Finite Group Theory (Math 214)

UCSC, Fall 2009

Robert Boltje

Contents

1	The Alternating Group	1
2	The Frattini Subgroup	3
3	The Fitting Subgroup	5
4	$p ext{-}\mathbf{Groups}$	8
5	Group Cohomology	17
6	Group Extensions and Parameter Systems	20
7	Group Extensions with Abelian Kernel	34
8	Group Extensions with Non-Abelian Kernel	36
9	The Theorem of Schur-Zassenhaus	44
10	The π -Sylow Theorems	48
11	Coprime Action	55
12	Commutators	60
13	Thompson's $P \times Q$ Lemma	68
14	The Transfer Map	74
15	p-Nilpotent Groups	80

1 The Alternating Group

1.1 Lemma (a) For $n \ge 3$, the group Alt(n) is generated by the 3-cycles of the form (i, i + 1, i + 2), i = 1, ..., n - 2.

(b) For $n \ge 5$, any two 3-cycles of Alt(n) are conjugate in Alt(n).

Proof (a) Each element in Alt(n) is a product of an even number of transpositions. Since

(a,b)(c,d) = ((a,b)(b,c))((b,c)(c,d)) and (a,b)(a,c) = (a,c,b),

the group Alt(n) is generated by its 3-cycles. Each 3-cycle or its inverse is of the form (a, b, c) with a < b < c. We can reduce the difference c - a by the formulas

$$(a, b, d) = (a, b, c)(b, c, d)^2$$
 and $(a, c, d) = (a, b, c)^2(b, c, d)$

whenever a < b < c < d. This proves the result.

(b) Let π_1 and π_2 be two 3-cycles in Alt(n). Then there exists $\sigma \in \text{Sym}(n)$ with $\pi_2 = \sigma \pi_1 \sigma^{-1}$. Since $n \ge 5$, there exists a transpositions $\tau \in \text{Sym}(n)$ which is disjoint to π_1 . Thus $\tau \pi_1 \tau^{-1} = \pi_1$ so that also $(\sigma \tau) \pi_1 (\sigma \tau)^{-1} = \pi_2$. but either σ or $\sigma \tau$ is an element of Alt(n).

1.2 Theorem For $n \ge 5$, the group Alt(n) is simple.

Proof Assume that $1 < N \leq \operatorname{Alt}(n)$. We have to show that $N = \operatorname{Alt}(n)$. By Lemma 1.1, it suffices to show that N contains some 3-cycle. We choose $1 \neq \sigma \in N$ and write $\sigma = \gamma_1 \cdots \gamma_r$ as product of disjoint cycles $\gamma_1, \ldots, \gamma_r$ in $\operatorname{Sym}(n)$ and distinguish the following 4 cases:

Case 1: One of the cycles γ_i has length at least 4. Then we can write $\gamma_i = (a, b, c, d, e_1, \dots, e_s)$, with $s \ge 0$. With $\rho := (a, b, c)$ we have

$$N \ni \rho \sigma \rho^{-1} \sigma^{-1} = (a, b, c)(a, b, c, d, e_1, \dots, e_s)(a, c, b)(e_s, \dots, e_1, d, c, b, a)$$

= (a, b, d) .

Case 2: All cycles γ_i have length at most 3 and one of them has length 3. We may assume that $\gamma_1 = (a, b, c)$ and that $r \ge 2$. Then $\gamma_2 = (d, e)$ or $\gamma_2 = (d, e, f)$. With $\rho := (a, b, d)$ we have

$$N \ni \rho^{-1} \sigma \rho \sigma^{-1} = (a, d, b)(a, b, c)(d, e)(a, b, d)(a, c, b)(d, e) = (a, d, b, c, e)$$

or

$$N \ni \rho^{-1} \sigma \rho \sigma^{-1} = (a, d, b)(a, b, c)(d, ef)(a, b, d)(a, c, b)(d, f, e) = (a, d, b, c, e)$$

and, by Case 1, N contains a 3-cycle.

Case 3: All cycles γ_i are transpositions and $r \ge 3$. Then we can write $\sigma = (a, b)(c, d)(e, f) \cdots$ with pairwise distinct a, b, c, d, e, f. With $\rho := (a, c, e)$ we have

$$N \ni \rho \sigma \rho^{-1} \sigma^{-1} = (a, c, e)(a, b)(c, d)(e, f)(a, e, c)(a, b)(c, d)(e, f)$$

= (a, c, e)(b, f, d)

and N contains a 3-cycle by Case 2.

Case 4: $\sigma = (a, b)(c, d)$ with pairwise distinct a, b, c, d. Set $\rho := (a, c, e)$ with $e \notin \{a, b, c, d\}$. Then

$$N \ni \rho \sigma \rho^{-1} \sigma^{-1} = (a, c, e)(a, b)(c, d)(a, e, c)(a, b)(c, d) = (a, c, e, d, b)$$

and N contains a 3-cycle by Case 1.

2 The Frattini Subgroup

2.1 Definition For a finite group G the intersection of all its maximal subgroups is called the *Frattini subgroup* of G. It is denoted by $\Phi(G)$. For the trivial group G = 1 one sets $\Phi(1) = 1$. Note that $\Phi(G)$ is a characteristic subgroup of G.

2.2 Proposition (Frattini-Argument) Let G be a finite group, let N be a normal subgroup of G and let $P \in Syl_p(N)$ for some prime p. Then $G = N \cdot N_G(P)$.

Proof Let $g \in G$. Then $P \leq N$ implies $gPg^{-1} \leq gNg^{-1} = N$ and $gPg^{-1} \in$ Syl_p(N). By Sylow's Theorem, there exists $n \in N$ such that $ngPg^{-1}n^{-1} = P$. This implies that $ng \in N_G(P)$ and $g \in n^{-1}N_G(P) \subseteