt(n). We have to show that N = Alt(n).
By Lemma 1.1, it suffices to show that N contains some 3-cycle. We choose
1 6= σ ∈ N and write σ = γ1 · · · γr as product of disjoint cycles γ1, . . . , γr in
Sym(n) and distinguish the following 4 cases:

Case 1: One of the cycles γi has length at least 4. Then we can write
γi = (a, b, c, d, e1, . . . , es), with s > 0. With ρ := (a, b, c) we have

N 3 ρσρ−1σ−1 = (a, b, c)(a, b, c, d, e1, . . . , es)(a, c, b)(es, . . . , e1, d, c, b, a)

= (a, b, d) .

Case 2: All cycles γi have length at most 3 and one of them has length
3. We may assume that γ1 = (a, b, c) and that r > 2. Then γ2 = (d, e) or
γ2 = (d, e, f). With ρ := (a, b, d) we have

N 3 ρ−1σρσ−1 = (a, d, b)(a, b, c)(d, e)(a, b, d)(a, c, b)(d, e) = (a, d, b, c, e)
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or

N 3 ρ−1σρσ−1 = (a, d, b)(a, b, c)(d, ef)(a, b, d)(a, c, b)(d, f, e) = (a, d, b, c, e)

and, by Case 1, N contains a 3-cycle.

Case 3: All cycles γi are transpositions and r > 3. Then we can write σ =
(a, b)(c, d)(e, f) · · · with pairwise distinct a, b, c, d, e, f . With ρ := (a, c, e) we
have

N 3 ρσρ−1σ−1 = (a, c, e)(a, b)(c, d)(e, f)(a, e, c)(a, b)(c, d)(e, f)

= (a, c, e)(b, f, d)

and N contains a 3-cycle by Case 2.

Case 4: σ = (a, b)(c, d) with pairwise distinct a, b, c, d. Set ρ := (a, c, e)
with e /∈ {a, b, c, d}. Then

N 3 ρσρ−1σ−1 = (a, c, e)(a, b)(c, d)(a, e, c)(a, b)(c, d) = (a, c, e, d, b)

and N contains a 3-cycle by Case 1.
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2 The Frattini Subgroup

2.1 Definition For a finite group G the intersection of all its maximal sub-
groups is called the Frattini subgroup of G. It is denoted by Φ(G). For the
trivial group G = 1 one sets Φ(1) = 1. Note that Φ(G) is a characteristic
subgroup of G.

2.2 Proposition (Frattini-Argument) Let G be a finite group, let N be
a normal subgroup of G and let P ∈ Sylp(N) for some prime p. Then
G = N ·NG(P ).

Proof Let g ∈ G. Then P 6 N implies gPg−1 6 gNg−1 = N and gPg−1 ∈
Sylp(N). By Sylow’s Theorem, there exists n ∈ N such that ngPg−1n−1 = P .
This implies that ng ∈ NG(P ) and g ∈ n−1NG(P ) ⊆ N ·NG(P ).

2.3 Lemma If G is a finite group and H 6 G such that HΦ(G) = G then
H = G.

Proof Assume that H < G. Then there exists a maximal subgroup U of G
with H 6 U . This implies G = HΦ(G) 6 U ·U = U , which is a contradiction.

2.4 Lemma Let G be a finite group and let H and N be normal subgroups
of G such that N 6 H∩Φ(G). If H/N is nilpotent then every Sylow subgroup
of H is normal in G. In particular, H is nilpotent.

Proof Let P ∈ Sylp(H) for some prime p. Then PN/N ∈ Sylp(H/N).
Since H/N is nilpotent, PN/N is normal in H/N (cf. [P, 8.7]) and also
characteristic in H/N . Since also H/N is normal in G/N , PN/N is normal in
G/N and further, PN is normal in G. Since P ∈ Sylp(PN) and PN E G, the
Frattini Argument implies that G = PN ·NG(P ) = NNG(P ) 6 Φ(G)NG(P )
and therefore G = NG(P )Φ(G). By Lemma 2.3, we have NG(P ) = G and P
is normal in G.

2.5 Corollary (Frattini 1885) For every finite group G, the Frattini sub-
group Φ(G) is nilpotent.

Proof This follows from Lemma 2.4 with H := N := Φ(G).
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2.6 Corollary Let G be a finite group. If G/Φ(G) is nilpotent then G is
nilpotent.

Proof This follows from Lemma 2.4 with H := G and N := Φ(G).

2.7 Theorem For every finite group G the following are equivalent:
(i) G is nilpotent.
(ii) G/Φ(G) is nilpotent.
(iii) G′ 6 Φ(G).
(iv) G/Φ(G) is abelian.

Proof (i)⇒(ii): This follows from [P, 8.8]
(ii)⇒(i): This follows from Corollary 2.6.
(ii)⇒(iii): Let U < G be a maximal subgroup. Then U/Φ(G) is a maxi-

mal subgroup of the nilpotent group G/Φ(G). By [P, 8.8], U/Φ(G) is normal
in G/Φ(G), and therefore U is normal in G. Since U is maximal in G, G/U
has no subgroup different from U/U and G/U . This implies that G/U is
a cyclic group of prime order. In particular, G/U is abelian. This implies
that G′ 6 U . Since this holds for every maximal subgroup U of G, we have
G′ 6 Φ(G).

(iii)⇒(iv): This follows from [P, 4.3(c)].
(iv)⇒(ii): This is clear.
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3 The Fitting Subgroup

3.1 Remark Let p be a prime and let G be a finite group. If P and Q are
normal p-subgroups of G then PQ is again a normal p-subgroup of G, since
|QP | = |P | · |Q|/|P ∩ Q|. Therefore, the product of all normal p-subgroups
of G is again a normal p-subgroup which we denote by Op(G). By definition
it is the largest normal p-subgroup of G. Clearly, Op is also characteristic in
G.

3.2 Definition Let G be a finite group. The Fitting subgroup F (G) of G
is defined as the product of the subgroups Op(G), where p runs through the
prime divisors of p. If G = 1 we set F (G) := 1.

3.3 Remark Let G be a finite group and let p1, . . . , pr denote the prime
divisors of the finite group G. Then Opi

is a Sylow pi-subgroup of F (G) for
every i = 1, . . . , r. Since Opi

(G), i = 1, . . . , r, is normal in G it is also normal
in F (G). It follows that F (G) is nilpotent and that F (G) is the direct product
of the subgroups Op1 , . . . ,Opr(G). Moreover, since Opi

is characteristic in G
for all i = 1, . . . , r, also F (G) is characteristic in G.

3.4 Proposition Let G be a finite group. Then F (G) is the largest normal
nilpotent subgroup of G; i.e., it is a normal nilpotent subgroup of G and
contains every other normal nilpotent subgroup of G.

Proof We have already seen in the previous remark that F (G) is a normal
nilpotent subgroup of G. Let N be an arbitrary normal nilpotent subgroup
of G and let p be a prime divisor of |N |. Then N has a normal Sylow p-
subgroup P . This implies that P is characteristic in N . Since N is normal
G, we obtain that P is normal in G. Therefore, P 6 Op(G) 6 F (G). Since
N is the product of its Sylow p-subgroups, for the different prime divisors p
of |N |, we obtain N 6 F (G), as desired.

3.5 Corollary Let N1 and N2 be normal nilpotent subgroups of a finite
group G. Then N1N2 is again a normal nilpotent subgroup of G.

Proof By Proposition 3.4, N1 and N2 are contained in F (G). Therefore
N1N2 6 F (G). since F (G) is nilpotent, also its subgroup N1N2 is nilpotent.
Clearly N1N2 is normal in G.
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3.6 Definition A minimal normal subgroup of a finite group G is a normal
subgroup M of G such that M 6= 1 and every normal subgroup N of G with
is contained in M is equal to 1 or to M .

3.7 Proposition Let G be a finite group.
(a) CG(F (G))F (G)/F (G) does not contain any solvable normal subgroup

of G/F (G) different from the trivial one.
(b) Φ(G) 6 F (G) and if G is solvable and non-trivial then Φ(G) < F (G).
(c) F (G/Φ(G)) = F (G)/Φ(G) is abelian.
(d) If N is a minimal normal subgroup of G then N 6 CG(F (G)). If

moreover N is abelian then N 6 Z(F (G)).

Proof (a) It suffices to show that CG(F (G))F (G)/F (G) contains no abelian
normal subgroup of G/F (G) different from 1. So let N/F (G) be an abelian
subgroup of CG(F (G))F (G)/F (G) which is normal inG/F (G). Then F (G)/leN .
We need to show that F (G) = N . Note that N = F (G)C with C =
N ∩ CG(F (G)). Since N/C ∼= F (G)/(F (G) ∩ C) is nilpotent, there exists
l ∈ N such that Zl(N/C) = 1. Since N 6 C(F (G))F (G), it follows that

Zl(N) 6 C ∩N ′ 6 C ∩ F (G) 6 Z(F (G)) 6 Z(N) .

This implies that Zl+1(N) = [Zl(N), N ] = 1 and that N is nilpotent. There-
fore, N 6 F (G).

(b) Since Φ(G) is nilpotent (cf. Corollary 2.5) and normal in G, we have
Φ(G) 6 F (G). Assume moreover that G is solvable and G 6= 1. Then
G/Φ(G) is solvable and Φ(G) < G. There exists an abelian normal subgroup
1 6= M/Φ(G) E G/Φ(G). Since M/Φ(G) is abelian (and hence nilpotent),
Lemma 2.4 (with H = M and N = Φ(G)) implies that M is nilpotent. But
then M 6 F (G). Therefore, Φ(G) < M 6 F (G).

(c) Since F (G) is nilpotent also F (G)/Φ(G) is nilpotent. Moreover,
F (G)/Φ(G) is normal in G/Φ(G). Therefore F (G)/Φ(G) 6 F (G/Φ(G)).
Conversely, we can write F (G/Φ(G)) = H/Φ(G) with Φ(G) 6 H E G. Since
H/Φ(G) is nilpotent, Lemma 2.4 (with N = Φ(G)) implies that H is nilpo-
tent and therefore H 6 F (G). Thus, F (G/Φ(G)) = H/Φ(G) 6 F (G)/Φ(G).
Since F (G) is normal in G, we have Φ(F (G)) 6 Φ(G) 6 F (G). Since
F (G) is nilpotent, Theorem 2.7 implies that F (G)/Φ(F (G)) is abelian. But
F (G)/Φ(G) is isomorphic to a factor group of F (G)/Φ(F (G)) and therefore
also abelian.
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(d) SinceN is a minimal normal subgroup, we either haveN∩F (G) = 1 or
N∩F (G) = N . If N is abelian then, N is nilpotent and N 6 F (G). It follows
that 1 6= N ∩ Z(F (G)) E G (see homework problem), and the minimiality
of N implies N 6 Z(F (G)). If N is not abelian then N ∩ F (G) = 1 (since
otherwise N 6 F (G) implies 1 < N ′ < N with N ′ E

char
N E G and thus N ′ E

G, a contradiction). But N ∩ F (G) = 1 implies [N,F (G)] 6 N ∩ F (G) = 1
and N 6 CG(F (G)).
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4 p-Groups

4.1 Lemma Let G be a group and assume there exists H 6 Z(G) such that
G/H is cyclic. Then G is abelian.

Proof Let x ∈ G with 〈xH〉 = G/H. Every element of G can be written in
the form xnh with n ∈ Z and h ∈ H. For n, n′ ∈ Z and h, h′ ∈ H we have:

xnhxn
′
h′ = xnxn

′
hh′ = xn

′
xnh′h = xn

′
h′xnh ,

and the lemma is proved.

4.2 Corollary If p is a prime and if G is a group of order p2, then G is
abelian.

Proof By [P, 5.10], we have Z(G) > 1. Therefore, |G/Z(G)| divides p so
that G/Z(G) is cyclic. Now Lemma 4.1 applies.

4.3 Definition Let p be a prime. An abelian p-group G is called elementary
abelian, if xp = 1 for all x ∈ G. Equivalently, G is isomorphic to a direct
product of cyclic groups of order p. If G is elementary abelian of order pn,
we call n the rank of G.

4.4 Remark Let p be a prime. If G is an elementary abelian p-group, then
G is a finite dimensional vector space over the field Z/pZ in a natural way,
namely by defining the scalar multiplication (k + pZ) · x := xk for x ∈ G
and k ∈ Z. Conversely, each Z/pZ-vector space has an elementary abelian p-
group as underlying group. Therefore, elementary abelian p-groups and finite
dimensional Z/pZ-vector spaces are the same thing. Moreover, every Z/pZ-
linear map between Z/pZ-vector spaces is a group homomorphism and every
group homomorphism between elementary abelian p-groups is also a Z/pZ-
linear map. Therefore, Aut(G) ∼= GLn(Z/pZ) for any elementary abelian
p-group G of rank n. Note also that a subgroup of an elementary abelian p-
group G is the same thing as a subspace and that for X ⊆ G the Z/pZ-span
of X is the same as the subgroup generated by X.

4.5 Theorem Let p be a prime and let G be a p-group. Then:
(a) Φ(G) = G′ · Gp, where Gp := 〈{gp | g ∈ G}〉. If p = 2, one has

Φ(G) = G2.
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(b) G/Φ(G) is elementary abelian.
(c) For every N E G on has: G/N is elementary abelian ⇐⇒ Φ(G) 6 N .
(d) If U 6 G, then Φ(U) 6 Φ(G).
(e) If N E G, then Φ(G/N) = Φ(G)N/N .

Proof (a)–(c): By Theorem 2.7 and since G is nilpotent, we have G′ 6 Φ(G).
Each maximal subgroup U of G is normal and of index p in G. Therefore,
(gU)p = U and gp ∈ U for each g ∈ G. This implies that Gp 6 Φ(G), and
we have G′ ·Gp 6 Φ(G). This implies (b); in fact, G/Φ(G) is abelian, since
G′ 6 Φ(G) and (gΦ(G))p = gpΦ(G) = Φ(G), sinceGp 6 Φ(G). Next we show
(c). If Φ(G) 6 N , then G/N ∼= (G/Φ(G))/(N/Φ(G)) is elementary abelian
by (b). Conversely, assume that G/N is elementary abelian and that N 6= G.
Then N is the intersection of all maximal subgroups of G that contain N ; in
fact, the intersection of all hyperplanes of G/N is N/N . This implies that
N 6 Φ(G) and (c) is proved. From (c) we now obtain Φ(G) 6 G′ ·Gp, since
G/(G′ ·Gp) is elementary abelian. If p = 2 each commutator

xyx−1y−1 = xy2x−1x2x−1y−1x−1y−1 = (xyx−1)2x2(x−1y−1)2

is a product of squares, and therefore G′ 6 G2. This implies Φ(G) = G2.
(d) This follows from (a), since U ′ 6 G′ and Up 6 Gp.
(e) We have (G/N)p = 〈{gpN | g ∈ G}〉 = GPN/N and (G/N)′ =

G′N/N . Now (a) implies

Φ(G/N) = (G/N)p · (G/N)′ = (GpN/N) · (G′N/N)

= (GpG′N)/N = Φ(G)N/N ,

and the proof of the theorem is complete.

4.6 Theorem (Burnside’s Basis Theorem) Let p be a prime and let G
be a p-group with |G/Φ(G)| = pd, d ∈ N. Then:

(a) Let n ∈ N and x1, . . . , xn ∈ G. Then

〈x1, . . . xn〉 = G ⇐⇒ 〈x1Φ(G), . . . , xnΦ(G)〉 = G/Φ(G) .

(b) Each minimal generating set of G has d elements.
(c) Each element x ∈ Gr Φ(G) occurs in some minimal generating set of

G.
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Proof (a) With Lemma 2.3 we obtain

〈x1, . . . , xn〉 = G ⇐⇒ 〈x1, . . . , xn〉Φ(G) = G

⇐⇒ 〈x1Φ(G), . . . , xnΦ(G)〉 = G/Φ(G) .

(b) Let {x1, . . . , xn} be a minimal generating set of G consisting of n
elements. By (a) we have 〈x1Φ(G), . . . , xnΦ(G)〉 = G/Φ(G), and there-
fore d 6 n. Assume that n > d. Then there exists a proper subset of
{x1Φ(G), . . . , xnΦ(G)} which still generates G/Φ(G). By (a) the correspond-
ing proper subset of {x1, . . . , xn} then generates G. This contradicts the
minimality of the set {x1, . . . , xn}.

(c) If x ∈ Gr Φ(G), then xΦ(G) is nonzero in the vector space G/Φ(G)
and can be extended to a basis xΦ(G), x2Φ(G), . . . , xdΦ(G). Then, by (a)
and (b), {x, x2, . . . , xd} is a minimal set of generators of G.

4.7 Remark (a) Burnside’s Basis Theorem implies that every p-group G
with |G/Φ(G)| = p is cyclic.

(b) Part (b) of Burnside’s Basis Theorem does not hold for arbitrary
finite groups. For example, the group Z/6Z has the minimal generating sets
{1 + 6Z} and {3 + 6Z, 2 + 6Z}.

4.8 Examples (a) We already know two non-isomorphic groups of order 8,
namely the dihedral group D8 and the quaternion group

Q8 = 〈
(
i 0
0 −i

)
,

(
0 1
−1 0

)
〉 .

(b) Let p be an odd prime. We will construct a non-abelian group of order
p3 as a semidirect product Z/p2Z o Z/pZ with the following action. Recall
that Aut(Z/p2Z) ∼= (Z/p2Z)× where i+ p2Z ∈ (Z/p2Z)× corresponds to the
automorphism σi of Z/p2Z which raises every element to its i-th power. We
have |Aut(Z/p2Z)| = p(p−1) and we observe that 1+p+p2Z is an element of
order p in (Z/p2Z)×, since (1+p+p2Z)p = (1+p)p+p2Z = 1+p2Z. Therefore,
if Y = 〈y〉 is a cyclic group of order p2 and X = 〈x〉 is a cyclic group of order
p, there exists a non-trivial group homomorphism ρ : X → Aut(Y ) such that
the corresponding action satisfies xy = yp+1. This gives rise to a semidirect
product Y oX of order p3. In Lemma 4.12 we will need the following property
of Y oX which is now easy to verify:

{a ∈ Y oX | ap = 1} = 〈x, yp〉 . (4.8.a)
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(c) Let p be an odd prime and let n ∈ N. Then

Ep2n+1 := {



1 β1 · · · βn γ
1 α1

. . .
...

1 αn
1

 | α1, . . . , αn, β1, . . . , βn, γ ∈ Z/pZ}

(with zeros in the empty spots) is a subgroup of GLn+2(Z/pZ) of order p2n+1,
since 

1 β1 · · · βn γ
1 α1

. . .
...

1 αn
1





1 β′1 · · · β′n γ′

1 α′1
. . .

...
1 α′n

1



=



1 β1 + β′1 · · · βn + β′n γ + γ′ + α′1β1 + · · ·+ α′nβn
1 α1 + α′1

. . .
...

1 αn + α′n
1

 .

The group Ep2n+1 is called the extra-special group of order p2n+1 and exponent
p. Let z, xi, yi ∈ Ep2n+1 , i = 1, . . . , n, be defined as the elements with precisely
one non-zero entry off the diagonal, namely the entry γ = 1 for z, αi = 1
for xi, and βi = 1 for yi. Then it is easy to see that the following assertions
hold:

(i) For all i, j ∈ {1, . . . , n} one has

zxi = xiz, zyi = yiz, xjxi = xixj, yjyi = yiyj,

yjxi =

xiyj, if i 6= j,

xiyjz, if i = j.

(ii) Every element g ∈ Ep2n+1 can be written uniquely in the form

g = xa1
1 · · ·xan

n y
b1
1 · · · ybnn zc

with a1, . . . , an, b1, . . . , bn, c ∈ {0, 1, . . . , p− 1}.
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(iii) gp = 1 for all g ∈ Ep2n+1 .

(iv) The subgroups 〈x1, . . . , xn, z〉 and 〈y1, . . . , yn, z〉 are normal and ele-
mentary abelian.

(v) Z(Ep2n+1) = E ′p2n+1 = Φ(Ep2n+1) = 〈z〉.

(vi) If we identify Z := 〈z〉 with Z/pZ via zi ↔ i + pZ for i ∈ Z, then the
commutator defines a bilinear form on the 2n-dimensional vector space
V = Ep2n+1/Z by

V × V qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Z/pZ , (gZ, hZ) 7→ [g, h] ,

for g, h ∈ Ep2n+1 . This bilinear form is skew-symmetric ([a, b] = −[b, a])
and non-degenerate ([a, b] = 0 for all a implies b = 0).

For n = 1 we obtain a non-abelian group G of order p3 and exponent p,
which is generated by a central element z and two elements x, y such that
G = 〈x, z〉o 〈y〉 under the action yx = xz.

4.9 Lemma Let G be a p-group and let x, y ∈ G.
(a) If G/Z(G) is abelian, then

[x, y]i = [xi, y] and (xy)i = xiyi[y−1, x−1](
i
2) ,

for all i ∈ N0.
(b) If G/Z(G) is elementary abelian, then (xy)p = xpyp for odd p and

(xy)4 = x4y4 for p = 2.

Proof (a) Note that [x, y], [y−1, x−1] ∈ G′ 6 Z(G), since G/Z(G) is abelian.
We prove the two equations by induction on i. If i = 0 this is trivial. Assume
the equations hold for some i ∈ N0. Then

[x, y]i+1 = [x, y][x, y]i = [x, y][xi, y] = xyx−1y−1︸ ︷︷ ︸
∈Z(G)

xiyx−iy−1

= xi(xyx−1y−1)yx−iy−1 = xi+1yx−i−1y−1 = [xi+1, y]

and
(xy)i+1 = (xy)ixy = xiyixy[y−1, x−1](

i
2)

with
yix = xyiy−ix−1yix = xyi[y−i, x−1] = xyi[y−1, x−1]i ,
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and we obtain
(xy)i+1 = xi+1yi+1[y−1, x−1](

i+1
2 ) .

(b) Note that since G/Z(G) is elementary abelian, we have Gp 6 Φ(G) 6
Z(G) by Theorem 4.5. By Part (a) we have for odd p:

(xy)p = xpyp[y−1, x−1](
p
2) .

Since p |
(
p
2

)
, it suffices to show that [y−1, x−1]p = 1. But again by (a), we

have [y−1, x−1]p = [y−p, x−1] = 1, since y−p ∈ Gp 6 Z(G).
Finally, for p = 2, part (a) implies

(xy)4 = x4y4[y−1, x−1]6 = x4y4[y−6, x−1] = x4y4 ,

since y6 ∈ G2 6 Z(G).

4.10 Theorem Let p be a prime and let G be a non-abelian group of order
p3.

(a) If p = 2, then G ∼= D8 or G ∼= Q8.
(b) If p is odd, then G is isomorphic to Ep3 or to the group constructed

in Example 4.8(b).
(c) If G is isomorphic to the group in Example 4.8(b) then f : G 7→ G,

a 7→ ap, is a group homomorphism with image Z(G) and elementary abelian
kernel of rank 2.

Proof From Lemma 4.1 we have |G/Z(G)| > p2 and from [P, 5.10] we have
|Z(G)| > p. This implies |Z(G)| = p. Lemma 4.1 also implies that G/Z(G) is
elementary abelian. With Theorem 4.5(a) and (c) we have 1 < G′ 6 Φ(G) 6
Z(G), and therefore G′ = Φ(G) = Z(G).

(a) Assume that p = 2. Then there exists an element of order 4 in
G. In fact, if every element in G is of order 2, G is abelian, since then
[x, y] = xyx−1y−1 = xyxy = (xy)2 = 1 for all x, y ∈ G. So let y ∈ G be an
element of order 4 and set Y := 〈y〉. Since Y has index 2 in G, it is normal
in G and Y ∩ Z(G) > 1 by Theorem 2.9. This implies that Z(G) < Y and
Z(G) = {1, y2}.

(i) If there exists an element x ∈ G r Y of order 2, then G ∼= Y o X
with X := {1, x} and with the only possible non-trivial action xyx−1 = y−1.
Therefore G ∼= D8.
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(ii) If there exists no element x ∈ G r Y of order 2, then we pick an
element x ∈ G r Y of order 4. Everything we proved about y also holds
for x. Therefore, Z(G) = {1, x2} and x2 = y2. Moreover 〈x〉 acts on Y
via conjugation in the only non-trivial way: xyx−1 = y−1. This implies
G = {xiyj | 0 6 i 6 3, 0 6 j 6 1} with x4 = 1, y4 = 1, x2 = y2, and
yx = xy3 = yx2x−1 = x2yx−1 = x2x−1y3 = xy3 = x3y, i.e. the multiplication

in G coincides with the multiplication in Q8 when we identify x with

(
i 0
0 i

)

and y with

(
0 1
−1 0

)
. Therefore, G ∼= Q8.

(b) Now we assume that p is odd.
(i) We first consider the case that there exists an element y ∈ G of order

p2. Then Y := 〈y〉 is a maximal subgroup of G and therefore normal in G.
Moreover, Z(G)∩Y > 1 so that Z(G) = 〈yp〉. We claim that there exists an
element x ∈ GrY of order p such that xyx−1 = y1+p which then implies that
G is isomorphic to the semidirect product of Example 4.8(b). We prove the
claim. First choose any x1 ∈ G r Y . Then there exists i ∈ {1, . . . , p} with
xp1 = ypi, since xp1 ∈ Gp 6 Φ(G) = Z(G) = 〈yp〉. By Lemma 4.9(b) we have
(x1y

−i)p = xp1y
−ip = 1 and therefore the element x2 := x1y

−i ∈ G r Y has
order p. The conjugation of x2 on Y is non-trivial. Therefore, the resulting
homomorphism ρ : X := 〈x2〉 → Aut(Y ) ∼= (Z/pZ)× has as image the Sylow
p-subgroup 〈1 + p+ p2Z〉 of (Z/p2Z)×. In particular, ρ(xj2) = 1 + p+ p2Z for
some j ∈ {1, . . . , p− 1} and the element x := xj2 satisfies our claim.

(ii) If there exists no element of order p2 in G we denote by z a generator of
Z(G) and choose an element x ∈ GrZ(G). Then X := 〈x, z〉 is elementary
abelian of order p2 and also maximal in G. Let y1 ∈ G r X. Then G ∼=
X o Y with Y := 〈y1〉 and with the conjugation action of Y on X. Since
z is central, we have y1zy

−1
1 = z. Moreover y1xy

−1
1 = xizj for some i, j ∈

{0, . . . , p− 1}. Since the classes of y1 and x commute in G/Z(G), we obtain
i = 1. Since G is not abelian we have j 6= 0, and therefore y1xy

−1
1 = xzj

for some j ∈ {1, . . . , p− 1}. Let k ∈ {1, . . . , p− 1} with kj ≡ 1 mod p and
set y := yk1 . Then yzy−1 = 1, yxy−1 = yk1xy

−k
1 = xzkj = xz and we obtain

G ∼= X o Y ∼= Ep3 as described at the end of Example 4.8(c).

(c) We may assume that G = Y o X with the notation from Exam-
ple 4.8(b). By Lemma 4.9(b), the map f is a homomorphism. Obviously,
〈x, yp〉 6 ker(f) and Z(G) = 〈yp〉 6 im(f) 6 Gp = Z(G). By the fundamen-
tal theorem of homomorphisms we even have equality everywhere.
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4.11 Notation For a p-group G and n ∈ N0 we set

Ωn(G) := 〈x ∈ G | xpn

= 1〉 .

Obviously, this is a characteristic subgroup of G.

4.12 Lemma Let G be a p-group for an odd prime p and let N E G. If
N is not cyclic then N contains an elementary abelian subgroup of rank 2
which is normal in G.

Proof Induction on |G|. The base case is |G| = p2. The hypothesis implies
that N = G and that N is elementary abelian. Therefore, we can choose N
as the desired subgroup.

Now let |G| > p3. Since N 6= 1 it follows from a homework problem
that N has a subgroup M of order p with is normal in G. By [P, 5.10]
applied to M and N , M 6 Z(N). We first consider the case that N/M is
cyclic. Then N is abelian. Since N is not cyclic, it is a direct product of two
non-trivial cyclic subgroups. This implies that the characteristic subgroup
Ω1(N) of N is elementary abelian of rank 2. Thus, Ω1(N) is a subgroup as
desired. From now on we can assume that N/M is not cyclic. By induction,
applied to N/M E G/M there exists N < U 6 M with U E G and U/N
elementary abelian of rank 2. Since U is not cyclic, U can be elementary
abelian, the direct product of two non-trivial cyclic subgroups, isomorphic to
Ep3 or isomorphic to the group in Example 4.8(b). In the first and third case,
choose any subgroup of U of order p2 which is normal in G (see homework
problem for the existence). This subgroup has the desired property. In the
second and fourth case consider Ω1(U). This group again has the desired
property, cf. Theorem 4.10.

4.13 Corollary Let G be a p-group for an odd prime p and assume that G
has precisely one subgroup of order p. Then G is cyclic.

Proof Assume that G is not cyclic. Then Lemma 4.12 with N = G implies
that G has a normal subgroup which is elementary abelian of rank 2. But
then G has at least p+ 1 subgroups of order p. This is a contradiction.

4.14 Definition (a) For every integer n > 3 we define the generalized
quaternion group Q2n of order 2n as

Q2n := 〈x, y | x2n−1

= 1, x2n−2

= y2, yxy−1 = x−1〉 .
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(b) For every integer n > 4 we define the semidihedral group SD2n by

SD2n := 〈x, y | x2n−1

= 1, y2 = 1, yxy−1 = x2n−2−1〉 .

4.15 Remark (a) The group Q2n has actually order 2n, 〈x〉 is a subgroup of
index 2 in Q2n , Q2n has only one element of order 2 namely z := y2 = x2n−2

and < z >= Z(Q2n), cf. homework.
(b) It follows from (a) and Theorem 4.10 that the generalized quaternion

group of order 8 is equal to the quaternion group of order 8.
(c) The group SD2n has order 2n, the subgroup 〈x〉 has index 2. It is the

semidirect product of the cyclic group 〈x〉 with the group 〈y〉 of order 2.
(d) Without proof we state: If G is a 2-group with precisely one subgroup

of order 2 then G is cyclic or isomorphic to a generalized quaternion group.
(e) Again without proof we state the following result: Let G be a non-

abelian 2-group of order 2n, and assume that G has a cyclic subgroup of
order 2n−1. Then n > 3 and exactly one of the four statements holds:

(i) G is isomorphic to the dihedral group D2n .

(ii) G is isomorphic to the generalized quaternion group Q2n .

(iii) n > 4 and G is isomorphic to the semidihedral group SD2n .

(iv) n > 4 and G is isomorphic to the group 〈x, y | x2n−1
= 1, y2 =

1, yxy−1 = x2n−2+1〉.

The groups in (i),(iii),(iv) are semidirect products of the cyclic subgroup
of order 2n−1 with a subgroup of order 2. The group in (ii) is not a semidirect
product. They are pairwise non-isomorphic, because the numbers of elements
of order 2 they contain are different.

16



5 Group Cohomology

Throughout this section we fix two groups A and G and we assume that A
is abelian.

5.1 Definition Let α : G → Aut(K), x 7→ αx be a homomorphism. We
write the corresponding left action exponentially: αx(a) = xa for x ∈ G and
a ∈ A. For n ∈ N0, we denote by F (Gn, A) the abelian group of functions
f : Gn → A under the multiplication (fg)(x1, . . . , xn) = f(x1, . . . , xn)g(x1, . . . , xn),
for f, g ∈ F (Gn, A) and x1, . . . , xn ∈ G. If n = 0 we set Gn := {1}. For each
n ∈ N0 there is a group homomorphism

dn := dnα : F (Gn, A)→ F (Gn+1, A)

given by

(dnα(f))((x0, . . . , xn) := x0f(x1, . . . , xn)·

·
( n∏
i=1

f(x0, . . . , xi−1xi, . . . , xn)(−1)i
)
·

· f(x0, . . . , xn−1)
(−1)n+1

,

for f ∈ F (Gn, A) and (x0, . . . , xn) ∈ Gn+1. For n = 0 we interpret this as
(d0(f))(x) := xf(1) · f(1)−1. It is not difficult to see that dn+1 ◦ dn = 1 for
n ∈ N0. This implies that im(dn) 6 ker(dn+1) 6 F (Gn+1, A), for all n ∈ N0.
We write

Bn(G,A) := Bn
α(G,A) := im(dn−1

α )

and
Zn(G,A) := Zn

α(G,A) := ker(dnα) ,

for n ∈ N0, where we set B0(G,A) := B0
α(G,A) := 1. The elements of

Bn
α(G,A) are called n-coboundaries and the elements of Zn

α(G,A) are called
n-cocycles of G with coefficients in A (under the action α). Finally, we set

Hn(G,A) := Hn(G,A) := Zn
α(G,A)/Bn

α(G,A) .

The group Hn
α(G,A) is called the n-th cohomology group of G with coefficients

in A (under the action α) and its elements are called cohomology classes. If
f ∈ Zn(G,A), we denote its cohomology class by [f ] ∈ Hn(G,A).
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5.2 Remark Let α : G→ Aut(A) be a homomorphism.
(a) We can identify F (G0, A) with A under the map f 7→ f(1). With this

identification, we obtain

Z0(G,A) = AG := {a ∈ A | xa = a for all x ∈ G} ,

the subgroup ofG-fixed points ofA. SinceB0(G,A) = 1, we obtainH0(G,A) ∼=
AG.

(b) A function f : G→ A is in Z1(G,A), if and only if

f(xy) = xf(y) · f(x)

for all x, y ∈ G. The 1-cocycles of G with coefficients in A are also called the
crossed homomorphisms from G to A. If the action of G on A is trivial, then
the crossed homomorphisms are exactly the homomorphisms. A function
f : G→ A is a 1-boundary, if and only if there exists an element a ∈ A such
that

f(x) = xa · a−1 ,

for all x ∈ G. These functions are called the principal crossed homomor-
phisms. If G acts trivially on A, then they are all trivial and H0(G,A) ∼=
Hom(G,A).

(c) A function f : G2 → A is a 2-cocycle, if and only if

xf(y, z)f(x, yz) = f(xy, z)f(x, y) ,

for all x, y, z ∈ G, and it is a 2-coboundary, if and only if there exists a
function g : G→ A such that

f(x, y) = xg(y)g(x)g(xy)−1 ,

for all x, y ∈ G. We will see later that H2(G,A) describes the extensions
1→ A→ X → G→ 1 of G by A, up to a suitable equivalence.

(d) If A has finite exponent e then f e = 1 for all f ∈ F (Gn, A) and all
n ∈ N0. In particular, each cocycle and each cohomology class has an order
which divides e.

5.3 Proposition Let α : G→ Aut(A) be a homomorphism and assume that
G is finite. Then [f ]|G| = 1 for all n-cocycles f ∈ Zn

α(G,A) and all n ∈ N.
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Proof Let n ∈ N, let f ∈ Zn
α(G,A), and let x0, . . . , xn ∈ G. Then

f(x0, . . . , xn−1)
(−1)n

= x0f(x1, . . . , xn) ·
( n∏
i=1

f(x0, . . . , xi−1xi, . . . , xn)(−1)i
)
.

If we fix x0, . . . , xn−1 ∈ G and multiply the above equations for the different
elements xn ∈ G, we obtain

f(x0, . . . , xn−1)
(−1)n|G|

=
x0
( ∏
xn∈G

f(x1, . . . , xn)
)
·
n∏
i=1

( ∏
xn∈G

f(x0, . . . , xi−1xi, . . . , xn)
)(−1)i

.

If we define g : Gn−1 → A by g(x1, . . . , xn−1) :=
∏
x∈G f(x1, . . . , xn−1, x), then

the above equation shows that

f |G| = dn−1(g(−1)n

) ,

and [f ]|G| = 1 in Hn(G,A).

5.4 Corollary Let G and A be finite groups of coprime orders. Then
Hn
α(G,A) = 1 for all α ∈ Hom(G,Aut(A)) and all n ∈ N.

Proof Let k := |G| and l := |A|. Then there exist elements r, s ∈ Z such
that 1 = rk + sl. From Remark 5.2(d) and Proposition 5.3 we know that
[f ]k = 1 and [f ]l = 1 for all f ∈ Zn

α(G,A) and all n ∈ N. Therefore also
[f ] = [f ]1 = [f ]rk+sl = ([f ]k)r([f ]l)s = 1.
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6 Group Extensions and Parameter Systems

In this section we will try to find a way to describe for given groups K and G
all possible groups H which have a normal subgroup N which is isomorphic
to K and whose factor group H/N is isomorphic to G. We fix K and G
throughout this section. We do not require G or K to be finite.

6.1 Definition A group extension of G by K is a short exact sequence

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 ,

i.e., H is a group, and at each of the three groups K, H, G, the image of the
incoming map is equal to the kernel of the outgoing map. Equivalently, ε is
injective, im(ε) = ker(ν), and ν is surjective. We say that the above group
extensions is equivalent to the group extension

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1

if and only if there exists an isomorphism ϕ : H → H̃ such that the diagram

H

�
�
�
��

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ε
@
@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ν

K γ

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

G
@
@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ε̃
�
�
�
��

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ν̃

H̃

(6.1.a)
commutes. Obviously, this defines an equivalence relation on the set ext(G,K)
of extensions of G by K. The set of equivalence classes of ext(G,K) is de-
noted by Ext(G,K).

6.2 Remark (a) If 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 is a group extension of G by
K, then H has the normal subgroup ε(K) with factor group H/ε(K) =
H/ ker(ν) ∼= G. Conversely, whenever H is a group having a normal sub-
group N such that N ∼= K and H/N ∼= G, then there is a group extension
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1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1, where ε is the composition of the isomorphism
K ∼= N and the inclusion N 6 H, and ν is the composition of the natu-
ral epimorphism H � H/N and the isomorphism H/N ∼= G. Moreover, if
1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 and 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 are equivalent ex-
tensions then H and H̃ are isomorphic by definition. Warning: the converse
is not true. There are examples of group extensions of K by G which are not
equivalent but involve isomorphic groups H and H̃.

(b) Two group extensions

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 and 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1

are already equivalent if there exists a homomorphism γ : H → H̃ which
makes Diagram (6.1.a) commutative. In fact, it is easy to see that in this
case it follows that γ is an isomorphism.

6.3 Proposition Let 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 be a group extension of G
by K. For each x ∈ G, let hx ∈ H be such that ν(hx) = x. Then the
following hold:

(a) For every h ∈ H there exist unique elements x ∈ G and a ∈ K such
that h = hxε(a).

(b) For every x ∈ G and a ∈ K there exists a unique element αx(a) ∈ K
such that ε(αx(a)) = hxε(a)h−1

x . Moreover, αx ∈ Aut(K).
(c) For every x, y ∈ G there exists a unique element κ(x, y) ∈ K such

that hxhy = ε(κ(x, y))hxy. In particular, h1 = ε(κ(1, 1)). Moreover, αx ◦
αy = cκ(x,y)αxy, where ca ∈ Aut(K) denotes the conjugation automorphism
k 7→ aka−1 for a ∈ K.

(d) For every x, y, z ∈ G on has κ(x, y)κ(xy, z) = αx(κ(y, z))κ(x, yz).
(e) Let also h′x ∈ H be such that ν(h′x) = x for all x ∈ G. Then there

exists a unique function g : G→ K such that h′x = hx · ε(g(x)) for all x ∈ G.
If α′ : G → Aut(K) and κ′ : G × G → K are constructed from h′x, x ∈ G,
then

α′x = cf(x) ◦ αx and κ′(x, y) = f(x) · αx(f(y)) · κ(x, y) · f(xy)−1

for all x, y ∈ G, where f : G → K is defined by f(x) := αx(g(x)) for all
x ∈ G.

Proof (a) Let h ∈ H and set x := ν(h). Then ν(h−1
x h) = ν(hx)

−1ν(h) =
x−1x = 1 and there exists a ∈ K such that ε(a) = h−1

x h. Assume that also
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h = hyε(b) for y ∈ G and b ∈ K. Then x = ν(h) = ν(hy)ν(ε(b)) = y · 1 = y
and therefore ε(a) = ε(b). Since ε is injective, also a = b.

(b) For x ∈ G and a ∈ K, we have hxε(a)h−1
x ∈ ker(ν) = im(ε). There-

fore, there exists b ∈ K with ε(b) = hxε(a)h−1
x . Since ε is injective, b ∈ K is

unique. We set αx(a) := b.
Let a, b ∈ K and x ∈ G. Then αx(a)αx(b) ∈ K and

ε(αx(a)αx(b)) = ε(αx(a))ε(αx(b)) = hxε(a)h−1
x hxε(b)h

−1
x

= hxε(ab)h
−1
x = ε(αx(ab)) .

Since ε is injective, we have αx(a)αx(b) = αx(ab) and αx is a group homo-
morphism from K to K. If αx(a) = 1, then 1 = ε(αx(a)) = hxε(a)h−1

x and
therefore, ε(a) = 1. Since ε is injective, also a = 1. This shows that αx is
injective. Finally, let b ∈ K be arbitrary. Then h−1

x ε(b)hx ∈ ker(ν) = im(ε)
and there exists a ∈ K such that h−1

x ε(b)hx = ε(a). This implies b = αx(a)
and αx is surjective.

(c) Let x, y ∈ G. Then ν(hxhyh
−1
xy )) = xy(xy)−1 = 1 and there exists a

unique element a ∈ K such that ε(a) = hxhyh
−1
xy . We set κ(x, y) := a. For

x, y ∈ G and a ∈ K we then have

ε(αx(αy(a))) = hxε(αy(a))h−1
x = hxhyε(a)h−1

y h−1
x

= hxhyh
−1
xy hxyε(a)h−1

xy hxyh
−1
y h−1

x

= ε(κ(x, y))hxyε(a)h−1
xy ε(κ(x, y))−1

= ε(κ(x, y))ε(αxy(a))ε(κ(x, y))−1

= ε(κ(x, y)αxy(a)κ(x, y)−1) ,

and the injectivity of ε implies (αx ◦ αy)(a) = (cκ(x,y) ◦ αxy)(a).
(d) Let x, y, z ∈ G. Then

ε
(
κ(x, y)κ(xy, z)

)
hxyz = ε(κ(x, y))ε(κ(xy, z))h(xy)z = ε(κ(x, y))hxyhz

= (hxhy)hz

and

ε
(
αx(κ(y, z))κ(x, yz)

)
hxyz = ε(αx(κ(y, z)))ε(κ(x, yz))hx(yz)

= hxε(κ(y, z))h−1
x hxhyz = hxε(κ(y, z))hyz

= hx(hyhz) .
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Now the injectivity of ε implies the desired equation.
(e) Let x ∈ G. Since ν(h−1

x h′x) = x−1x = 1, there exists a unique element
g(x) ∈ K such that ε(g(x)) = h−1

x h′x. Moreover, for each a ∈ K and x ∈ G
we have

ε(α′x(a)) = h′xε(a)h′x
−1

= hxε(g(x)ag(x)−1)h−1
x ,

which implies α′x(a) = αx(g(x)ag(x)−1) and α′x = cαx(g(x)) ◦ αx = cf(x) ◦ αx.
Moreover, for all x, y ∈ G we have

ε(κ′(x, y)) = h′x · h′y · h′xy
−1

= hx · ε(g(x)) · hy · ε(g(y)) · ε(g(xy))−1 · h−1
xy

= hx · ε(g(x)) · h−1
x · hx · hy · h−1

xy · hxy · ε(g(y)g(xy)−1) · h−1
xy

= ε(αx(g(x))) · ε(κ(x, y)) · ε(αxy(g(y)g(xy)−1))

= ε
[
αx(g(x)) · κ(x, y) · αxy(g(y)) · αxy(g(xy))−1

]
= ε

[
f(x) · κ(x, y) · αxy(g(y)) · κ(x, y)−1 · κ(x, y) · f(xy)−1

]
= ε

[
f(x) · αx(αy(g(y))) · κ(x, y) · f(xy)−1

]
= ε

[
f(x) · αx(f(y)) · κ(x, y) · f(xy)−1

]
.

Since ε is injective, this implies the desired equation.

6.4 Definition (a) A parameter system of G in K is a pair (α, κ) of maps
α : G→ Aut(K), x 7→ αx, and κ : G×G→ K with the following properties:

(i) For every x, y ∈ G one has αx ◦ αy = cκ(x,y) ◦ αxy.

(ii) For every x, y, z ∈ G one has κ(x, y)κ(xy, z) = αx(κ(y, z))κ(x, yz).

We call α the automorphism system and κ the factor system of (α, κ), and
we denote the set of parameter systems of G in K by par(G,K).

(b) The set F (G,K) of functions from G to K is a group under the
multiplication (fg)(x) := f(x)g(x) for f, g : G → K and x ∈ G. If (α, κ) ∈
par and f : G→ K we set f(α, κ) := (α′, κ′) with

α′x := cf(x) ◦ αx , and κ′(x, y) := f(x)αx(f(y))κ(x, y)f(xy)−1 ,

for x, y ∈ G. As the next lemma shows, this defines a group action of F (G,K)
on the set par(G,K). We call two parameter systems of G in K equivalent if
they belong to the same F (G,K)-orbit and we denote the set of equivalence
classes by Par(G,K).
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6.5 Remark Every extension of G by K and every choice of elements hx
as in Proposition 6.3 leads to a parameter system (α, κ) of G and K. If
h′x is another choice of elements then, by Proposition 6.3(e), one obtains an
equivalent parameter system (α′, κ′). Thus, Proposition 6.3 defines a function

ϕ : ext(G,K)→ Par(G,K) .

6.6 Lemma (a) Let (α, κ) ∈ par(G,K). Then α1 = cκ(1,1), κ(1, 1) = κ(1, z),
and κ(x, 1) = αx(κ(1, 1)) for all x, z ∈ G.

(b) The definition of f(α, κ) in Definition 6.4(b) defines a group action of
F (G,K) on par(G,K).

Proof (a) By Axiom (i) in Definition 6.4(a), we have α1 ◦ α1 = cκ(1,1) ◦ α1

which implies α1 = cκ(1,1). For z ∈ G, this and Axiom (ii) in Definition 6.4(a)
imply

κ(1, 1)κ(1 · 1, z) = α1(κ(1, z))κ(1, 1 · z) = κ(1, 1)κ(1, z)κ(1, 1)−1κ(1, z) .

Therefore, κ(1, z) = κ(1, 1). For x ∈ G, Axiom (ii) in Definition 6.4(a)
implies κ(x, 1·1)κ(x·1, 1) = αx(κ(1, 1))κ(x, 1·1). Thus, κ(x, 1) = αx(κ(1, 1)).

(b) Let f, g ∈ F (G,K) and κ ∈ par(G,K). We set (α′, κ′) := f(α, κ) and
(α′′, κ′′) := g(α′, κ′). For all x, y ∈ G, we then have

α′′x = cg(x) ◦ α′x = cg(x) ◦ cf(x) ◦ αx = cg(x)f(x) ◦ αx = c(fg)(x) ◦ αx

and

κ′′(x, y) = g(x)α′x(g(y))κ′(x, y)g(xy)−1

= g(x)f(x)αx(g(y))f(x)−1f(x)αx(f(y))κ(x, y)f(xy)−1g(xy)−1

= (gf)(x) · αx((gf)(y)) · κ(x, y) · (gf)(xy)−1 .

This implies that (α′′, κ′′) = gf(α, κ). If f = 1, then α′x = αx by definition
and κ′(x, y) = αx(1)κ(x, y) = κ(x, y) for all x, y ∈ G. Therefore, 1(α, κ) =
(α, κ). We still have to show that (α′, κ′) is again a parameter system. For
x, y, z ∈ G, we have

α′x ◦ α′y = cf(x) ◦ αx ◦ cf(y) ◦ αy = cf(x) ◦ αx ◦ cf(y) ◦ α−1
x ◦ αx ◦ αy

= cf(x) ◦ cαx(f(y)) ◦ cκ(x,y) ◦ αxy = cf(x)αx(f(y))κ(x,y) ◦ c−1
f(xy) ◦ α

′
xy

= cκ′(x,y) ◦ α′xy
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and

κ′(x, y)κ′(xy, z)

= f(x)αx(f(y))κ(x, y)f(xy)−1f(xy)αxy(f(z))κ(xy, z)f(xyz)−1

= f(x)αx(f(y))κ(x, y)αxy(f(z))κ(x, y)−1κ(x, y)κ(xy, z)f(xyz)−1

= f(x)αx(f(y))αx(αy(f(z)))αx(κ(y, z))κ(x, yz)f(xyz)−1

= f(x)αx
(
f(y)αy(f(z))κ(y, z)f(yz)−1

)
αx(f(yz))κ(x, yz)f(xyz)−1

= α′x(κ
′(y, z))f(x)αx(f(yz))κ(x, yz)f(xyz)−1

= α′x(κ
′(y, z))κ′(x, yz) .

This implies that (α′, κ′) ∈ par(G,K).

6.7 Proposition Let (α, κ) ∈ par(G,K). Then the set K×G together with
the multiplication

(a, x)(b, y) := (a · αx(b) · κ(x, y), xy) , for a, b ∈ K, x, y ∈ G,

is a group with identity element (κ(1, 1)−1, 1) and inverse element (a, x)−1 =
(κ(1, 1)−1κ(x−1, x)−1αx−1(a)−1, x−1). Moreover, the functions ε : K → K×G,
a 7→ (κ(1, 1)−1a, 1), and ν : K × G → G, (a, x) 7→ x, are group homomor-
phisms such that 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 is a group extension of G by
K.

Proof First we prove associativity. Let a, b, c ∈ K and x, y, z ∈ G. Then

[(a, x)(b, y)](c, z) = (aαx(b)κ(x, y), xy)(c, z)

= (aαx(b)κ(x, y)αxy(c)κ(xy, z), xyz)

and

(a, x)[(b, y)(c, z)] = (a, x)(bαy(c)κ(y, z), yz)

= (aαx(bαy(c)κ(y, z))κ(x, yz), xyz)

= (aαx(b)αx(αy(c))αx(κ(y, z))κ(x, yz), xyz)

= (aαx(b)κ(x, y)αxy(c)κ(x, y)−1κ(x, y)κ(xy, z), xyz)

= (aαx(b)κ(x, y)αxy(c)κ(xy, z), xyz) .
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Next we show that (κ(1, 1)−1, 1) is a left identity element. In fact, for b ∈ K
and y ∈ G we have

(κ(1, 1)−1, 1)(b, y) = (κ(1, 1)−1α1(b)κ(1, y), 1 · y)

= (κ(1, 1)−1κ(1, 1)bκ(1, 1)−1κ(1, y), y) = (b, y) .

Moreover, for b ∈ K and y ∈ G we have

(κ(1, 1)−1κ(y−1, y)−1αy−1(b)−1, y−1)(b, y)

= (κ(1, 1)−1κ(y−1, y)−1αy−1(b)−1αy−1(b)κ(y−1, y), y−1y)

= (κ(1, 1)−1, 1) .

This shows that H is a group.
For a, b ∈ K we have

ε(a)ε(b) = (κ(1, 1)−1a, 1)(κ(1, 1)−1b, 1)

= (κ(1, 1)−1aα1(κ(1, 1)−1b)κ(1, 1), 1 · 1)

= (κ(1, 1)−1aκ(1, 1)κ(1, 1)−1bκ(1, 1)−1κ(1, 1), 1)

= (κ(1, 1)−1ab, 1) = ε(ab) ,

which shows that ε is a homomorphism. Obviously, ε is injective. For all
a, b ∈ K and x, y ∈ G, we have

ν((a, x)(b, y)) = ν(aαx(b)κ(x, y), xy) = xy = ν(a, x)ν(b, y) ,

which shows that ν is a homomorphism. Obviously, ν is surjective. Finally,
for a ∈ K and x ∈ G we have

(a, x) ∈ ker(ν) ⇐⇒ x = 1 ⇐⇒ (a, x) ∈ ε(K) ,

and the proof is complete.

6.8 Theorem (Schreier) The constructions in Proposition 6.3 and Propo-
sition 6.7 induce mutually inverse bijections between Ext(G,K) and Par(G,K).

Proof First assume that

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 and 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1

are equivalent group extensions of G by K. Then there exists an isomorphism
γ : H → H̃ such that the diagram
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H

�
�
�
��

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ε
@
@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ν

K γ

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

G
@
@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ε̃
�
�
�
��

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ν̃

H̃

is commutative. For each x ∈ G let hx ∈ H such that ν(hx) = x and assume
that α : G→ Aut(K) and κ : G×G→ K is constructed as in Proposition 6.3,
i.e.,

ε(αx(a)) = hxε(a)h−1
x and hxhy = ε(κ(x, y))hxy

for all x, y ∈ G and a ∈ K. We set h̃x := γ(hx) for each x ∈ G. Then, ν̃(h̃x) =
ν̃(γ(hx)) = ν(hx) = x for each x and we can use the elements h̃x in order
to construct a parameter system (α̃, κ̃) associated to the group extension
1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1. But applying γ to the two above equations we
obtain

ε̃(αx(a)) = h̃xε̃(a)h̃−1
x and h̃xh̃y = ε̃(κ(x, y))h̃−1

xy .

This implies that α̃ = α and κ̃ = κ. Therefore, the construction in Proposi-
tion 6.3 induces a map

Φ: Ext(G,K)→ Par(G,K) .

Next let (α, κ) ∈ par(G,K), f ∈ F (G,K), and set (α̃, κ̃) := f(α, κ).
Moreover, let 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 and 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 be
the group extensions associated to (α, κ) and (α̃, κ̃) by the construction in
Proposition 6.7. We want to show that they are equivalent. We define
γ : H → H̃ by

γ(a, x) :=
(
eaαx(e)

−1f(x)−1, x
)

with e := κ(1, 1)−1f(1)−1κ(1, 1) .

For all a, b ∈ K and x, y ∈ G we have

γ(a, x)ϕ(b, y) = (eaαx(e)
−1f(x)−1, x) · (ebαy(e)−1f(y)−1, y)

= (eaαx(e)
−1f(x)−1α̃x(ebαy(e)

−1f(y)−1)κ̃(x, y), xy)

= (eaαx(e)
−1f(x)−1f(x)αx(ebαy(e)

−1f(y)−1)f(x)−1·
· f(x)αx(f(y))κ(x, y)f(xy)−1, xy)

= (eaαx(b)αx(αy(e))
−1κ(x, y)f(xy)−1, xy)
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and

γ((a, x)(b, y)) = ϕ(aαx(b)κ(x, y), xy)

= (eaαx(b)κ(x, y)αxy(e)
−1f(xy)−1, xy)

= (eaαx(b)κ(x, y)αxy(e)
−1κ(x, y)−1κ(x, y)f(xy)−1, xy)

= (eaαx(b)αx(αy(e))
−1κ(x, y)f(xy)−1, xy) .

This implies that γ is a homomorphism. Moreover, for a ∈ K and x ∈ G, we
have

γ(ε(a)) = γ(κ(1, 1)−1a, 1) = (eκ(1, 1)−1aα1(e)
−1f(1)−1, 1)

= (κ(1, 1)−1f(1)−1aκ(1, 1)d−1κ(1, 1)−1f(1)−1, 1)

= (κ(1, 1)−1f(1)−1a, 1)) = (κ̃(1, 1)−1a, 1) = ε̃(a)

and
ν̃(γ(a, x)) = ν̃(eaαx(e)

−1f(x)−1, x) = x = ν(a, x) .

Together with Remark 6.2(b), this implies that the two group extensions
1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 and 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 are equivalent. There-
fore, the construction in Proposition 6.7 induces a map

Ψ: Par(G,K) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ext(G,K) .

Finally, we show that Φ and Ψ are mutually inverse bijections. Let
1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 be a group extension and, for each x ∈ G, let
hx ∈ H be such that ν(hx) = x. Moreover, let (α, κ) be the parameter system
defined in Proposition 6.3 from hx, x ∈ G, and let 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1
be the group extension constructed from (α, κ) according to Proposition 6.7.
We show that the two group extensions

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 and 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1

are equivalent. In fact, let γ : H̃ → H be defined by

γ(a, x) := ε(κ(1, 1)aκ(x, 1)−1)hx ,

for all a, b ∈ K and x, y ∈ G. Then

γ((a, x)(b, y)) = γ(aαx(b)κ(x, y), xy)

= ε
(
κ(1, 1)aαx(b)κ(x, y)κ(xy, 1)−1

)
hxy

= ε
(
κ(1, 1)aαx(b)αx(κ(y, 1))−1κ(x, y)

)
hxy

= ε
(
κ(1, 1)aαx(b)αx(κ(y, 1))−1

)
hxhy
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and

γ(a, x)γ(b, y) = ε
(
κ(1, 1)aκ(x, 1)−1

)
hxε

(
κ(1, 1)bκ(y, 1)−1

)
hy

= ε
(
κ(1, 1)aκ(x, 1)−1

)
ε
(
αx(κ(1, 1)bκ(y, 1)−1)

)
hxhy

= ε
(
κ(1, 1)aκ(x, 1)−1αx(κ(1, 1))αx(b)αx(κ(y, 1))−1

)
hxhy

= ε
(
κ(1, 1)aαx(b)αx(κ(y, 1))−1

)
hxhy .

This shows that γ is a homomorphism. Moreover, for a ∈ K and x ∈ G we
have

γ(ε̃(a)) = γ(κ(1, 1)−1a, 1) = ε(κ(1, 1)κ(1, 1)−1aκ(1, 1)−1)h1

= ε(a)ε(κ(1, 1))−1h1 = ε(a) ,

by Proposition 6.3(c), and

ν(γ(a, x)) = ν(ε(κ(1, 1)aκ(x, 1)−1)hx) = ν(hx) = x = ν̃(a, x) .

Therefore, the two group extensions

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 and 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H̃ ν̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1

are equivalent, and Ψ ◦ Φ = id.
Now let (α, κ) ∈ par(G,K) and let 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 be the

group extension constructed in Proposition 6.7. We set

hx := (κ(1, 1)−1κ(x, 1), x) ∈ H ,

for x ∈ G and observe that ν(hx) = x. Let x ∈ G and a ∈ K, then

hxε(a) = (κ(1, 1)−1κ(x, 1), x) · (κ(1, 1)−1a, 1)

= (κ(1, 1)−1κ(x, 1)αx(κ(1, 1))−1αx(a)κ(x, 1), x)

= (κ(1, 1)−1αx(a)κ(x, 1), x)

and

ε(αx(a))hx = (κ(1, 1)−1αx(a), 1) · (κ(1, 1)−1κ(x, 1), x)

= (κ(1, 1)−1αx(a)α1(κ(1, 1)−1κ(x, 1))κ(1, x), x)

= (κ(1, 1)−1αx(a)κ(x, 1)κ(1, 1)−1κ(1, x), x)

= (κ(1, 1)−1αx(a)κ(x, 1), x) .
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Moreover, for all x, y ∈ G we have

hxhy = (κ(1, 1)−1κ(x, 1), x) · (κ(1, 1)−1κ(y, 1), y)

= (κ(1, 1)−1κ(x, 1)αx(κ(1, 1))−1αx(κ(y, 1))κ(x, y), xy)

= (κ(1, 1)−1αx(κ(y, 1))κ(x, y), xy)

= (κ(1, 1)−1κ(x, y)κ(xy, 1), xy)

and

ε(κ(x, y))hxy = (κ(1, 1)−1κ(x, y), 1) · (κ(1, 1)−1κ(xy, 1), xy)

= (κ(1, 1)−1κ(x, y)α1(κ(1, 1)−1κ(xy, 1))κ(1, xy), xy)

= (κ(1, 1)−1κ(x, y)κ(xy, 1)κ(1, 1)−1κ(1, xy), xy)

= (κ(1, 1)−1κ(x, y)κ(xy, 1), xy)

This shows that the parameter system constructed from the group extension
1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 equals (α, κ). Therefore Φ◦Ψ = id, and the proof
is complete.

6.9 Proposition Let 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 be a group extension of G
by K. Then the following are equivalent:

(i) There exists a homomorphism σ : G→ H such that ν ◦ σ = idG.
(ii) ε(K) has a complement in H.

Proof (i)⇒ (ii): Let σ : G→ H be a homomorphism satisfying ν ◦σ = idG.
We show that σ(G) is a complement of ε(K) = ker(ν) in H. Let h ∈ ker(ν)∩
σ(G). Then h = σ(x) for some x ∈ G and we obtain x = νσ(x) = ν(h) = 1
and h = σ(x) = 1. Now let h ∈ H be arbitrary. Then h = hσ(ν(h))−1σ(ν(h))
with hσ(ν(h))−1 ∈ ker(ν) and σ(ν(h)) ∈ σ(G).

(ii) ⇒ (i): Let C be a complement of ε(K) = ker(ν) in H. Then the
map δ : C → H/ε(K), c 7→ cε(K) is an isomorphism. By the homomorphism
theorem, also the map ν̄ : H/ε(K) → G, hε(K) 7→ ν(h), is an isomorphism.
Now the map

σ : G ν̄−1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H/ε(K) δ−1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C ι qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H

satisfies ν(σ(x)) = (ν ◦ ι◦δ−1 ◦ ν̄−1)(x) = x. In fact, we can write x = ν̄(δ(c))
for a unique c ∈ C. Then it suffices to show that ν(ι(c) = ν̄(δ(c)). But
ν̄(δ(c)) = ν̄(c ker(ν)) = ν(c) = ν(ι(c)).
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6.10 Remark (a) If the conditions in Proposition 6.9 is satisfied, then we
say that the group extension 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 splits and that σ is
a splitting map.

(b) If 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 splits and σ : G→ H satisfies ν◦σ = idG,
then we may use the elements hx := σ(x), x ∈ G, in order to construct a
corresponding parameter system. Since hxhy = hxy for all x, y ∈ G, one has
κ(x, y) = 1 for all x, y ∈ G. Moreover, this implies that α : G → Aut(K) is
a homomorphism.

Conversely, if α : G→ Aut(K) is a homomorphism and κ(x, y) = 1 for all
x, y ∈ G, then (α, κ) is a parameter system of G in K and the corresponding
group extension splits and is represented by the semidirect product of G with
K under the action defined by α.

6.11 Definition Even if K is not abelian, one can still define the so-called
non-commutative cohomology H0(G,K) and H1(G,K) of G with values in
K as follows:

(a) H0(G,K) := KG, the set of G-fixed points of K. This is a subgroup
of K.

(b) Z1(G,K) is defined as the set of all functions µ : G→ K satisfying

µ(xy) = xµ(y)µ(x) .

It’s elements are called 1-cocycles or crossed homomorphisms from G to K.
Two functions λ, µ ∈ Z1(G,K) are called equivalent if there exists a ∈ K
such that

λ = xa · µ(x) · a−1

for all x ∈ G. This defines an equivalence relation (see Homework problem).
The equivalence class of µ ∈ Z1(G,K) is denoted by [µ]. The set of equiva-
lence classes of Z1(G,K) is denoted by H1(G,K). It is not a group, but it
has the structure of a pointed set, a set with a distinguished element, namely
the class [1] of the constant function 1: G→ K.

6.12 Remark (a) There are no non-commutative versions of Hn(G,K) for
n > 2.

(b) If K = A is abelian then the definitions in 6.11 coincide with the
usual cohomology groups.

(c) IfG acts onK and µ ∈ Z1(G,K) then the equation µ(xy) = xµ(y)µ(x)
implies that µ(1) = 1 by setting x = y = 1. Moreover, by setting y = x−1

we obtain
x
µ(x−1) = µ(x)−1 and x−1µ(x) = µ(x−1)−1x−1.
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6.13 Theorem Let α : G → Aut(K) be a group homomorphism and let
H := K oG be the corresponding semidirect product. To simplify notation
we assume that K E H and G 6 H with K ∩ G = 1 and KG = H. Let
C denote the set of all complements of K in H, i.e., subgroups C 6 H,
satisfying K ∩ C = 1 and KC = H.

(a) H acts by conjugation on C and the H-orbits of C are equal to the
K-orbits of C. The K-conjugacy classes of C will be denoted by C.

(b) For each C ∈ C there exists a unique function µC : G→ K such that

µC(x) ∈ xC for all x ∈ G.

Moreover, µC ∈ Z1(G,K). Conversely, for every µ ∈ Z1(G,K), the set

Cµ := {µ(x)−1x | x ∈ G}

is a subgroup and a complement of K in H. These two constructions define
mutual inverse bijections

C↔ Z1(G,K) .

Moreover, these bijections induce mutually inverse bijections

C↔ H1(G,K) .

Proof Both statements of (a) are easy to verify.
(b) Let C ∈ C. For every x ∈ G there exist unique elements µ(x) ∈ K

and c ∈ C such that
x = µ(x)c .

This implies the first statement. Next we show that the function µ : G→ K
is a 1-cocycle. Let x, y ∈ G and let c, d ∈ C with x = µ(x)c and y = µ(y)d.
Then

xy = xµ(y)d = xµ(y)xd = xµ(y)µ(x)cd

with xµ(y)µ(x) ∈ K and cd ∈ C.
Next let µ ∈ Z1(G,K) and let Cµ be defined as in the theorem. First we

show that Cµ is a subgroup: For x, y ∈ G we have

µ(x)−1xµ(y)−1y = µ(x)−1 xµ(y)−1xy = µ(xy)−1xy

which shows that the product of two elements in Cµ is again in Cµ. Moreover,
if for x ∈ G we have

x−1µ(x) = µ(x−1)−1x−1
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by Remark 6.12(c). If x is an element in G such that µ(x)−1x ∈ K, then also
x is in K and therefore, x = 1 and µ(x)−1x = 1. Therefore, K ∩ Cµ = 1.
Finally, every element in H can be written as ax with a ∈ K and x ∈ G and
ax = aµ(x)µ(x)−1x ∈ KCµ. This completes the proof that Cµ ∈ C.

It is easy to see that the two constructions are inverse to each other so
that we obtain a bijection C↔ Z1(G,K).

Next assume that C,D ∈ C and that D = aC with a ∈ K. Let x ∈ G
and let c ∈ C such that x = µC(x)c. Then,

x = µC(x)c = µ(x) · ca · a−1 · ac

with µC(x) · ca · a−1 ∈ K and ac ∈ D. Therefore,

µD = µ(x) · ca · a−1 = µC(x) · µC(x)−1xa · a−1 = xa · µ(x) · a−1 .

Therefore, [µC ] = [µD] ∈ H1(G,K). Conversely, let λ, µ ∈ Z1(G,K) and let
a ∈ K such that λ(x) = xa · µ(x) · a−1 for all x ∈ G. Then Cλ consists of
all elements of the form λ(x)−1x = a · µ(x)−1 · xa−1 · x = aµ(x)−1xa−1 with
x ∈ G. But this is just aCµa

−1. This completes the proof of the Theorem.
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7 Group Extensions with Abelian Kernel

Throughout this section let A be an abelian group and let G be an arbitrary
group.

7.1 Remark Let 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A ε qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ν qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 be a group extension, let hx ∈
H with ν(hx) = x for all x ∈ G, and let (α, κ) ∈ par(G,A) be the parameter
system as defined in Proposition 6.3. Then

ε(αx(a)) = hxε(a)h−1
x , hxhy = ε(κ(x, y))hxy ,

αx ◦ αx = cκ(x,y) ◦ αxy , and αx(κ(y, z))κ(x, yz) = κ(xy, z)κ(x, y) ,

for all a ∈ A and x, y, z ∈ G. Since A is abelian, cκ(x,y) = idK and the map
α : G → Aut(A) is a homomorphism. Moreover, κ is a 2-cocycle of G with
coefficients in A under the action defined by α. If (α′, κ′) ∈ par(G,A) is
equivalent to (α, κ), then there exists a function f : G→ A such that

α′x = cαx(f(x)) ◦ αx and κ′(x, y) = f(x)αx(f(y))κ(x, y)f(xy)−1 ,

for all x, y ∈ G. Again, since A is abelian, this implies α′ = α. Moreover, we
can see that κ and κ′ belong to the same cohomology class. Altogether we
see that two parameter systems (α, κ) and (α′, κ′) are equivalent, if and only
if α = α′ and [κ] = [κ′] ∈ H2

α(G,A).
Therefore we can partition Ext(G,A) and Par(G,A) into disjoint unions

indexed by α ∈ Hom(G,Aut(A)), i.e., by the possible actions of G on A:

Par(G,A) =
•⋃
α

H2
α(G,A)

and

Ext(G,A) =
•⋃
α

Extα(G,A) ,

where Extα(G,A) denotes those extensions which induce the automorphism
system α. For given action α : G → Aut(A), we have the bijections from
Schreier’s Theorem 6.8:

Extα(G,A)↔ H2
α(G,A) .

Recall that H2
α(G,A) is an abelian group. Its identity element [1] corresponds

to the semidirect product extension of G by A under the action α. The mul-
tiplication in the group H2

α(G,A) corresponds to the so-called Baer product
which can be defined purely in terms of extensions.
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Finally, if the above extension splits then the A-conjugacy classes (recall
that they are the same as the H-conjugacy classes) of complements of A in
H are parametrized by H1(G,A), by Theorem 6.13

7.2 Corollary Assume that gcd(|G|, |A|) = 1.
(a) Every extensions of G by A splits. In particular, for every action

α ∈ Hom(G,Aut(A)), there exist precisely one extension of G by A (up to
equivalence) with automorphism system α, namely the semidirect product
Aoα G.

(b) Let α ∈ Hom(G,Aut(A)) and let H := Aoα G be the corresponding
semidirect product. Then any two complements of A in H are conjugate
under A.

Proof (a) We have Extα(G,A) ∼= H2
α(G,A) by the above remark. But the

latter group is trivial by Corollary 5.4. Thus, the only extension of G by
A, up to equivalence, that has automorphism system α, is the semidirect
product.

(b) This follows immediately from Theorem 6.13.
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8 Group Extensions with Non-Abelian Ker-

nel

Throughout this section let K and G be arbitrary groups.

8.1 Remark An automorphism f ∈ Aut(K) is called an inner automor-
phism, if f = ca for some a ∈ K. The set Inn(K) of inner automorphisms
is the image of the homomorphism c : K → Aut(K), a 7→ ca. Therefore,
Inn(K) is a subgroup of Aut(K). It is even a normal subgroup, since
f ◦ ca ◦ f−1 = cf(a) for all f ∈ Aut(K) and all a ∈ K. We call the quo-
tient Out(K) := Aut(K)/Inn(K) the group of outer automorphisms of K.

For each (α, κ) ∈ par(G,K) one has αx ◦αy = cκ(x,y) ◦αxy for all x, y ∈ G.
This shows that the function ω : G → Out(K), x 7→ αxInn(K), is a group
homomorphism. We call ω the pairing induced by the automorphism system
α. If (α′, κ′) is an equivalent parameter system, then α′x = cf(x) ◦ αx for
some function f : G → K, which shows that the pairing ω′ induced by α′ is
equal to ω. Therefore, each element in Par(G,K) defines a pairing ω : G →
Out(K). By Schreier’s Theorem also every element in Ext(G,K) defines a
pairing. If K is abelian, then Inn(K) = 1 and Out(K) = Aut(K)/Inn(K) ∼=
Aut(K), and we do not have to distinguish between automorphism systems
and pairings.

For each ω ∈ Hom(G,Out(K)) we denote by extω(G,K) (resp. parω(G,K))
the set of extensions of G by K (resp. parameter systems of G in K) which
induce the pairing ω, and by Extω(G,K) (resp. Parω(G,K)) the set of equiv-
alence classes of extensions of G by K (resp. parameter systems of G in K)
which induce the pairing ω. Then we have

Ext(G,K) =
•⋃

ω∈Hom(G,Out(K))

Extω(G,K)

and

Par(G,K) =
•⋃

ω∈Hom(G,Out(K))

Parω(G,K) ,

and Schreier’s Theorem gives an isomorphism between Extω(G,K) and Parω(G,K)
for each ω ∈ Hom(G,Out(K)). It may happen that Extω(G,K) is empty. In
the sequel we will find out, exactly when this happens, and we will also give
a description of Extω(G,K) in the case, where it is non-empty. Both results
will use group cohomology of G with coefficients in Z(K).
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For each automorphism f ∈ Aut(K), the restriction f |Z(K) defines an
automorphism of Z(K), since Z(K) is characteristic in K. This defines a
group homomorphism resKZ(K) : Aut(K)→ Aut(Z(K)) whose kernel contains
Inn(K). By the fundamental theorem of homomorsphisms, we obtain a ho-
momorphism Out(K) → Aut(Z(K)), f Inn(K) 7→ f |Z(K), which we denote
again by resKZ(K).

If ω ∈ Hom(G,Out(K)), then its composition with resKZ(K) gives a homo-

morphism ζ := resKZ(K) ◦ ω : G → Aut(Z(K)). The next theorem will show

that, if Parω(G,K) is non-empty then it is in bijection with H2
ζ (G,Z(K)).

In the sequel we will write [α, κ] for the equivalence class of any element
(α, κ) ∈ par(G,K).

8.2 Theorem Let ω ∈ Hom(G,Out(K)) with Parω(G,K) 6= ∅ and let ζ :=
resKZ(K) ◦ ω ∈ Hom(G,Aut(Z(K))). Then the function

Z2
ζ (G,Z(K))× parω(G,K)→ parω(G,K) , (γ, (α, κ)) 7→ (α, γκ) ,

with
(γκ)(x, y) := γ(x, y)κ(x, y) ,

for x, y ∈ G, defines an action of the group Z2
ζ (G,Z(K)) on the set parω(G,K).

Moreover, this action induces an action of H2
ζ (G,Z(K)) on Parω(G,K) which

is transitive and free. In particular, for any element (α, κ) ∈ parω(G,K), the
map

H2
ζ (G,Z(K))→ Parω(G,K) , [γ] 7−→ [γ][α, κ] = [α, γκ] ,

is a bijection.

Proof We first show that for γ ∈ Z2
ζ (G,Z(K)) and (α, κ) ∈ parω(G,K) also

(α, γκ) ∈ parω(G,K). In fact, for all x, y, z ∈ G we have

(γκ)(x, y) · (γκ)(xy, z) = γ(x, y)κ(x, y)γ(xy, z)κ(xy, z)

= γ(x, y)γ(xy, z)κ(x, y)κ(xy, z)

= ζx(γ(y, z))γ(x, yz)αx(κ(y, z))κ(x, yz)

= αx(γ(y, z)κ(y, z))γ(x, yz)κ(x, yz)

= αx((γκ)(y, z))(γκ)(x, yz) ,
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since α(z) = ζ(z) for each z ∈ Z(K), and

c(γκ)(x,y) ◦ αxy = cγ(x,y)κ(x,y) ◦ αxy
= cγ(x,y) ◦ cκ(x,y) ◦ αxy
= cκ(x,y) ◦ αxy = αx ◦ αy ,

since γ(x, y) ∈ Z(K). Moreover, for all (α, κ) ∈ parω(G,K) and γ, δ ∈
Z2
ζ (G,Z(K)) we have

δ( γ(α, κ)
)
= δ(α, γκ) = (α, δγκ) = δγ(α, κ)

and 1(α, κ) = (α, κ) so that we have established an action of Z2
ζ (G,Z(K))

on parω(G,K).
Next, let (α, κ), (α′, κ′) ∈ parω(G,K) be equivalent and let γ ∈ Z2

ζ (G,Z(K)).
Then there exists a function f : G→ K such that

α′x = cf(x) ◦ αx and κ′(x, y) = f(x)αx(f(y))κ(x, y)f(xy)−1 ,

for all x, y ∈ G. Multiplication of the last equation with γ(x, y) yields

γ(x, y)κ′(x, y) = f(x)αx(f(y))γ(x, y)κ(x, y)f(xy)−1 ,

which shows that also γ(α, κ) = (α, γκ) and γ(α′, κ′) = (α′, γκ′) are equiva-
lent. Therefore, we obtain an action of Z2

ζ (G,Z(K)) on Parω(G,K).
Now let (α, κ) ∈ parω(G,K) and let γ ∈ B2

ζ (G,Z(K)). We will show
that γ(α, κ) is equivalent to (α, κ). In fact, there exists a function f : G →
Z(K) such that γ(x, y) = ζx(f(y))f(xy)−1f(x) = αx(f(y))f(xy)−1f(x) for
all x, y ∈ G. With this function we have

αx = cf(x) ◦ αx

and
(γκ)(x, y) = γ(x, y)κ(x, y) = f(x)αx(f(y))κ(x, y)f(xy)−1 ,

for all x, y ∈ G and the claim is proven. Therefore, we have an action of
H2
ζ (G,Z(K)) on Parω(G,K).

Now we show that this action is free. Let γ1, γ2 ∈ Z2
ζ (G,Z(K)) and

(α, κ) ∈ parω(G,K) such that γ1(α, κ) and γ2(α, κ) are equivalent. Set
γ := γ−1

1 γ2. Then γ(α, κ) = (α, κ) is equivalent to (α, κ). Therefore, there
exists a function f : G → K such that αx = cf(x) ◦ αx and γ(x, y)κ(x, y) =
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f(x)αx(f(y))κ(x, y)f(xy)−1 for all x, y ∈ G. This implies that cf(x) = idK
for all x ∈ K so that f(x) ∈ Z(K) for all x ∈ K. Using this we also
obtain γ(x, y) = f(x)αx(f(y))f(xy)−1 = f(x)ζx(f(y))f(xy)−1. Therefore,
γ ∈ B2

ζ (G,Z(K)) and [γ1] = [γ2] ∈ H2
ζ (G,Z(K)).

Finally, we show that the action of H2
ζ (G,Z(K)) on Parω(G,K) is tran-

sitive. Let (α, κ), (β, λ) ∈ parω(G,K). We will show that there exists γ ∈
Z2
ζ (G,Z(K)) such that (α, κ) and γ(β, λ) are equivalent. For each x ∈ G we

have αxInn(K) = ω(x) = βxInn(K). Thus, there exists an element f(x) ∈ K
such that cf(x) ◦ αx = βx. We set κ′(x, y) := f(x)αx(f(y))κ(x, y)f(xy)−1

for all x, y ∈ G. Then (β, κ′) ∈ parω(G,K) and (α, κ) is equivalent to
(β, κ′). Since also (β, λ) ∈ parω(G,K), we obtain cκ′(x,y) ◦ βxy = βx ◦ βy =
cλ(x,y) ◦ βxy and cκ′(x,y) = cλ(x,y) for all x, y ∈ K. This implies that γ(x, y) :=
κ′(x, y)λ(x, y)−1 ∈ Z(K) for all x, y ∈ G. We show that γ ∈ Z2

ζ (G,Z(K)).
In fact, for x, y, z ∈ G we have

γ(x, y)γ(xy, z) = κ′(x, y)λ(x, y)−1γ(xy, z)

= κ′(x, y)γ(xy, z)λ(x, y)−1

= κ′(x, y)κ′(xy, z)λ(xy, z)−1λ(x, y)−1

= βx(κ
′(y, z))κ′(x, yz)λ(x, yz)−1βx(λ(y, z))−1

= βx(κ
′(y, z))γ(x, yz)βx(λ(y, z))−1

= βx(κ
′(y, z)λ(y, z)−1)γ(x, yz)

= ζx(γ(y, z))γ(x, yz) .

This implies that (β, κ′) = γ(β, λ) and that (α, κ) is equivalent to (β, κ′) =
γ(β, λ). This completes the proof of the Theorem.

8.3 Theorem Assume that Z(K) = 1. Then |Parω(G,K)| = 1 for every
ω : G→ Out(K).

Proof For each x ∈ G we choose αx ∈ Aut(K) such that ω(x) = αxInn(K).
For all x, y ∈ G we have αxαyInn(K) = ω(x)ω(y) = ω(xy) = αxyInn(K).
Therefore, there exist elements κ(x, y) ∈ K, such that αx ◦ αy = cκ(x,y) ◦ αxy
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for all x, y ∈ G. For all x, y, z ∈ G we obtain

cκ(x,y)κ(xy,z) ◦ αxyz = cκ(x,y) ◦ cκ(xy,z) ◦ αxyz
= cκ(x,y) ◦ αxy ◦ αz
= αx ◦ αy ◦ αz
= αx ◦ cκ(y,z) ◦ αyz
= αx ◦ cκ(y,z) ◦ α−1

x ◦ αx ◦ αyz
= cαx(κ(y,z)) ◦ cκ(x,yz) ◦ αx(yz)
= cαx(κ(y,z))κ(x,yz) ◦ αxyz ,

and therefore, cκ(x,y)κ(xy,z) = cαx(κ(y,z))κ(x,yz). Since Z(K) = 1, this implies
κ(x, y)κ(xy, z) = αx(κ(y, z))κ(x, yz) for all x, y, z ∈ G. Therefore, (α, κ) ∈
parω(G,K), and Parω(G,K) is not empty. On the other hand, by Theo-
rem 8.2, Parω(G,K) is in bijection to H2

ζ (G,Z(K)), where ζ := resKZ(K) ◦ ω.

Again since Z(K) = 1, we have F (G2, Z(K)) = 1 and also H2
ζ (G,Z(K)) = 1.

8.4 Theorem Let ω : G→ Out(K) be a group homomorphism and let ζ :=
resKZ(K) ◦ ω ∈ Hom(G,Aut(Z(K))). Moreover, for each x ∈ G, let αx ∈
Aut(K) be an automorphism with ω(x) = αxInn(K). Then the following
assertions hold:

(a) For all x, y ∈ G there exists an element χ(x, y) ∈ K such that αx◦αy =
cχ(x,y) ◦ αxy.

(b) Let χ(x, y) ∈ K be chosen as in (a). Then, for all x, y, z ∈ G the
element ϑ(x, y, z) := αx(χ(y, z))χ(x, yz)χ(xy, z)−1χ(x, y)−1 lies in Z(K), and
the function ϑ : G3 → Z(K) is an element of Z3

ζ (G,Z(K)).
(c) The cohomology class [ϑ] ∈ H3

ζ (G,Z(K)) of the element ϑ ∈ Z3
ζ (G,Z(K))

defined in (b) does not depend on the choices of αx ∈ Aut(K) and χ(x, y) ∈ K
for x, y ∈ G.

Proof (a) For all x, y ∈ G we have

αxαyInn(K) = ω(x)ω(y) = ω(xy) = αxyInn(K) ,

which implies that αxαyα
−1
xy ∈ Inn(K).
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(b) For all x, y, z ∈ G we have

cϑ(x,y,z)

= cαx(χ(y,z)) ◦ cχ(x,yz) ◦ c−1
χ(xy,z) ◦ c

−1
χ(x,y)

= αx ◦ cχ(y,z) ◦ α−1
x ◦ αx ◦ αyz ◦ α−1

xyz ◦ αxyz ◦ α−1
z ◦ α−1

xy ◦ αxy ◦ α−1
y ◦ α−1

x

= αx ◦ αy ◦ αz ◦ α−1
yz ◦ αyz ◦ α−1

z ◦ α−1
y ◦ α−1

x

= idK ,

which implies that ϑ(x, y, z) ∈ Z(K).
Next we show that ϑ ∈ Z3

ζ (G,Z(K)). Let x, y, z, w ∈ G. Then

ζx(ϑ(y, z, w))ϑ(x, yz, w)ϑ(x, y, z)

= αx(αy(χ(z, w)))αx(χ(y, zw))αx(χ(yz, w))−1αx(χ(y, z))−1ϑ(x, yz, w)·
· ϑ(x, y, z)

= αx(αy(χ(z, w)))αx(χ(y, zw))αx(χ(yz, w))−1ϑ(x, yz, w)αx(χ(y, z))−1·
· ϑ(x, y, z)

= αx(αy(χ(z, w)))αx(χ(y, zw))αx(χ(yz, w))−1·
· αx(χ(yz, w))χ(x, yzw)χ(xyz, w)−1χ(x, yz)−1αx(χ(y, z))−1·
· αx(χ(y, z))χ(x, yz)χ(xy, z)−1χ(x, y)−1

= αx(αy(χ(z, w)))αx(χ(y, zw))χ(x, yzw)χ(xyz, w)−1χ(xy, z)−1χ(x, y)−1

= αx(αy(χ(y, w)))αx(χ(y, zw))χ(x, yzw)χ(xy, zw)−1χ(x, y)−1·
· χ(x, y)χ(xy, zw)χ(xyz, w)−1χ(xy, z)−1χ(x, y)−1

= αx(αy(χ(z, w)))ϑ(x, y, zw)χ(x, y)χ(xy, zw)χ(xyz, w)−1χ(xy, z)−1χ(x, y)−1

= χ(x, y)αxy(χ(z, w))χ(xy, zw)χ(xyz, w)−1·
· χ(xy, z)−1χ(x, y)−1ϑ(x, y, zw)

= χ(x, y)ϑ(xy, z, w)χ(x, y)−1ϑ(x, y, zw)

= ϑ(xy, z, w)ϑ(x, y, zw) .

(c) If, for each x ∈ G, also α′x ∈ Aut(K) is chosen such that α′xInn(K) =
ω(x), and if, for each x, y ∈ G, an element χ′(x, y) ∈ K is chosen such that
α′x ◦ α′y = cχ′(x,y) ◦ α′xy, then there exists a function f : G → K such that
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α′x = cf(x) ◦ αx. This implies

α′x ◦ α′y = cf(x) ◦ αx ◦ cf(y) ◦ αy
= cf(x) ◦ αx ◦ cf(y) ◦ α−1

x ◦ αx ◦ αy
= cf(x) ◦ cαx(f(y)) ◦ cχ(x,y) ◦ αxy
= cf(x)αx(f(y))χ(x,y) ◦ c−1

f(xy) ◦ α
′
xy

= cf(x)αx(f(y))χ(x,y)f(xy)−1 ◦ α′xy ,

and we obtain

χ′(x, y) = f(x)αx(f(y))χ(x, y)f(xy)−1g(x, y)

for all x, y ∈ G with a function g : G × G → Z(K). For all x, y, z ∈ G, the
corresponding function

ϑ′(x, y, z) := α′x(χ
′(y, z))χ′(x, yz)χ′(xy, z)−1χ′(x, y)−1

then satisfies

ϑ′(x, y, z)

= f(x)αx
(
f(y)αy(f(z))χ(y, z)f(yz)−1g(y, z)

)
f(x)−1·

· f(x)αx(f(yz))χ(x, yz)f(xyz)−1g(x, yz)·
· g(xy, z)−1f(xyz)χ(xy, z)−1αxy(f(z))−1f(xy)−1·
· g(x, y)−1f(xy)χ(x, y)−1αx(f(y))−1f(x)−1

= f(x)αx(f(y))αx(αy(f(z)))αx(χ(y, z))·
· χ(x, yz)χ(xy, z)−1αxy(f(z)−1)χ(x, y)−1αx(f(y)−1)f(x)−1·
· αx(g(y, z))g(x, yz)g(xy, z)−1g(x, y)−1

= f(x)αx(f(y))αx(αy(f(z)))ϑ(x, y, z)χ(x, y)αxy(f(z)−1)·
· χ(x, y)−1αx(f(y)−1)f(x)−1(∂2

ζ (g))(x, y, z)

= f(x)αx(f(y))αx(αy(f(z)))αx(αy(f(z)−1))·
· αx(f(y)−1)f(x)−1ϑ(x, y, z)(∂2

ζ (g))(x, y, z)

= ϑ(x, y, z)(∂2
ζ (g))(x, y, z) ,

which shows that the cohomology classes [ϑ] and [ϑ′] coincide.
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8.5 Definition Let ω : G → Out(K) be a homomorphism and let ζ :=
resKZ(K) ◦ ω ∈ Hom(G,Aut(Z(K))). The element [ϑ] ∈ H3

ζ (G,Z(K)) defined
in Theorem 8.4 is called the obstruction of ω.

8.6 Theorem Let ω : G→ Out(K) be a group homomorphism and let ζ :=
resKZ(K) ◦ ω ∈ Hom(G,Aut(Z(K))). Then, Parω(G,K) 6= ∅ if and only if the

obstruction [ϑ] ∈ H3
ζ (G,Z(K)) of ω is trivial.

Proof First assume that Parω(G,K) 6= ∅ and let (α, κ) ∈ parω(G,K). Then
we have

ω(x) = αxInn(K) , αx ◦ αy = cκ(x,y) ◦ αxy and

αx(κ(y, z))κ(x, yz)κ(xy, z)−1κ(x, y)−1 = 1 ,

for all x, y, z ∈ G. This implies that we may define the obstruction [ϑ] of
ω using the elements αx ∈ Aut(K) and κ(x, y) ∈ K for x, y ∈ G, and that
[ϑ] = 1.

Conversely, if we choose elements αx ∈ Aut(K) such that ω(x) = αxInn(K)
for all x ∈ G, and elements χ(x, y) ∈ K such that αx ◦ αy = cχ(x,y) ◦ αxy for
all x, y ∈ G, then we obtain the obstruction [ϑ] ∈ H3

ζ (G,Z(K)) of ω from
the 3-cocycle ϑ(x, y, z) := αx(χ(y, z))χ(x, yz)χ(xy, z)−1χ(x, y)−1 ∈ Z(K),
for x, y, z ∈ G. Since [ϑ] = 1, there exists an element ϕ : G × G → Z(K)
such that ϑ = d2

ζ(ϕ). We set κ(x, y) := ϕ(x, y)−1χ(x, y) for x, y ∈ G and
show that (α, κ) ∈ parω(G,K). In fact, for all x, y, z in G we have

αx ◦ αy = cκ(x,y) ◦ αxy

and

κ(x, y)κ(xy, z) = ϕ(x, y)−1χ(x, y)ϕ(xy, z)−1χ(xy, z)

= ϕ(x, y)−1ϕ(xy, z)−1χ(x, y)χ(xy, z)

= ϕ(x, yz)−1αx(ϕ(y, z))−1(∂2
ζ (ϕ))(x, y, z)χ(x, y)χ(xy, z)

= ϕ(x, yz)−1αx(ϕ(y, z))−1ϑ(x, y, z)χ(x, y)χ(xy, z)

= ϕ(x, yz)−1αx(ϕ(y, z))−1αx(χ(y, z))χ(x, yz)

= αx(κ(y, z))κ(x, yz) ,

which completes the proof.
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9 The Theorem of Schur-Zassenhaus

9.1 Definition Let π be a set of primes. We denote by π′ the set of primes
not contained in π.

(a) Let n ∈ N. If n = pα1
1 · · · pαr

r is the prime factorization of n then the
π-part nπ of n is defined as

∏
pi∈π p

αi
i . One has n = nπnπ′ .

(b) A finite group G is called a π-group, if |G|π = |G|. For an arbitrary
finite group G we call a subgroup H 6 G a π-subgroup, if H is a π-group. A
subgroup H 6 G is called a Hall π-subgroup of G if |H|π = |G|π. A subgroup
H 6 G is called a Hall subgroup of G if it is a Hall π-subgroup for some π.
This is obviously equivalent to gcd(|H|, [G : H]) = 1.

(c) For every element g of a finite group G there exist unique elements
gπ and gπ′ of G such that 〈gπ〉 is a π-subgroup, 〈gπ′〉 is a π′-subgroup, and
gπgπ′ = g = gπ′gπ. These elements are called the π-part and the π′-part of g.
One has gπ, gπ′ ∈ 〈g〉.

(d) For every finite group G there exists a largest normal π-subgroup of
G. It will be denoted by Oπ(G).

9.2 Remark Let G be a finite group and let π be a set of primes. It is easy
to see that Oπ(G) is characteristic in G. Considering the group Alt(5) and
π = {2, 5} or π = {3, 5} one sees that in general Hall π-subgroups do not
exist.

9.3 Theorem Let G be a finite group. Then the following are equivalent:
(i) G is solvable.
(ii) For every N / G there exists a prime p such that Op(G/N) > 1.

Proof (i)⇒ (ii): We may assume that N = 1 and G > 1. Since G is solvable,
there exists n ∈ N such that G(n) = 1 and G(n−1) > 1. Then G(n−1) is abelian.
Let p be a prime divisor of |G(n−1)|, then the set U := {x ∈ G(n−1) | xp = 1
is a non-trivial characteristic p-subgroup of G(n−1) and therefore normal in
G. This implies Op(G) > U > 1.

(ii) ⇒ (i): By (ii) there exist primes p1, . . . , pr and normal subgroups
N0, N1, . . . , Nr of G such that 1 = N0 < N1 < · · · < Nr = G and Ni/Ni−1 =
Opi

(G/Ni−1) for each i = 1, . . . , r. Since Ni/Ni−1 is solvable for i = 1, . . . , r,
also G is solvable.
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9.4 Remark Let G be a finite group. If U is a Hall π-subgroup of G for
some π, then H 6 G is a complement of U in G if and only if H is a Hall
π′-subgroup of G.

9.5 Theorem (Schur-Zassenhaus) Let G be a finite group and assume
that H 6 G is a normal Hall π-subgroup of G. Then:

(a) There exists a complement of H in G.
(b) If H or G/H is solvable, any two complements of H in G are conjugate

in G.

Proof In the case that H is abelian, Parts (a) and (b) are immediate from
Corollary 7.2.

From now on we assume that H is not abelian. We will show (a) and
(b) by induction on |G|. If G = 1, the assertions are trivial. Therefore, we
assume |G| > 1 and we also assume that (a) and (b) hold for every group of
order smaller than |G|. Finally we may assume that |H| > 1. This will be
done in 7 steps.

Claim 1: If U < G, then U ∩H has a complement in U . Proof: U ∩H is
normal in U and a π-subgroup of U . Moreover, U/U ∩H ∼= UH/H implies
[U : U ∩ H] | [G : H]. Therefore, U ∩ H is a normal Hall π-subgroup of U
and, by induction, has a complement in U .

Claim 2: If 1 < N / G, then HN/N has a complement in G/N . Proof:
HN/N is normal in G/N and HN/N ∼= H/H ∩N implies that HN/N is a
π-subgroup of G/N . Moreover, [G/N : HN/N ] = [G : HN ] is a π′-number
and HN/N is a normal Hall π-subgroup of G/N . Now, by induction the
claim follows.

Claim 3: If H has a subgroup 1 < N < H which is normal in G, then (a)
and (b) hold. Proof: (a) By Claim 2, HN/N = H/N has a complement U/N
in G/N , where N 6 U 6 G. One has U < G, since otherwise U/N = G/N
implies H/N = N/N and N = H. By Claim 1, U∩H has a complement K in
U . We show that K is also a complement of H in G. We have KH = K(U ∩
H)H = UH = G and K ∩ H = 1, since K ∼= U/U ∩ H ∼= UH/H 6 G/H
implies that K is a π′-group.

(b) Assume that K and K ′ are complements of H in G. Then KN/N
and K ′N/N are complements of the normal Hall π-subgroup H/N or G/N in
G/N . In fact, (KN/N)(H/N) = KHN/N = G/N and KN/N ∼= K/K ∩N
is a π′-group. With H or G/H also H/N or (G/N)/(H/N) ∼= G/H are
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solvable. By induction there exists g ∈ G such that

KN/N = gN(K ′N/N)g−1N = gK ′Ng−1/N = gK ′g−1N/N ,

and therefore, KN = gK ′g−1N . But now K and gK ′g−1 are complements
of the normal Hall π-subgroup N of KN in KN . Moreover, if H or G/H is
solvable, then N or KN/N ∼= K ∼= G/H are solvable. Again by induction,
the groups K and gK ′g−1 are conjugate in KN . Therefore, K and K ′ are
conjugate in G.

Claim 4: If Op(H) > 1 for some prime p, then (a) and (b) hold. Proof:
If Op(H) < H, this follows from Claim 3, since Op(H) is characteristic in H
and therefore normal in G. If Op(H) = H, then H is a p-group and we can
consider the characteristic subgroup Φ(H) of H which is again normal in G.
since H is not abelian, we have 1 < Φ(H) < H. Now Claim 3 applies and
(a) and (b) hold.

Claim 5: If H is solvable, then (a) and (b) hold. Proof: This follows
immediately from Theorem 9.3 and Claim 4.

Claim 6: Part (a) holds. Proof: Let p be a prime divisor of |H| and let P
be a Sylow p-subgroup of H. By Claim 4 we may assume that P is not normal
in G. Then U = NG(P ) < G. By Claim 1 there exists a complement K of
U ∩H in U . The Frattini-Argument implies that G = HU = H(U ∩H)K =
HK. Moreover, K ∼= U/U ∩H ∼= UH/H = G/H is a π′-group. This implies
that K is a complement of H in G.

Claim 7: Part (b) holds. Proof: By Claim 5 we may assume that G/H
is solvable. By Theorem 9.3, there exists a prime p such that Op(G/H) >
1. Write Op(G/H) = R/H with H < R E G. Let K and K ′ be two
complements of H in G. Then we have (K ∩R)H = KH ∩R = G ∩R = R
with H ∩ (K ∩ R) = 1. Since p - |H| and K ∩ R ∼= K ∩ R/K ∩ R ∩ H ∼=
(K ∩ R)H/H = R/H is a p-group, 1 6= K ∩ R is a Sylow p-subgroup of R.
Similarly, K ′ ∩ R is a Sylow p-subgroup of R. Therefore, there exists g ∈ R
such that K ∩ R = g(K ′ ∩ R)g−1 = gK ′g−1 ∩ gRg−1 = gK ′g−1 ∩ R. Set
V := NG(K ∩R). Since K ∩R E K and K ∩R = gK ′g−1 ∩R E gK ′g−1, we
have 〈K, gK ′g−1〉 6 V . We observe that K is a complement of the normal
Hall π-subgroup V ∩H of V in V , since K(V ∩H) = V ∩KH = V ∩G = V ,
|K| = |G/H|, and |V ∩H| | |H|. Similarly, gK ′g−1 is a complement of V ∩H
in V . Note that with G/H also V/V ∩ H ∼= V H/H 6 G/H is solvable. If
V < G, then K and gK ′g−1 are conjugate in V by induction, and K and
K ′ are conjugate in G. Therefore, we may assume that V = G and we set
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M := K ∩ R E G. Since K and gK ′g−1 are complements of H in G, K/M
and gK ′g−1/M are complements of the normal Hall π-subgroup HM/M of
G/M in G/M ; in fact, (K/M)(HM/M) = KHM/M = G/M with K/M a
π′-group and HM/M ∼= H/(H ∩M) a π-group, and similar for gK ′g−1/M .
Moreover, (G/M)/(HM/M) ∼= G/HM ∼= (G/H)/(HM/H) is solvable. By
induction, K/M and gK ′g−1/M are conjugate in G/M . But then also K
and gK ′g−1 are conjugate in G. This implies that K and K ′ are conjugate
in G and finishes the proof of the theorem.

9.6 Remark Feit and Thompson proved the celebrated Odd-Order-Theorem
stating that every finite group of odd order is solvable. Therefore, the solv-
ability condition in Theorem 8.5(b) is always satisfied.
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10 The π-Sylow Theorems

Throughout this Section let G denote a finite group and π a set of primes.

10.1 Definition (a) G is called π-separable, if G has a normal series

1 = G0 6 G1 6 · · · 6 Gr = G

such that each factor Gi/Gi−1, i = 1 . . . , r, is a π-group or a π′-group.
(b) G is called π-solvable, if G has a normal series each of whose factors

is a solvable π-groups or an arbitrary π′-groups.

10.2 Remark (a) G is π-separable if and only if G is π′-separable.
(b) If G is π-solvable, then G is π-separable.
(c) With the Odd-Order-Theorem of Feit and Thompson we see that if

G is π-separable, then G is π-solvable or π′-solvable.
(d) Subgroups and factor groups of π-separable (resp. π-solvable) groups

are again π-separable (resp. π-solvable).
(e) If G is π-solvable and 1 6 H0 E H1 6 G are subgroups such that

H1/H0 is a π-group, then H1/H0 is solvable.
(f) One has: G is solvable ⇐⇒ G is π-solvable for all π. In fact, if G

is solvable then, by Theorem 9.3 G has a normal series whose factors are p-
groups. Therefore, G is π-solvable for every π. Conversely, if G is π-solvable
for π := {p | p | |G|}, then the claim follows from part (e).

(g) If N E G and H 6 G is a Hall π-subgroup of G, then HN/N is a Hall
π-subgroup of G/N and H ∩N is a Hall π-subgroup of N . In fact, HN/N ∼=
H/(N ∩H and H∩N are π-groups and [G/N : HN/N ] = [G : HN ] | [G : H]
and [N : H ∩N ] = [HN : H] | [G : H] are π′-numbers.

10.3 Theorem (π-Sylow Theorem, Ph. Hall 1928) (a) IfG is π-separable,
then there exist Hall π-subgroups and Hall π′-subgroups in G.

(b) If G is π-solvable, any two Hall π-subgroups and any two Hall π′-
subgroups are conjugate in G.

(c) If G is π-solvable, then any π-subgroup (resp. π′-subgroup) of G is
contained in some Hall π-subgroup (resp. Hall π′-subgroup).

Proof We prove the statements by induction on |G|. If G = 1, all assertions
are clearly true. Now let G > 1. Since G is π-separable, we have Oπ(G) > 1
or Oπ′(G) > 1. Let N := Oπ(G) > 1 or N := Oπ′(G) > 1.
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(a) By induction there exists a Hall π-subgroup H/N of G/N . Then
[H : N ] is a π-number and [G : H] is a π′-number. If N is a π-group, then
H is a Hall π-subgroup of G. If N is a π′-group, then by the Theorem of
Schur-Zassenhaus it has a complement K in H. Therefore, K is π-group and
[G : K] = |G|/(|H|/|N |) = [G : H] · |N | is a π′-number. Therefore, K is a
Hall π-subgroup of G. Similarly, there exists a Hall π′-subgroup of G.

(b) Let µ = π or µ = π′ and U and V be two Hall µ-subgroup of G. Then
UN/N and V N/N are Hall µ-subgroups of G/N by Remark 10.2(g). By
induction, there exists g ∈ G such that gUNg−1 = V N and so gUg−1N =
V N . If also N is a µ-group, then |V N | = |V ||N |/|V ∩ N | is a µ-number
and therefore, V N = V . This implies N 6 V , gUg−1 6 V N = V , and
gUg−1 = V . If N is a µ′-number, then |gUg−1| = |V | and |N | are coprime.
This implies V ∩N = gUg−1∩N = 1 so that V and gUg−1 are complements
of the normal Hall µ-group N of V N = gUg−1N . Now either V N/N ∼= V or
N is a π-group and by Remark 10.2(e) solvable. By Schur-Zassenhaus, the
complements gUg−1 and V are conjugate in V N . Therefore, U and V are
conjugate in G.

(c) Let µ = π or µ = π′ and let U 6 G be a µ-subgroup. Moreover, let
H 6 G be a Hall µ-subgroup of G (which exists by (a)). Then UN/N ∼=
U/(U ∩N) is a µ-subgroup of G/N and by induction and by (b) there exists
g ∈ G such that UN 6 gHg−1N , since HN/N is a Hall µ-subgroup of
G/N by Remark 10.2(g). If N is a µ-group, then gHg−1N = gHg−1 and
U 6 UN 6 gHg−1N = gHg−1. If N is a µ′-group, then U ∩ N = 1.
Moreover, UN = UN ∩ gHg−1N = (UN ∩ gHg−1)N and V ∩N = 1, where
V := UN ∩ gHg−1. Therefore, U and V are two complements of the normal
Hall µ′-subgroup N of UN = V N . Moreover, N or UN/N ∼= U is a π-group
and solvable by Remark 10.2(e). Therefore, by Schur-Zassenhaus, there exists
x ∈ UN such that U = xV x−1 = x(UN ∩ gHg−1)x−1 6 (xg)H(xg)−1.

10.4 Remark By the Odd-Order-Theorem of Feit-Thompson, it would be
enough to require G to be π-separable in Theorem 10.3(b) and (c).

10.5 Corollary Let G be solvable and let π be arbitrary. Then G has a
Hall π-subgroup, any two Hall π-subgroups of G are conjugate in G, and any
π-subgroup of G is contained in a Hall π-subgroup.

Proof Clear with Theorem 10.3 and Remark 10.2(f).
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10.6 Lemma Let U, V 6 G.
(a) If R ⊆ U is a set of representatives for the cosets U/U ∩ V , then

UV =
.⋃
x∈RxV and |UV | = |U | · |V |/|U ∩ V |.

(b) One has UV 6 G if and only if UV = V U .
(c) One has [G : U ∩ V ] 6 [G : U ][G : V ] with equality if and only if

UV = G.
(d) If [G : U ] and [G : V ] are coprime, then [G : U ∩V ] = [G : U ] · [G : V ]

and UV = G.

Proof (a) Obviously, xV ⊆ UV for each x ∈ R. Conversely, if u ∈ U , then
there exists x ∈ R and y ∈ U ∩V such that u = xy. Therefore, uV = xyV =
xV . Disjointness: Let x, x′ ∈ R and let v, v′ ∈ V such that xv = x′v′. Then
x′−1x = v′v−1 ∈ U ∩ V . This implies x′ = x. The remaining formula follows
from the established equality: |UV | = |R| · |V | = |U ||V |/|U ∩ V |.

(b) If UV is a subgroup of G, then vu ∈ UV for all u ∈ U and all
v ∈ V . Therefore, V U ⊆ UV . By the formula in (a) one has |UV | = |V U |
and therefore UV = V U . Conversely, if UV = V U , then with u, u′ ∈ U
and v, v′ ∈ V also (uv)(u′v′)−1 = uvv′−1u′−1 ∈ UV U = UUV = UV . This
implies that UV is a subgroup of G.

(c) By (a) we have

[G : U ∩ V ] =
|G|
|U ∩ V |

=
|G| · |UV |
|U | · |V |

6
|G| · |G|
|U | · |V |

= [G : U ] · [G : V ] ,

with equality if and only if UV = G.
(d) Since [G : U ] | [G : U ∩ V ] and [G : V ] | [G : U ∩ V ], and since [G : U ]

and [G : V ] are coprime, we obtain [G : U ] · [G : V ] | [G : U ∩ V ]. Now (c)
implies (d).

10.7 Lemma If G has three solvable subgroups H1, H2, H3 of pairwise co-
prime indices, then G is solvable.

Proof We prove the assertion by induction on G. If G = 1, then G is
solvable. Now we assume that G > 1. If H1 = 1, then H2 = G and G is
solvable. If H1 > 1, then H1 has a normal p-subgroup N > 1, for some prime
p by Theorem 9.3. Since [G : H2] and [G : H3] are coprime, one of them
is not divisible by p. By symmetry we may assume that p - [G : H2]. Set
D := H1 ∩H2. Then, by Lemma 10.6, we have H1H2 = G and [G : H1] · [G :
H2] = [G : D] = [G : H1] · [H1 : D]. This implies [G : H2] = [H1 : D].
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Now ND 6 H1 and [ND : D] = [N : N ∩ D] is a p-power which divides
[H1 : D] = [G : H2]. This implies ND = D and N 6 D.

For all g ∈ G we have gNg−1 6 H2; in fact, since G = H1H2 = H2H1,
there exist h1 ∈ H1 and h2 ∈ H2 such that g = h2h1 and we obtain
h2h1Nh

−1
1 h−1

2 = h2Nh
−1
2 6 h2Dh

−1
2 6 H2. This implies that 1 < I :=

〈⋃g∈G gNg−1〉 6 H2 and that I is a solvable normal subgroup of G. The
group G/I has the solvable subgroups HiI/I, i = 1, 2, 3, with pairwise co-
prime indices [G/I : HiI/I] = [G : HiI] | [G : Hi]. By induction, G/I is
solvable, and with I also G is solvable.

10.8 Remark A famous theorem of Burnside states that every finite group
of order paqb, with primes p and q and with a, b ∈ N0, is solvable. A purely
group theoretical proof of this result is quite lengthy. There is a more elegant
proof using representation theory. We will use Burnside’s Theorem in order
to prove the following Theorem.

10.9 Theorem (Ph. Hall, 1937) Let |G| = pe11 · · · per
r be the prime factor

decomposition of |G|. If there exists for each i ∈ {1, . . . , r} a Hall p′i-subgroup
of G, then G is solvable.

Proof We prove the assertion by induction on r. If r = 0, then G = 1 and
solvable. If r = 1, then G is a p-group and solvable. If r = 2, then G is
solvable by Burnside’s Theorem. Now assume that r > 3. For i ∈ {1, . . . , r}
let Hi be a Hall p′i-subgroup of G. For i 6= j in {1, . . . , r}, we set Vij := Ui∩Uj.
Then, by Lemma 10.6(d), [G : Uij] = pei

i p
ej

j and [Hi : Uij] = pei
j . Therefore,

each Hi satisfies the hypothesis of the theorem with r− 1 prime divisors. By
induction, each Hi is solvable. By Lemma 10.7, G is solvable.

10.10 Corollary The following assertions are equivalent:
(i) G is solvable.
(ii) G has Hall π-subgroups for each π.
(iii) G has Hall p′-subgroups for each prime p.

Proof (i) ⇒ (ii): This follows from the π-Sylow Theorem.
(ii) ⇒ (iii): This is trivial.
(iii) ⇒ (i): This follows from Theorem 10.9.
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10.11 Theorem Let G be solvable, let p1, . . . , pr be the prime divisors of
G, and let Hi be a Hall p′i-subgroup of G for i = 1, . . . , r. Then for each
i = 1, . . . , r, the group Pi :=

⋂
j 6=iHj is a Sylow pi-subgroup of G such that

PiPj = PjPi for all i, j ∈ {1, . . . , r}.

Proof The assertion is clear for r = 0 and r = 1. If r = 2, by Lemma 10.6(d)
and (b) we have P1P2 = G = P2P1. From now on we assume that r > 3. For
every π ⊆ {p1, . . . , pr}, the subgroup

⋂
pi∈πHi is a Hall π′-subgroup of G. In

fact, this follows from repeated use of Lemma 10.6(d). In particular, for i 6= j
in {1, . . . , r}, the group Gij :=

⋂
k∈{1,...,r}r{i,j}Hk is a Hall {pi, pj}-subgroup

of G, and Pi := Gij ∩ Hj (resp. Pj := Gij ∩ Hi) is a Sylow pi-subgroup
(resp. Sylow pj-subgroup) of Gij and of G. As in the case r = 2 we obtain
PiPj = Gij = PjPi.

10.12 Definition Let |G| = pe11 · · · per
r be the prime factor decomposition of

|G| with p1 < · · · < pr.
(a) A tuple (P1, . . . , Pr) consisting of Sylow pi-subgroups Pi of G, i =

1, . . . , r, is called a Sylow system of G if PiPj = PjPi for all i, j ∈ {1, . . . , r}.
(b) A tuple (K1, . . . , Kr) consisting of Hall p′i-subgroups of G, i = 1, . . . , r,

is called a Sylow complement system of G.

10.13 Proposition Assume the notation from the previous definition and
let π ⊆ {p1, . . . , pr}. Let (P1, . . . , Pr) be a Sylow system of G. Then

∏
pi∈π Pi

is a Hall π-subgroup of G.

Proof The equalities PiPj = PjPi for i, j ∈ {1, . . . , r} imply by repeated use
of Lemma 10.6(b) that

∏
pi∈π Pi is a subgroup of G. Moreover, by induction

on |π| it is easy to see that
∏
pi∈π Pi is a Hall π-subgroup of G. In fact,

if |π| = 0 or |π| = 1, this is clear, and if |π| > 1 we choose pi0 ∈ π and
set π̃ := π r {pi0}. Then, by induction,

∏
pi∈π̃ Pi is a Hall π̃-subgroup of G

so that (
∏
pi∈π̃ Pi) ∩ Pi0 = 1. Now Lemma 10.6(a) implies that

∏
pi∈π Pi =

(
∏
pi∈π̃ Pi)Pi0 is a Hall π-subgroup of G.

10.14 Corollary The following assertions are equivalent:
(i) G is solvable.
(ii) G has a Sylow system.
(iii) G has a Sylow complement system.
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Proof By Theorem 10.11, (i) implies (ii). Moreover, by Proposition 10.13,
(ii) implies (iii). Finally, by Corollary 10.10, (iii) implies (i).

10.15 Remark Let S denote the set of Sylow systems of G, let K denote
the set of Sylow complement systems of G, and assume that p1 < · · · < pr
are the prime divisors of |G|. Then, the maps

S
ϕ

�
ψ
K

(P1, . . . , Pr) 7→ (
∏
i 6=1

Pi, . . . ,
∏
i 6=r

Pi)

(
⋂
i 6=1

Ki, . . . ,
⋂
i 6=r

Ki)←7 (K1, . . . , Kr)

are well-defined inverse bijections. In fact, by Proposition 10.13, ϕ is well-
defined, and by the arguments in the proof of Theorem 10.11, ψ is well-
defined. If (P1, . . . , Pr) ∈ S, and Kj :=

⋂
i 6=j Pi, then Pi0 6

⋂
j 6=i0 Kj for all

i0 = 1, . . . , r. This implies Pi =
⋂
j 6=iKj, since both groups are Sylow pi-

subgroups of G. On the other hand, if (K1, . . . , Kr) ∈ K and Pj :=
⋂
i 6=jKi,

then
∏
j 6=i0 Pj 6 Ki0 for all i0 = 1, . . . , r. This implies

∏
j 6=i Pj = Ki, since

both groups are Hall p′i-subgroups of G.
Note that S and K are G-sets under the conjugation action of G and that

ϕ and ψ are isomorphisms of G-sets.

10.16 Theorem (a) Let (P1, . . . , Pr) and (Q1, . . . , Qr) be Sylow systems of
G. Then there exists g ∈ G such that gPig

−1 = Qi for all i ∈ {1, . . . , r}.
(b) Let (K1, . . . , Kr) and (L1, . . . , Lr) be Sylow complement systems of

G. Then there exists g ∈ G such that gKig
−1 = Li for all i ∈ {1, . . . , r}.

Proof Let |G| = pe11 · · · per
r .

(b) By the π-Sylow theorem, for fixed i ∈ {1, . . . , r} all Hall p′i-subgroups
of G are conjugate in G. In particular, G has [G : NG(Ki)] Hall p′i-subgroups
and [G : NG(Ki)] divides [G : Ki] = pei . Therefore, the number of Sylow
complement systems of G is k :=

∏r
i=1[G : NG(Ki)]. Since [G : NG(Ki)],

i = 1, . . . , r, are pairwise coprime, repeated application of Lemma 10.6(d)
yields

k =
r∏
i=1

[G : NG(Ki)] = [G :
r⋂
i=1

NG(Ki)] .
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Therefore, the stabilizer of (K1, . . . , Kr) in G has index k in G, which implies
that the G-orbit of (K1, . . . , Kr) contains all Sylow complement systems.

(a) This follows immediately from part (b) and Remark 10.15, since the
maps ϕ and ψ are inverse isomorphisms of G-sets.

10.17 Theorem (Hall-Higman 1.2.3) Let G be a π-separable group and
assume that Oπ′(G) = 1. Then CG(Oπ(G)) 6 Oπ(G).

Proof We set C := CG(Oπ(G)) and B := C∩Oπ(G). It suffices to show that
B = C. We assume that B < C and will derive a contradiction. Note that B
and C are normal in G and that B is a π-group. Since C/B is a non-trivial
π-separable group, it has a non-trivial characteristic subgroup K/B which
is a π-group or a π′-group. Therefore K/B E G/B and K E G. First we
consider the case that K/B is a π-group. Since B is a π-group, also K is a
π-group. Since K E G, we obtain K 6 Oπ(G) and K 6 Oπ(G) ∩ C = B,
in contradiction to K/B > 1. Next consider the case that K/B is a π′-
group. Then, by Schur-Zassenhaus, the normal Hall π-subgroup B of K has
a complement H, and since K/B > 1, we have H > 1. We have H 6 C =
CG(Oπ(G)) 6 CG(B). Thus, B centralizes H. Since K = BH, this implies
that H E K. Thurs 1 < H 6 Oπ′(K) E G. This is a contradiction to the
hypothesis Oπ′(G) = 1.

10.18 Definition For a π-separable group G we define its π-length as the
minimum number of factors that are π-groups in any normal series of G in
which each factor is either a π-group or a π′-group. For example G has π-
length 0 if and only if G is a π′-group. And, G has π-length 1 if and only
if G has a normal series 1 = G0 6 G1 < G2 6 G3 = G such that G1 is a
π′-group, G2/G1 is a non-trivial π-group and G3/G2 is a π′-group.

10.19 Theorem Let G be a π-separable group and suppose that a Hall
π-subgroup of G is abelian. Then the π-length of G is at most 1.

Proof Set G := G/Oπ′(G). Then Oπ′(G) = 1. Let H be an abelian Hall
π-subgroup of G. Then H = HOπ′(G)/Oπ′(G) is a Hall π-subgroup of G,
and it contains every normal π-subgroup of G. In particular, it contains
Oπ(G). Since H is abelian, we have H 6 CG(Oπ(G)) 6 Oπ(G), where the
last containment follows from Hall-Higman. This implies H = Oπ(G) and
H E G. This shows that 1 6 Oπ′(G) 6 HOπ′(G) 6 G is a normal sequence
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whose first and third factor is a π′-group and whose second factor is a π-
group.

11 Coprime Action

Throughout this section let G and A be finite groups. We assume that A
acts by group automorphisms on G. We denote this action by (a, g) 7→ ag.
The resulting semi-direct product will be denoted by Γ := G o A. Recall
that (g, a)(h, b) = (g ah, ab) for g, h ∈ G and a, b ∈ A. We will view G and S
as subgroups of Γ via the usual embeddings and then have Γ = GA = AG
with A ∩G = 1. Recall that

CA(G) = {a ∈ A | ag = g for all g ∈ G} E A

denotes the kernel of the action of A on G and

CG(A) = {g ∈ G | ag = g for all a ∈ A} 6 G

denotes the A-fixed points of G, previously also denoted by GA.

11.1 Remark (a) We will often consider a set X on which A and G acts.
We will denote these actions by (a, x) 7→ a · x and (g, x) 7→ g · x. It is easy
to verify that the map

Γ×X → X , (ga, x) 7→ g · (a · x) ,

defines an action of Γ on X if and only if the the actions of A and G on X
are compatible in the following sense:

a · (g · x) = ag · (a · x) (11.1.a)

for x ∈ X, a ∈ A and g ∈ G.
(b) Assume that the compatibility condition (11.1.a) is satisfied. We will

denote the A-fixed points of X by

XA := {x ∈ X | ax = x for all a ∈ A} .

It is easy to see that XA is stable under the action of CG(A) = GA.
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11.2 Lemma (Glauberman) Assume that G and A act on a set X such
that (11.1.a) is satisfied. Moreover assume that gcd(|G|, |A|) = 1, that G
acts transitively on X and that G or A is solvable. Then the following hold:

(a) The set of A-fixed points XA is non-empty.
(b) The action of GA on XA is transitive.

Proof (a) Let x ∈ X and set U = Γx denote the stabilizer of x in Γ. We
claim that GU = UG = Γ. In fact, if γ ∈ Γ then, by the transitivity of the
action of G on X there exists g ∈ G such that γ · x = g · x. Thus, g−1γ ∈ U
and the claim is proved. Since

U/U ∩G ∼= GU/G = Γ/G ∼= A ,

U ∩ G is a normal Hall subgroup of U . By Schur-Zassenhaus, U ∩ G has
a complement H in U . Then |H| = [U : U ∩ G] = |A| and H is also a
complement of G in Γ. Again by Schur-Zassenhaus, A is conjugate to H in Γ
and there exists γ ∈ Γ such that A = γH. Since H stabilizes x, A stabilizes
γ · x and γ · x ∈ XA.

(b) Let x and y be arbitrary elements in XA. Set M := {g ∈ G | g·x = y}.
Since G acts transitively on X, the subset M of G is non-empty. Moreover,
set H := Gy, the stabilizer of y in G. Then H acts by left multiplication on
M . Also, M is A-stable, since am · x = am · (a · x) = a · (m · x) = a · y = y.
Therefore, M is a left A-set and a left H-set and gcd(|H|, |A|) = 1. We want
to apply Part (a) to this situation. The actions of A and H on M satisfy
(11.1.a), since a(hm) = ah am for all a ∈ A, h ∈ H and m ∈ M (because
A acts on G by group automorphisms). Finally, H acts transitively on M ,
since for m,n ∈M we have m · x = y = n · x and therefore, mn−1 ∈ Gy = H
which implies that m = hn for some h ∈ H. Now Part (a) implies that there
exists an A-fixed point on M , i.e., an element m ∈M which is also in GA.

Note that, since A acts on G via group automorphisms, A also acts on
the set of subgroups of G, and also on the set of subgroups of G of a fixed
order, by aH := { ah | h ∈ H} for a ∈ A and H 6 G. In particular, A acts
on Sylp(G) for every prime p of G. We say that H is A-invariant if aH = H
for all a ∈ A.

11.3 Theorem Assume that gcd(G,A) = 1 and that G or A is solvable.
Moreover, let p be a prime. Then the following hold:

(a) There exists an A-invariant Sylow p-subgroup of G.
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(b) Any two A-invariant Sylow p-subgroups of G are conjugate by an
element in GA.

(c) Every A-invariant p-subgroup of G is contained in some A-invariant
Sylow p-subgroup of G.

Proof Parts (a) and (b) follow immediately from Lemma 11.2. In fact, A
and G act on X := Sylp(G), G acts transitively on X, and the compatibility

condition (11.1.a) is satisfied: ag · (a · P ) =
ag( aP ) = a( gP ) = a · (g · P ), for

all a ∈ A, g ∈ G and P ∈ Sylp(G).
(c) It suffices to show that every maximal A-invariant p-subgroup P of G

is a Sylow p-subgroup of G. Set N := NG(P ) and note that with P also N is
A-invariant. By Part (a) (applied to N instead of G), we may choose an A-
invariant Sylow p-subgroup S of N . Since P is normal in N , we have P 6 S.
Since P was a maximal A-invariant p-subgroup of G, we have P = S and P
is a Sylow p-subgroup of N . But this implies that P is a Sylow p-subgroup of
G. In fact assume this is not the case; then P is properly contained in some
Sylow p-subgroup T of G and Q := NT (P ) > P , since T is nilpotent. Thus,
Q 6 NG(P ), contradicting the fact that P is a Sylow p-subgroup of N .

Since A acts on G by automorphisms, we have for every a ∈ A and
g, h ∈ G: g and h are conjugate in G if and only if ag and ah are conjugate
in G. This implies that for every conjugacy class K of G the subset aK :=
{ ag | g ∈ K} is again a conjugacy class of G. Thus, A acts on the set cl(G)
of conjugacy classes of G. If K ∈ cl(G)A, we also say that K is A-invariant.

11.4 Theorem Assume that gcd(|G|, |A|) = 1 and that A or G is solvable.
Then the map

cl(G)A → cl(GA) , K 7→ K ∩GA ,

is a well-defined bijection.

Proof Let K ∈ cl(G)A. We first show that K ∩ GA is a conjugacy class
of GA. We will apply Glauberman’s Lemma 11.2 to the set X = K on
which G acts transitively by conjugation and on which A acts, since K is
A-invariant. It is straightforward to verify that the compatibility condition
(11.1.a) holds: For a ∈ A, g ∈ G and x ∈ K, the left hand side equals
a
(gxg−1) = ag ax( ag)−1 and the last expression equals the right hand side in
(11.1.a). By Glauberman’s Lemma, KA = K ∩ GA is not empty and it is a
single orbit under the GA-conjugation action. Therefore, K ∩GA ∈ cl(GA).
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Next we show that the map in the theorem is surjective. Let L ∈ cl(GA)
and let x ∈ L. Let K ∈ cl(G) denote the conjugacy class of x. Then K is A-
invariant, since it contains the A-fixed point x. By the previous paragraph,
K ∩GA is a single conjugacy class of GA. But since it contains x, it is equal
to L.

Finally, we show that the map in the theorem is injective. Assume that
K1 and K2 are A-invariant conjugacy classes of G with K1 ∩GA = K2 ∩GA.
By the first part of the proof, this latter is a non-epmty set. This implies
that K1 and K2 have non-empty intersection. Therefore, K1 = K2.

Since A acts on G, it acts on the set of subsets of G via aY = { ay | y ∈ Y }
for a ∈ A and Y ⊆ G. Since A acts on G via group automorphisms, it also
acts on the set of subgroups. We say that a subset Y of G is A-invariant it
it is a fixed point under this action, i.e., if ay ∈ Y for all a ∈ A and y ∈ Y .
In this case, A also acts on Y , and if Y is a subgroup of G then A acts on
Y via group automorphisms. If the subgroup Y of G is A-stable then A also
acts on the set G/Y of left cosets of Y and on the set Y \G of right cosets of
Y .

11.5 Theorem Assume that H 6 G is an A-invariant subgroup of G, that
gcd(|A|, |H|) = 1 and that A or H is solvable. Then, the A-invariant left (or
right) cosets of H are precisely those that contain an A-fixed point.

Proof Clearly, if a coset contains an A-fixed point g then it is equal to gH
(or Hg) and it is A-invariant. Conversely, assume that the coset gH is A-
invariant (right cosets can be treated similarly). We can consider X := gH as
a left A-set and also as a left H-set via h ·(gh′) := gh′h−1, for h, h′ ∈ H. Note
that H acts transitively on X. We verify that the compatibility condition
(11.1.a) is satisfied. For h′ ∈ H, a ∈ A and x ∈ X, its left hand side
equals a · (h · gh′) =

a
gh′h−1 = agh′( ah)−1 and the last expression is equal to

ah · (a · gh′). By Glauberman’s Lemma 11.2 X has an A-fixed point. This
completes the proof.

If N is an A invariant normal subgroup of G then A acts on G/N via
group automorphisms by agN = ag aN = agN , for a ∈ A and g ∈ G.

11.6 Corollary Let N be an A-invariant normal subgroup of G and assume
that gcd(|A|, |N |) = 1 and that A or N is solvable. Then (G/N)A = GAN/N .

58



Proof This follows immediately from Theorem11.5, since (G/N)A is the set
of A-invariant cosets of N and GAN/N is the set of cosets of N which contain
an A-fixed point.

Since the Frattini subgroup Φ(G) is characteristic in G, it is an A-stable
normal subgroup of G and the action of A on G induces an action of A on
G/Φ(G) via group automorphisms.

11.7 Corollary Assume that gcd(|A|, |Φ(G)|) = 1 and that A acts trivially
on G/Φ(G). Then A acts trivially on G.

Proof It suffices to show that for every element a ∈ A the cyclic subgroup
B := 〈a〉 of A acts trivially on G. Note that with A also B acts trivially
on G/Φ(G) and since B is solvable, we can apply Corollary 11.6 to G, Φ(G)
and B to obtain GBΦ(G)/Φ(G) = (G/Φ(G))B = G/Φ(G). The correspon-
dence theorem implies GBΦ(G) = G and Lemma 2.3 implies that GB = G.
Therefore, B acts trivially on G.

11.8 Corollary Assume that gcd(|A|, |Φ(G)|) = 1 and that the action of A
on G is faithful. Then the action of A on G/Φ(G) is faithful.

Proof Let B denote the kernel of the action of A on G/Φ(G). Then Corol-
lary 11.7 implies that B acts trivailly on G. But since A acts faithfully on G
we obtain B = 1. But this means that A acts faithfully on G/Φ(G).
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12 Commutators

Throughout this section we fix a group G.

12.1 Definition (a) For x, y ∈ G we define their commutator by [x, y] :=
xyx−1y−1. For n > 3 and elements x1, . . . , xn in G we define their commuta-
tor recursively by

[x1, . . . , xn] := [x1, [x2, . . . , xn]] .

(b) For subgroups X and Y of G we define their commutator [X, Y ] as
the subgroup generated by all commutators [x, y] for x ∈ X and y ∈ Y . For
n > 3 and subgroups X1, . . . , Xn of G we define their commutator recursively
by

[X1, . . . , Xn] := [X1, [X2, . . . , Xn]] .

Warning: In general, [X1, . . . , Xn] is not generated by the elements [x1, . . . , xn]
with xi ∈ Xi for i = 1, . . . , n.

12.2 Proposition Let x, y and z be elements of G, let X and Y be sub-
groups of G and let N be a normal subgroup of G.

(a) One has [y, x] = [x, y]−1 and [X, Y ] = [Y,X].
(b) One has [x, yz] = [x, y] · y[x, z].
(c) One has [X, Y ] E 〈X, Y 〉.
(d) If f : G → H is a group homomorphism then f([x, y]) = [f(x), f(y)]

and f([X, Y ]) = [f(X), f(Y )].
(e) One has [xN, yN ] = [x, y]N and [X, Y ]N/N = [XN/N, Y N/N ] in

G/N .
(f) One has [X, Y ] 6 Y if and only if X 6 NG(Y ).

Proof (a) [x, y][y, x] = xyx−1y−1yxy−1x−1 = 1. By definition, [X, Y ] is gen-
erated by the elements [x, y] with x ∈ X and y ∈ Y , and [Y,X] is generated
by their inverses. Therefore, [X, Y ] = [Y,X].

(b) We have [x, y]· y[x, z] = (xyx−1y−1)(yxzx−1z−1y−1) = xyzx−1z−1y−1 =
[x, yz].

(c) For x ∈ X and y, y′ ∈ Y , Part (a) yields [x, yy′] = [x, y] · y[x, y′], and
therefore y[x, y′] = [x, y]−1 · [x, yy′] ∈ [X, Y ]. This shows that Y normalizes
[X, Y ]. For the same reason, X normalizes [Y,X]. But [Y,X] = [X, Y ],
by Part (a). Therefore, the group 〈X, Y 〉 normalizes [X, Y ]. Obviously,
[X, Y ] 6 〈X, Y 〉.
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(d) We have f([x, y]) = f(xyx−1y−1) = f(x)f(y)f(x)−1f(y)−1 = [f(x), f(y)].
Since [X, Y ] is generated by the elements [x, y] with x ∈ X and y ∈ Y , the
group f([X, Y ]) is generated by the elements f([x, y]) = [f(x), f(y)] with
x ∈ X and y ∈ Y . Thus, f([X, Y ]) = [f(X), f(Y )].

(e) This follows immediately from part (e) applied to the natural epimor-
phism f : G→ G/N , g 7→ gN .

(f) For x ∈ X and y ∈ Y one has [x, y] = xy · y−1 and therefore xy =
[x, y] · y. This shows that [x, y] ∈ Y if and only if xy ∈ Y and the result
follows.

12.3 Lemma Let A be an abelian normal subgroup of G and suppose that
G/A is cyclic. Then G′ = [G,A] 6 A and

G′ ∼= A/(A ∩ Z(G)) .

In particular, if A is finite then G′ is finite and |A| = |G′| · |A ∩ Z(G)|.

Proof Let g ∈ G be such that G/A = 〈gA〉. Since A is normal in G, we
have [G,A] 6 A and we can define the function θ : A → A, a 7→ [g, a]. By
Proposition 12.2(b), and since A is abelian, we have [g, ab] = [g, a][g, b] for
all a, b ∈ A. Thus, θ is a homomorphism. Moreover, ker(θ) = CA(g) =
CA(G) = A ∩ Z(G), and θ(A) 6 [G,A] 6 G′. We will show that G′ 6 θ(A)
and all statements in the lemma will follow. To that end it suffices to show
that θ(A) is normal in G and that G/θ(A) is abelian. Since θ(A) 6 A
and A is abelian, θ(A) is normalized by A. Moreover, for a ∈ A we have
gθ(a) = g[g, a] = [ gg, ga] = [g, ga] = θ( ga) ∈ θ(A). Therefore, θ(A) is normal
in G. Finally, set G := G/θ(A). Note that G is generated by g and the
elements a for a ∈ A. In order to show that G is abelian it suffices to show
that [g, a] = 1. But [g, a] = [g, a] = θ(a) = 1.

12.4 Lemma For x, y, z ∈ G one has the Hall-Witt identity

y
[x, y−1, z] · z[y, z−1, x] · x[z, x−1, y] = 1 .

Proof Straightforward computation.

12.5 Lemma (3 subgroup lemma) Let X, Y and Z be subgroups of G.
If [X, Y, Z] = 1 and [Y, Z,X] = 1 then [Z,X, Y ] = 1.
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Proof It suffices to show that [X, Y ] ∈ CG(Z). Since CG(Z) is a subgroup
of G, it suffices to show that [x, y] ∈ CG(Z) for all x ∈ X and y ∈ Y . For
this it suffices to show that [z, x, y] = 1 for all x ∈ X, y ∈ Y and z ∈ Z. This
follows now from the hypothesis and the Hall-Witt identity.

12.6 Corollary (3 subgroup corollary) Let N be a normal subgroup of
G and let X, Y, Z be subgroups of G. If [X, Y, Z] 6 N and [Y, Z,X] ∈ N
then [Z,X, Y ] ∈ N .

Proof This follows immediately from Proposition 12.2(e) and the 3 subgroup
lemma applied to G/N .

12.7 Definition We recalibrate the lower central series of a group by set-
ting G1 := G, G2 := [G,G] and Gn := [G,G, . . . , G] with n entries G. Note
that with the conventions in [P] we have Gn = Zn−1(G). Recall that Gn is
characteristic in G for all n ∈ N. We call any subgroup of n-fold commu-
tators of copies of G a weight n commutator subgroup of G. For instance,
[[[G,G], G], [[G,G], [[G,G], G]]] is a weight 8 commutator subgroup of G.

12.8 Theorem For any i, j ∈ N one has [Gi, Gj] 6 Gi+j.

Proof We proceed by induction on i. If i = 1 then [Gi, Gj] = [G,Gj] = Gj+1

by definition. Now assume that i > 1. Then we can write Gi = [G,Gi−1]
and have [Gi, Gj] = [Gj, Gi] = [Gj, G,Gi−1]. By the 3 subgroup corollary it
suffices to show that [G,Gi−1], Gj] 6 Gi+j and [Gi−1, Gj, G] 6 Gi+j. But, by
induction, we have

[G,Gi−1, Gj] = [G, [Gi−1, Gj]] 6 [G,Gi+j−1]] = Gi+j

and

[Gi−1, Gj, G] = [Gi−1, [Gj, G]] = [Gi−1, [G,Gj]] = [Gi−1, Gj+1] 6 Gi+j

and the proof is complete.

12.9 Corollary Let n ∈ N. Any weight n commutator subgroup of G is
contained in Gn.
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Proof We proceed by induction on n. For n = 1 and n = 2 the statement
is obviously true. For n > 2 every weight n commutator subgroup of G is
of the form [X, Y ] where X is a weight i commutator subgroup of G and Y
is a weight j commutator subgroup of G for positive integers i and j with
i+ j = n. By induction and by Theorem 12.8, we obtain [X, Y ] 6 [Gi, Gj] 6
Gi+j = Gn and the proof is complete.

12.10 Corollary For any n ∈ N0 one has G(n) 6 G2n
.

Proof We proceed by induction on n. For n = 0 we have G(0) = G =
G1 = G20

. For n > 0 we have G(n) = [G(n−1), G(n−1)] 6 [G2n−1
, G2n−1

] 6
G2n−1+2n−1

= G2n
by induction and Corollary 12.9.

For the rest of this section let A denote a group and assume that A acts
on G via automorphisms. As before we view A and G as subgroups of the
resulting semidirect product Γ and note that inside Γ the conjugation action
of A on G coincides with the original action of A on G.

12.11 Remark (a) A subgroup H of G is A-invariant and normal in G if and
only if it is normal in Γ. In this case [A,H] 6 H, since A normalizes H, and
moreover, [A,H] is again normal in AH. In fact, for a, b ∈ A and h, k ∈ H
we have a[b, h] = [ ab, ah] ∈ [A,H] (showing that A normalizes [A,H]) and
[a, hk] = [a, h]· h[a, k] (showing that h[a, k] ∈ [A,H] and therefore that also H
normalizes [A,H]). In particular, [A,G] is an A-invariant normal subgroup
of G. Iterating this process, one obtains a sequence

G D [A,G] D [A,A,G] D [A,A,A,G] D · · ·

of A invariant subgroups of G. In general the subgroups in this sequence are
not normal in G. The next lemma will show that the induced A-action on
each of the factor groups is trivial.

(b) If H is an A-invariant subgroup of G then the action of A on G induces
an action of A on the set of left cosets, G/H, and also on the set of right
cosets, H\G, as already explained in the paragraph preceding Theorem 11.5.
Moreover, if H is an A-invariant and normal subgroup of G, then the action
of A on G induces an action of A on the group G/H via automorphisms.

12.12 Lemma The subgroup [A,G] of G is A-invariant and normal in G
and the induced action of A on G/[A,G] is trivial. Conversely, assume that
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N is a normal A-invariant normal subgroup of G such that the induced action
of A on G/N is trivial. Then [A,G] 6 N .

Proof By Remark 12.11(a), we already know that [A,G] is an A-invariant
and normal subgroup of G. Moreover, if N is any A-invariant normal sub-
group of G then one has:

A acts trivially on G/N ⇐⇒ a(Ng) = Ng for all g ∈ G and all a ∈ A
⇐⇒ N · ag = Ng for all g ∈ G and all a ∈ A
⇐⇒ agg−1 ∈ N for all g ∈ G and all a ∈ A
⇐⇒ [a, g] ∈ N for all g ∈ G and all a ∈ A
⇐⇒ [A,G] 6 N .

This completes the proof.

12.13 Corollary For any subgroup H 6 G the following are equivalent:
(i) Every left coset of H in G is A-invariant.
(ii) Every right coset of H in G is A-invariant.
(iii) [A,G] 6 H.

Proof (i)⇐⇒ (ii): If X is an A-stable subset of G then also X−1 := {x−1 |
x ∈ X} is A-stable. But (gH)−1 = Hg−1 for all g ∈ G.

(ii)⇒(iii): The hypothesis implies in particular that H is A-invariant.
Further, for every a ∈ A and g ∈ G, we have Hg = a(Hg) = aH ag = H ag.
This implies [a, g] = agg−1 ∈ H. Since a and g were arbitrary, we obtain
[A,G] 6 H.

(iii)⇒(i): Every left coset of H in G is a union of left cosets of [A,G] in
G. By Lemma 12.12, each coset of [A,G] in G is A-invariant (since A acts
trivially on G/[A,G]). Thus, every left coset of H is A-invariant.

For n ∈ N we set [A, . . . , A,G]n := [A, . . . , A,G] where the last expression
contains n copies of A.

12.14 Theorem Let n ∈ N and assume that [A, . . . , A,G]n = 1. Then
A(n−1) 6 CA(G). In particular, if A acts faithfully on G and [A, . . . , A,G]n =
1 then A(n−1) = 1 and A is solvable.
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Proof It suffices to show the first statement. The second statement fol-
lows immediately, since CA(G) = 1 if A acts faithfully on G. We show the
first statement by induction on n. If n = 1 then [A,G] = 1 and A acts
trivially on G. Thus A(0) = A = CA(G). Next we assume that n > 1
and that the statement holds for values smaller than n. We want to show
that A(n−1) 6 CA(G), or equivalently that [G,A(n−1)] = 1. First note that
the hypothesis yields 1 = [A, . . . , A,G]n = [A, . . . , A,N ]n−1 for N := [A,G].
By induction we obtain A(n−2) 6 CA(N), or equivalently 1 = [A(n−2), N ] =
[A(n−2), A,G]. In particular, we have [A(n−2), A(n−2), G] = 1. But then also
[A(n−2), G,A(n−2)] = [A(n−2), A(n−2), G] = 1. Now the 3 subgroup lemma
implies [G,A(n−2), A(n−2)] = 1, and [G,A(n−1)] = 1, as desired.

12.15 Corollary Assume that A acts faithfully on G and that [A,A,G] = 1.
Then A is abelian.

Proof This is immediate from Theorem 12.14 with n = 2.

For any group A we set A∞ :=
⋂
n∈NA

n. If A is finite then the descending
sequence An of subgroups of A terminates and A∞ is the final subgroup in
this sequence, i.e., A∞ = Ak = Ak+1 = · · · for some k ∈ N.

12.16 Theorem Assume that A and G are finite. If [A, . . . , A,G]n = 1 for
some positive integer n then A∞ 6 CA(G). In particular, if A acts faithfully
on G and [A, . . . , A,G]n = 1 for some positive integer n then A is nilpotent.

Proof We proceed by induction on |G|. If |G| = 1 then CA(G) = A and
A∞ 6 A = CA(G). Now we assume that |G| > 1. Then N := [A,G] <
G, since otherwise 1 = [A, . . . , A,G]n = G. Since 1 = [A, . . . , A,G]n =
[A, . . . , A,N ]n−1, we obtain by induction that CA(N) 6 A∞, or equivalently,
[A∞, A,G] = [A∞, N ] = 1. We need to show that [G,A∞] = 1, or equiva-
lently that [G,A∞, A] = 1, since A∞ = Ak = Ak+1 = [A,Ak] = [A,A∞] =
[A∞, A] for some k ∈ N. By the 3 subgroup lemma it suffices to show that
[A,G,A∞] = 1.

We claim that it suffices to find a normal subgroup C of G with 1 < C 6
GA. In fact, then we know that A acts on G := G/C and [A, . . . , A,G]n =
[A, . . . , A,G]n = 1 and by induction we obtain 1 = [A∞, G] = [A∞, G].
This implies [A∞, G] 6 C, and since A acts trivially on C we obtain 1 =
[A,A∞, G] = [A,G,A∞], and the claim is proved.
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We may assume that [A∞, G] > 1, since otherwise A∞ 6 CA(G) and we
are done. We set C := C[A∞,G](A). Then clearly, C 6 GA. To see that
C > 1, note that [A, . . . , A, [A∞, G]]n 6 [A, . . . , A,G] = 1 but [A∞, G] > 1.
Let m ∈ N0 be maximal with [A, . . . , A, [A∞, G]]m > 1, then this subgroup
is centralized by A and it is contained in [A∞, G]. Therefore it is contained
in C and C > 1.

Finally, we show that C is normal in G. First we claim that [A∞, G]
centralizes [A,G]. From the first paragraph we have [A∞, A,G] = 1 and
therefore [G,A∞, [A,G]] = [G, 1] = 1. Moreover, [A,G] E G and therefore
[[A,G], G] = [G, [A,G]] 6 [A,G]. This implies [A∞, [A,G], G] 6 [A∞, [A,G]] =
1. The 3 subgroup lemma now implies that [[A,G], G,A∞] = 1, proving our
claim. In particular, since C 6 [A∞, G], we have [C,A,G] = 1. Since
A centralizes C, we also have [G,C,A] = 1. The 3 subgroup lemma implies
[A,G,C] = 1 so that [G,C] is centralized by A. Recall that C 6 [A∞, G] E G
and therefore [G,C] 6 [G, [A∞, G]] 6 [A∞, G]. But we just saw that A
centralizes [C,G]. Thus, [C,G] 6 C[A∞,G](A) = C. This implies that G
normalizes C and the proof is complete.

12.17 Lemma If [A,A,G] = 1 then [A,G] is abelian.

Proof We have [G,A, [A,G]] = [G, 1] = 1. Moreover, [A,G] E G implies
[A, [A,G], G] = [A,G, [A,G]] 6 [A, [A,G]] = 1. By the 3 subgroup lemma
we obtain [[A,G], [A,G]] = [[A,G], G,A] = 1 and [A,G] is abelian.

12.18 Theorem Assume that A and G are finite and that A is a p-group.
If [A, . . . , A,G]n = 1 for some positive integer n then [A,G] is a p-group.

Proof We set N := [A,G] and recall from Lemma 12.12 that N is an
A-invariant normal subgroup of G and that A acts trivially on G/N . We
prove the theorem by induction on |G|. If |G| = 1 then N = 1 and N is a
p-group. Now we assume that |G| > 1. Since [A, . . . , A,G]n = 1, we have
N/G. Moreover, [A, . . . , A,N ]n−1 = 1 and, by induction, [A,N ] is a p-group.
Again by Lemma 12.12, [A,N ] is a normal A-invariant subgroup of N and
A acts trivially on N/[A,N ]. Set U := Op(N). Then U E

char
N / G implies

that U is A-invariant and normal in G. We have [A,N ] 6 U 6 N and set
G := G/U . Then A acts trivially on N since it acts trivially on N/[A,N ].
Moreover, A acts trivially on G/N and on G/N . We obtain 1 = [A,N ] =
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[A, [A,G]] = [A,A,G] and by Lemma 12.17, N = [A,G] is abelian. Since
Op(N) = 1, we can conclude that N is a p′-group. Now the hypotheses of
Corollary 11.6 are satisfied for the subgroup N of G. Thus, every coset of N
in G contains an A-fixed point. But also N consists of A-fixed points. This
implies that A acts trivially on G. This implies 1 = [A,G] = [A,G] = N and
N 6 U . Thus, N is a p-group.

12.19 Theorem Assume that A and G are finite and that [A, . . . , A,G]n =
1 for some positive integer n. Then [A,G] is nilpotent.

Proof We prove the theorem by induction on |A|. If |A| = 1 then [A,G] = 1
is nilpotent. We assume from now on that |A| > 1. We claim that every
proper subgroup B of A acts trivially on G/F (G), where F (G) is the Fitting
subgroup ofG. In fact, [B, . . . , B,G]n 6 [A, . . . , A,G]n = 1 and the induction
hypothesis implies that [B,G] is nilpotent. Since [B,G] E G, we obtain
[B,G] 6 F (G). Since B acts trivially on G/[B,G], it also acts trivially on
G := G/F (G).

If A is generated by all its proper subgroups then A acts trivially on G.
This implies that 1 = [A,G] = [A,G] and [A,G] 6 F (G). But then [A,G] is
nilpotent. Therefore we may assume that A is not generated by its proper
subgroups. Since A is generated by its Sylow subgroups for all prime divisors
of |A|, A must be equal to a Sylow subgroup of A. Thus, A is a p-group and
Theorem 12.18 applies to show that [A,G] is a p-group. This completes the
proof.
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13 Thompson’s P ×Q Lemma

Throughout this section, G and A denote groups and we assume that A acts
on G via automorphisms. We view G and A as subgroups in the semidirect
product Γ := Go A.

13.1 Lemma Assume that A and G are finite, that gcd(|A|, [A,G]) = 1,
and that A or [A,G] is solvable. Then G = AG · [A,G].

Proof This follows immediately from Lemma 12.12 and Corollary 11.6, since
every coset of [A,G] in G is A-invariant and therefore contains an A-fixed
point.

13.2 Lemma Assume that A and G are finite and that gcd(|A|, [A,G]) = 1.
Then [A,A,G] = [A,G].

Proof Clearly [A,A,G] 6 [A,G]. To show the reverse inclusion it suffices to
show that [a, g] ∈ [A,A,G] for all a ∈ A and g ∈ G. In a first step we assume
that A is solvable. Then, by Lemma 13.1, we can write g = xc with c ∈ GA

and x ∈ [A,G]. We obtain [a, g] = [a, xc] = [a, x] · x[a, c] = [a, x] ∈ [A,A,G],
since [a, c] = 1. In the general case (A not necessarily solvable), we work
with 〈a〉 instead of A and obtain [a, g] ∈ [〈a〉, 〈a〉, G] ⊆ [A,A,G].

13.3 Corollary Assume that A and G are finite, that A acts faithfully on
G and that [A, . . . , A,G]n = 1 for some n ∈ N. Then every prime divisor of
|A| also divides |G|.

Proof Let p be a prime divisor of |A| and assume that p does not di-
vide |G|. For P ∈ Sylp(A), repeated application of Lemma 13.2 yields
1 = [P, . . . , P,G]n = [P,G]. This implies that P acts trivially on G, in
contradiction to A acting faithfully on G.

13.4 Lemma Let p be a prime. Assume that A and G are p-groups and
that G > 1. Then [A,G] < G and GA > 1.

Proof Note that the semidirect product Γ := G o A is again a p-group.
Therefore, there exists n > 2 such that Γn = 1. This implies [A, . . . , A,G]n−1 6
Γn = 1 with n − 1 > 1. Since G > 1 and [A, . . . , A,G]n−1 = 1, we have
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[A,G] < G and there exists an integer i > 0 such that C := [A, . . . , A,G]i−1 >
1 but [A, . . . , A,G]i = 1. This implies 1 < C 6 GA.

13.5 Theorem (Thompson’s P ×Q Lemma) Let p be a prime. Assume
that A = P ×Q, where P is a p-group and Q is a p′-group, and that G is a
p-group. If GP 6 GQ then GQ = G.

Proof We prove the theorem by induction on |G|. If |G| = 1 then the clearly
Q acts trivially on G. So assume that |G| > 1 and set Γ := G o A. By
Lemma 13.4 we have [P,G] < G. Since A normalizes P and G, the subgroup
[P,G] < G is A-invariant. Moreover, [P,G]P = GP ∩ [P,G] 6 GQ ∩ [P,G] =
[P,G]Q. By induction we obtain that Q acts trivially on [P,G]. In other
words, [Q,P,G] = 1. But also [G,Q, P ] = 1, since [Q,P ] = 1. By the 3
subgroup lemma we obtain [P,G,Q] = 1 and P acts trivially on [Q,G]. But
then [Q,G] = [Q,G]P = [Q,G]∩GP 6 [Q,G]∩GQ = [Q,G]Q, which implies
that Q centralizes [Q,G] and that [Q,Q,G] = 1. Now, Lemma 13.2 implies
that [Q,Q,G] = [Q,G] and the proof is complete.

13.6 Theorem Let p be a prime, let G be a p-solvable group, let P be a
p-subgroup of G, and set H := NG(P ). Then Op′(H) 6 Op′(G).

Proof We set Q := Op′(H) and N := Op′(G). We first assume that N = 1
and need to show that Q = 1. Note that both P and Q are normal subgroups
of H and that P ∩ Q = 1. Thus, A := PQ = P × Q is the internal direct
product of P and Q. Moreover, A acts on the p-group U := Op(G) > 1 by
conjugation. We want to show that CU(P ) 6 CU(Q). Note that CU(P ) =
U∩CG(P ) 6 U∩NG(P ) = U∩H and that U∩H is a normal p-subgroup of H.
Since Q is a normal p′-subgroup of H, U ∩ H and Q centralize each other.
Therefore CU(P ) and Q centralize each other. In other words, CU(P ) 6
CG(Q) ∩ U = CU(Q), and we can apply Thompson’s P × Q lemma. This
yields [U,Q] = 1 or Q 6 CG(U). By the Higman-Hall 1.2.3 lemma, we have
CG(U) 6 U and therefore Q 6 U . Since U is a p-group and Q is a p′-group,
this implies Q = 1 as desired.

Now assume that N = Op′(G) > 1. Then G := G/N is p-solvable with
Op′(G) = 1. We have NG(P ) = NG(P ) = H (cf. Homework problem), since
N is a normal p′-subgroup of G. By the first case applied to G we have
Op′(H) = 1. But Op′(H) 6 Op′(H) and therefore, Op′(H) 6 N = Op′(G).
This completes the proof.
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13.7 Theorem Assume that A and G are finite, that gcd(|A|, |G|) = 1, and
that G is abelian. Then G = GA × [A,G].

Proof We already know that G = GA · [A,G] by Lemma 13.1. Since G is
abelian, it suffices to show that GA ∩ [A,G] = 1. Let θ : G → G be defined
as

θ(g) :=
∏
a∈A

ag .

SinceG is abelian, this definition does not depend on the order of the product.
Also, since G is abelian, θ is a group homomorphism. If c ∈ GA then θ(c) =
c|A|. Moreover, for a ∈ A and g ∈ G we have θ( ag) =

∏
b ∈ A bag = θ(g)

and therefore θ([a, g]) = θ( ag)θ(g−1 = θ(g)θ(g)−1 = 1. This implies that
[A,G] 6 ker(θ). Now let x ∈ GA ∩ [A,G]. Then 1 = θ(x) = x|A|. But since
A and G have coprime orders, this implies x = 1 and the proof is complete.

13.8 Corollary Let p be a prime. Assume that G is an abelian p-group and
A is a p′-group. If A fixes every element of order p in G then A acts trivially
on G.

Proof By Fitting’s Theorem 13.7 we have G = GA × [A,G] and every
element of order p in G is already contained in GA. Therefore, [A,G] is a
p-group with no elements of order p. This implies [A,G] = 1 and GA = 1.

Our goal is to show that we can drop the assumption that G is abelian in
the previous corollary. The following trick, due to Reinhold Baer, will come
in handy.

13.9 Lemma (Baer trick) Let G be a finite nilpotent group of odd order
with G3 = 1 (i.e, G′ 6 Z(G)). There exists a binary operation

G×G→ G , (x, y) 7→ x+ y ,

with the following properties:
(i) (G,+) is an abelian group.
(ii) If x, y ∈ G are commuting elements then x+ y = xy.
(iii) The additive order of every element of G is equal to its multiplicative

order.
(iv) Aut(G) 6 Aut(G,+).
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Proof Since G has odd order, there exists n ∈ Z with |G| + 1 = 2n. For
x, y ∈ G, we define x+ y := [x, y]nyx.

We first show that x + y = y + x for x, y ∈ G. We need to show that
[x, y]nxy = [y, x]nxy, or equivalently that [x, y]n = xyx−1y−1. But this holds,
since 2n = |G|+ 1.

Next, assume that x, y ∈ G are commuting elements. Then x + y =
[x, y]nyx = xy, since [x, y] = 1. This shows (ii).

Since 1 commutes with every x we have x+ 1 = x · 1 = x. Thus, 1 is an
identity element with respect to +. Moreover, since x and x−1 commute, we
have x+ x−1 = xx−1 = 1. Next we show associativity of +. Note that, since
G′ 6 Z(G), every commutator is central in G, and every triple commutator
is trivial. Moreover, for every x ∈ G, the function G → G, y 7→ [x, y], is a
homomorphism. In fact, [x, yz] = [x, y] · y[x, z] = [x, y][x, z] for x, y, z ∈ G.
Similarly, [xy, z] = [x, z][y, z]. We have

x+ (y + z) = x+ [y, z]nzy =
[
x, [y, z]nzy

]n
· [y, z]nzyx

=
(
[x, [y, z]n][x, z][x, y]

)n
[y, z]nzyx

=
(
[x, [y, z]]n[x, z][x, y]

)n
[y, z]nzyx

= [x, y]n[x, z]n[y, z]nzyx

and similarly

(x+ y) + z = [x, y]nyx+ z =
[
[x, y]nyx, z

]n
· z[x, y]nyx

= [x, y]n[x, z]n[y, z]nzyx

Thus, + is associative and (G,+) is an abelian group with identity element
1 and −x = x−1. This shows (i).

To see (iii), note that (a) implies n · x = xn for all positive integers n (by
induction on n) and that additive and multiplicative identity coincide.

Finally, let f ∈ Aut(G). Then

f(x+ y) = f([x, y]nyx) = f([x, y])nf(y)f(x) = [f(x), f(y)]nf(y)f(x)

= f(x) + f(y)

and (iv) follows. This completes the proof.
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13.10 Theorem Let p be an odd prime. Assume that G is a p-group and
that A is a p′-group. If A fixes every element of order p in G then A acts
trivially on G.

Proof We prove the theorem by induction on |G|. If |G| = 1 then certainly
A acts trivially on G. So assume from now on that |G| > 1. By induction,
A acts trivially on every A-invariant proper subgroup H of G. In particular,
if [A,G] < G then A acts trivially on [A,G] so that [A,A,G] = 1. But
by Lemma 13.2 we have [A,G] = [A,A,G] = 1 and A acts trivially on G.
Therefore, we can assume from now on that [A,G] = G. Since G is a non-
trivial p-group we have G′ < G. Moreover, since G′ is characteristic in G, it is
also A-invariant. We obtain, by induction, that [A,G′] = 1. In particular we
have [G,A,G′] = 1. Moreover, since G′ is normal in G, we have [G,G′] 6 G′,
which implies [A,G′, G] = [A,G,G′] 6 [A,G′] = 1. By the 3 subgroup
lemma, we have [G′, G,A] = 1. But since we assumed that [A,G] = G,
we obtain [G′, G] = 1. In other words, G′ 6 Z(G). By Lemma 13.9, G
carries an abelian group structure (G,+) satisfying conditions (i)–(iv) in the
Lemma. By (iv), the action of A on G is also an action on (G,+) via group
automorphisms. By (iii), every element of (G,+) of order p is fixed by A.
Thus, by Corollary 13.8, A acts trivially on (G,+) and on G.

13.11 Theorem Let p be an odd prime. Assume that A = PQ, where P is
a p-subgroup of A and Q is a normal p′-subgroup of A, and assume that G
is a p-group. If GP 6 GQ then GQ = G.

Proof First note that, since A normalizes G and Q, the subgroup [Q,G] of
G is A invariant.

Our next goal is to prove the theorem in the case that G is abelian. In
this case, by Fitting’s Theorem, we have G = GQ × [Q,G]. Assume that
[Q,G] > 1. Lemma 13.4 implies that [Q,G]P > 1. But then the hypothesis
of the theorem implies [Q,G]Q > [Q,G]P > 1. This implies [Q,G]∩GQ = 1,
in contradiction to G = GQ × [Q,G].

Now we prove the theorem for general G by induction on |G|. We can
assume that |G| > 1. Note that if H is a proper A-invariant subgroup of
G then H satisfies the hypothesis of the theorem and, by induction, Q acts
trivially on H. We apply this to [Q,G]. So, if [Q,G] < G then [A,Q,G] =
1. In particular, [Q,Q,G] = 1 and by Lemma 13.2 we obtain [Q,G] =
[Q,Q,G] = 1 and we are done. So we can assume from now on that [Q,G] =
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G. Consider the proper A-invariant subgroup G′ of G. By the above we
obtain [Q,G′] = 1 and in particular [G,Q,G′] = 1 and [Q,G′, G] 6 [Q,G′] =
1. The 3 subgroup lemma implies [G′, Q,G] = 1 and since [Q,G] = G, we
obtain [G′, G] = 1. In other words, G′ 6 Z(G). Now we can again apply
Baer’s trick to see that Q acts trivially on G, since we have already proved
the theorem in the case that G is abelian.
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14 The Transfer Map

Throughout this section, G denotes a finite group.

14.1 Definition Let H and K be subgroups of G with H ′ 6 K E H 6 G
(in particular, H/K is abelian) and let R ⊆ G be a set of representatives
for G/H. Then, for each g ∈ G there exist unique elements ρ(g) ∈ R and
η(g) ∈ H such that g = ρ(g)η(g). The function

V G
H/K : G→ H/K , g 7→

∏
r∈R

η(gr)K ,

is called the transfer map from G to H/K (with respect to R).

14.2 Proposition Using the notation of Definition 14.1, the function V G
H/K

is a group homomorphism which does not depend on the choice of R.

Proof Let R′ be another set of representatives of G/H and let ρ′ : G→ R′
and η′ : G→ H be such that g = ρ′(g)η′(g) for all g ∈ G. Then there exists
for each r ∈ R a unique r′ ∈ R′ such that rH = r′H and also a unique hr ∈ H
such that r′ = rhr. For any x ∈ G we therefore have ρ′(x) = ρ(x)hρ(x). This
implies

η′(gr′) = ρ′(gr′)−1gr′ = ρ′(gr′)−1grhr = h−1
ρ(gr)ρ(gr)−1grhr = h−1

ρ(gr)η(gr)hr ,

for all g ∈ G and r′ ∈ R′. Therefore,∏
r′∈R′

η′(gr′)K =
∏
r∈R

h−1
ρ(gr)η(gr)hrK

=
(∏
r∈R

η(gr)K
)(∏

r∈R
hρ(gr)K

)−1(∏
r∈R

hrK
)

=
∏
r∈R

η(gr)K ,

for all g ∈ G, since with r also ρ(gr) runs through R. This shows that V G
H/K

does not depend on the choice of R.
Next we show that V G

H/K is a homomorphism. Let g1, g2 ∈ G. Then, for
every r ∈ R we have

ρ(g1g2r)H = g1g2rH = g1ρ(g2r)H = ρ(g1ρ(g2r))H ,

74



and therefore, ρ(g1g2r) = ρ(g1ρ(g2r)). This implies

V G
H/K(g1g2) =

∏
r∈R

ρ(g1g2r)
−1g1g2rK =

∏
r∈R

ρ(g1ρ(g2r))
−1g1g2rK

=
∏
r∈R

ρ(g1ρ(g2r))
−1g1ρ(g2r)ρ(g2r)

−1g2rK =
∏
r∈R

η(g1ρ(g2r))η(g2r)K

=
(∏
r∈R

η(g1ρ(g2r))K
)(∏

r∈R
η(g2r)K

)
=
(∏
r∈R

η(g1r)K
)(∏

r∈R
η(g2r)K

)
= V G

H/K(g1)V
G
H/K(g2) ,

and the proposition is proved.

14.3 Remark Let H ′ 6 K E H 6 G be as in Definition 14.1. In order to
calculate V G

H/K(g) for given g ∈ G, we can choose a set R of representatives
which depends on g and makes the computation easier. Note that 〈g〉 acts
on G/H by left translations. Let r1H, . . . , rsH be a set of representatives of
the 〈g〉-orbits and let di be the length of the orbit of riH, for i = 1, . . . , s.
Then

R := {r1, gr1, . . . , gd1−1r1, r2, gr2, . . . , rs, grs, . . . , g
ds−1rs} ⊆ G

is a set of representatives of G/H, gdiri ∈ riH, r−1
i gdiri ∈ H for all i =

1, . . . , s, and

V G
H/K(g) =

s∏
i=1

r−1
i gdiriK .

Note that d1 + · · · + ds = [G : H]. If moreover, r−1
i gdiriK = gdiK for all

i = 1, . . . , s (which holds for example if g ∈ Z(G) or if H 6 Z(G)), then we
obtain

V G
H/K(g) = g[G:H]K .

This implies that G→ Z(G), g 7→ g[G:Z(G)], is a homomorphism.

14.4 Definition For H 6 G we call the group

FocG(H) := 〈[g, h] | g ∈ G, h ∈ H such that [g, h] ∈ H〉

the focal subgroup of H with respect of G.
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14.5 Remark Let H 6 G and set F := FocG(H). Then it is clear that

H ′ 6 F 6 H ∩G′ 6 H .

Therefore, F E H and H/F is abelian. For r ∈ G and h ∈ H with [r, h] ∈ H
we have

rhr−1F = rhr−1h−1Fh = [r, h]Fh = Fh = hF .

With Remark 14.3 we therefore have

V G
H/F (h) = h[G:H]F

for all h ∈ H.

14.6 Proposition Let H 6 G and F := FocG(H). If [G : H] and [H : F ]
are coprime, then the following assertions hold:

(a) H ∩ ker(V G
H/F ) = H ∩G′ = FocG(H).

(b) H ker(V G
H/F ) = G.

(c) G/G′ ∼= HG′/G′ × ker(V G
H/F )/G′.

(d) G/ ker(V G
H/F ) ∼= H/F .

Proof (a) Since H/F is abelian, also G/ ker(V G
H/F ) is abelian by the Homo-

morphism Theorem. This implies G′ 6 ker(V G
H/F ) =: N and F 6 H ∩ G′ 6

H ∩ N . On the other hand, if h ∈ H ∩ N , then 1 = V G
H/F (h) = h[G:H]F by

Remark 10.5. Since also h[H:F ]F = 1 and [G : H] and [H : F ] are coprime,
we obtain hF = F and h ∈ F .

(b) By (a) we have

|G/N | > |HN/N | = |H/H ∩N | = |H/F | > |G/N | .

Therefore, we have equality everywhere and HN = G.
(c) By (b) we have G/G′ = (HG′/G′)(N/G′) and by (a) we have N ∩

HG′ = (N ∩H)G′ = FG′ = G′.
(d) From the proof of (b) we see that V G

H/F is surjective.

14.7 Definition Let H 6 G. We set H0 := H and Hi := FocG(Hi−1) for
i ∈ N. If Hn = 1 for some n ∈ N0, then we say that H is hyperfocal in G.
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14.8 Remark (a) If H 6 G is hyperfocal in G and K 6 H, then also K is
hyperfocal in G. In fact, this follows immediately from FocG(U) 6 FocG(V ),
whenever U 6 V 6 G. Moreover, if H 6 U 6 G and H is hyperfocal in G,
then H is also hyperfocal in U . This follows immediately from FocU(V ) 6
FocG(V ), whenever V 6 U 6 G.

(b) Assume the notation from Definition 14.7. Then H i+1 6 Hi for all
i ∈ N0, where H i+1 = [H,H, . . . , H] with i + 1 entries equal to H. In fact,
H1 = H = H0 and if i > 0, then by induction and Part (a) we have

H i+1 = [H,H i] = 〈{[h, x] | h ∈ H, x ∈ H i}〉
6 〈{[g, x] | g ∈ G, x ∈ H i such that [g, x] ∈ H i}〉
= FocG(H i) 6 FocG(Hi−1) = Hi .

In particular, if H is hyperfocal in G then H is nilpotent.

14.9 Theorem If H 6 G is a hyperfocal Hall subgroup of G, then H has a
normal complement in G.

Proof We proof the assertion by induction on G. If G = 1, this is obvious.
Therefore, we assume that G > 1. We may assume that H > 1. Since H is
hyperfocal in G, F := FocG(H) < H. Using Proposition 14.6, this implies
G/N ∼= H/F > 1 with N := ker(V G

H/F ) and therefore, N < G. The subgroup
H ∩N is again a Hall subgroup of N (by Remark 10.2(g)) and hyperfocal in
N (by Remark 14.8). By induction, there exists a normal complement K of
H ∩N in N . As a normal Hall subgroup of N , K is characteristic in N and
therefore normal in G. Moreover, H ∩K = H ∩N ∩K = 1, and finally, by
Proposition 14.6, HK = H(H ∩N)K = HN = G.

14.10 Theorem Let H be a nilpotent Hall subgroup of G. Assume that
any two elements of H which are conjugate in G are also conjugate in H.
Then H has a normal complement in G.

Proof We set H0 := H and Hi := FocG(Hi−1) for i ∈ N. By Theorem 14.9,
it suffices to show that Hi = H i+1 for all i ∈ N0. We prove this by induction
on i. For i = 0, this is clear. So let i > 0. By Remark 14.8(b), we have
H i+1 6 Hi. Conversely, if g ∈ G and h ∈ Hi−1 such that [g, h] ∈ Hi−1, then
ghg−1 ∈ Hi−1 6 H. By the hypothesis in the theorem there exists k ∈ H
such that ghg−1 = khk−1. From this we obtain

[g, h] = ghg−1h−1 = khk−1h−1 = [k, h] ∈ [H,Hi−1] = [H,Zi−1(H)] = Zi(H) ,
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and the result follows.

14.11 Lemma Let P be a Sylow p-subgroup of G and let A,B ⊆ P be
subsets such that xAx−1 = A and xBx−1 = B for all x ∈ P . If there exists
g ∈ G such that gAg−1 = B, then there also exists n ∈ NG(P ) such that
nAn−1 = B.

Proof Let g ∈ G with gAg−1 = B. Then P 6 NG(A) = {x ∈ G |
xAx−1 = A} 6 G and P 6 NG(B) = NG(gAg−1) = gNG(A)g−1 6 G.
Therefore, P and g−1Pg are Sylow p-subgroups of NG(A) and there exists
y ∈ NG(A) with yg−1Pgy−1 = P . Therefore, n := gy−1 ∈ NG(P ) and
nAn−1 = gy−1Ayg−1 = gAg−1 = B.

14.12 Theorem (Burnside) Let P be a Sylow p-subgroup of G such that
NG(P ) = CG(P ) (in other words that P 6 Z(NG(P ))). Then P has a normal
complement in G. In particular, G is not simple, unless P = 1 or |G| = p.

Proof Since P 6 NG(P ) = CG(P ), P is abelian. By Lemma 14.11, any two
elements x, y ∈ P which are conjugate in G are also conjugate in NG(P ) =
CG(P ) and therefore equal. Now Theorem 14.10 implies the assertion.

14.13 Theorem If p is the smallest prime divisor of |G| and if a Sylow
p-subgroup P of G is cyclic, then P has a normal complement in G.

Proof If P is cyclic of order pn, then |Aut(P )| = pn−1(p−1). The homomor-
phism NG(P ) → Aut(P ), mapping n ∈ NG(P ) to the conjugation with n,
induces a monomorphism NG(P )/CG(P )→ Aut(P ). Since p is the smallest
prime divisor of G, this implies that NG(P )/CG(P ) is a p-group. On the
other hand, P 6 CG(P ), since P is abelian, and NG(P )/CG(P ) is a p′-group.
This implies NG(P ) = CG(P ) and Theorem 14.12 completes the proof.

14.14 Remark (a) If G has a cyclic Sylow 2-subgroup P > 1, then P has a
normal complement K in G. In particular, G is not simple, unless |G| = 2.
Since K has odd order, it is solvable by the Odd-Order-Theorem. Therefore,
with G/K ∼= P also G is solvable. Using representation theory, one can also
show that a finite group with a generalized quaternion Sylow 2-subgroup is
not simple.

78



(b) Theorem 14.13 implies that every group of order 2n, with n odd, has
a normal subgroup of order n.

14.15 Theorem If all Sylow subgroups of G are cyclic, then G is solvable.

Proof We prove the theorem by induction on |G|. The case |G| = 1 is trivial
and we may assume that |G| > 1. Let p be the smallest prime divisor of |G|
and let P be a Sylow p-subgroup of G. Then P has a normal complement
K by Theorem 14.13. Again, every Sylow subgroup of K is cyclic, and by
induction K is solvable. Therefore, with G/K ∼= P , also G is solvable.

14.16 Corollary If G is a group of square free order (i.e., |G| = p1 · · · pr
with pairwise distinct primes p1, . . . , pr), then G is solvable.

Proof This is immediate with Theorem 14.15.

14.17 Theorem If G is a non-abelian simple group and p is the smallest
prime divisor of |G|. Then |G| is divisible by 12 or by p3.

Proof Let P be a Sylow p-subgroup of G. By Theorem 10.13, P is not
cyclic. Therefore, |P | > p2. If |P | > p3 we are done. Therefore we assume
from now on that |P | = p2. Since P is not cyclic, P is elementary abelian.
Therefore, Aut(P ) ∼= GL2(Z/pZ) and |NG(P )/CG(P )| divides |Aut(P )| =
p(p − 1)2(p + 1). From Theorem 14.12 we know that |NG(P )/CG(P )| > 1.
Since p is the smallest prime dividing |G| and since P 6 CG(P ), we obtain
that |NG(P )/CG(P )| divides p + 1. Since p is the smallest prime dividing
|G|, also p+1 has to be prime and we obtain p = 2 and |NG(P )/CG(P )| = 3.
This implies that |G| is divisible by 12.
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15 p-Nilpotent Groups

15.1 Definition Let p be a prime. A finite group G is called p-nilpotent, if
a Sylow p-subgroup of G has a normal complement.

15.2 Remark Let G be a finite group and let p be a prime.
(a) We have

G is nilpotent ⇒ G p-nilpotent
⇓ ⇓

G is solvable ⇒ G p-solvable

(b) Obviously the following statements are equivalent:
(i) G is p-nilpotent.
(ii) Each Sylow p-subgroup of G has a normal complement.
(iii) G has a normal Hall p′-subgroup.
(iv) G/Op′(G) is a p-group.
(v) G has a normal p′-subgroup K such that G/K is a p-group.

(c) If G is p-nilpotent, then Op′(G) is a normal complement of every Sylow
p-subgroup of G.

(d) If G is p-nilpotent for every prime p dividing |G|, then G is nilpotent.
In fact, the homomorphism

G→
∏
p||G|

G/Op′(G) , g 7→
(
gOp′(G)

)
p||G|

,

has kernel
⋂
p||G|Op′(G) = 1, and since both groups have the same order, it

is an isomorphism.
(e) If G is p-nilpotent, then every subgroup and every factor group of G

is p-nilpotent (Homework).

15.3 Theorem (Frobenius) Let p be a prime, let G be a finite group,
and let P be a Sylow p-subgroup of G. Then the following statements are
equivalent:

(i) G is p-nilpotent.
(ii) For each p-subgroup Q > 1 of G, the normalizer NG(Q) is p-nilpotent.
(iii) For each p-subgroup Q > 1 of G, the quotient NG(Q)/CG(Q) is a

p-group.
(iv) For each p-subgroup Q > 1 of G and each Sylow p-subgroup R of

NG(Q), one has NG(Q) = CG(Q)R.
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(v) For each subgroup Q of P and each g ∈ G with gQg−1 6 P , there
exist c ∈ CG(Q) and x ∈ P such that g = xc.

(vi) For any two elements x, y ∈ P and each element g ∈ G with y =
gxg−1, there exists an element u ∈ P such that y = uxu−1.

Proof We may assume that p | |G|.
(i) ⇒ (ii): This follows from Remark 15.2(e).
(ii) ⇒ (iii): Let Q > 1 be a p-subgroup of G and set K := Op′(NG(Q)).

Then, by (ii), NG(Q)/K is a p-group. In order to prove (iii), it suffices to show
that K 6 CG(Q). But for k ∈ K and x ∈ Q one has [k, x] = kxk−1x−1 ∈
K ∩Q = 1 and therefore, K 6 CG(Q).

(iii) ⇒ (iv): Let Q > 1 be a p-subgroup of G and let R be a Sy-
low p-subgroup of NG(Q). Then R · CG(Q)/CG(Q) is a Sylow p-subgroup
of NG(Q)/CG(Q) by Remark 10.2(g). This implies NG(Q)/CG(Q) = R ·
CG(Q)/CG(Q), since NG(Q)/CG(Q) is a p-group.

(iv) ⇒ (v): Let Q 6 P and let g ∈ G such that gQg−1 6 P . We may
assume that Q > 1. By induction on [P : Q] we will show that there exist
c ∈ CG(Q) and x ∈ P such that g = xc. If [P : Q] = 1, then P = Q and
gQg−1 6 P implies gQg−1 = P so that g ∈ NG(P ). But NG(P ) = P ·CG(P )
by (iv) and we can write g in the desired way. From now on we assume that
Q < P . Then also gQg−1 < P . For R1 := NP (Q) and R2 := Ng−1Pg(Q)
we then have Q < R1 6 P and Q < R2 6 g−1Pg. Let R be a Sylow p-
subgroup of NG(Q) with R1 6 R. Since NG(Q) = CG(Q)R = RCG(Q) (by
(iv)), there exists c ∈ CG(Q) such that cR2c

−1 6 R. Let y ∈ G such that
yRy−1 6 P . Then, by induction applied to R1 6 P and yR1y

−1 6 P , there
exist c1 ∈ CG(R1) and x1 ∈ P such that y = x1c1. Similarly, for gR2g

−1 6 P
and ycR2c

−1y−1 6 yRy−1 6 P , there exist elements c2 ∈ CG(gR2g
−1) and

x2 ∈ P such that ycg−1 = x2c2. Since CG(gR2g
−1) = gCG(R2)g

−1, there
exists c3 ∈ CG(R2) with c2 = gc3g

−1. This implies ycg−1 = x2gc3g
−1, thus

yc = x2gc3, and finally g = x−1
2 ycc−1

3 = x−1
2 x1c1cc

−1
3 with x−1

2 x1 ∈ P and
c1cc3 ∈ CG(Q).

(v) ⇒ (vi): Let x, y ∈ P and let g ∈ G such that y = gxg−1. If we
set Q := 〈x〉, then Q 6 P and gQg−1 = 〈y〉 6 P . By (v), there exist
c ∈ CG(Q) = CG(x) and u ∈ P such that g = uc, and we have uxu−1 =
ucxc−1u−1 = gxg−1 = y.

(vi) ⇒ (i): This follows from Theorem 14.10.

15.4 Remark Let G be a finite group and let p be a prime.
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(a) One says that a subgroup H of G controls the fusion of p-subgroups
of G, if there exists a Sylow p-subgroup P of G such that

• P 6 H and

• for each Q 6 P and each g ∈ G with gQg−1 6 P there exist h ∈ H
and c ∈ CG(Q) such that g = hc.

In view of Frobenius’ Theorem, the p-nilpotent groups are exactly those, for
which already the Sylow p-subgroups control the fusion of p-subgroups.

(b) If G has an abelian Sylow p-subgroup P then NG(P ) controls the
fusion of p-subgroups of G. (Homework)

(c) The rank of an abelian p-group is defined as the minimal number
of generators. For an arbitrary p-group P one defines the Thompson sub-
group J(P ) as the subgroup of P generated by all abelian subgroups of P of
maximal rank.

Let p be odd and let P be a Sylow p-subgroup of G. J. Thompson showed
that G is p-nilpotent if and only if CG(Z(P )) and NG(J(P )) are p-nilpotent.
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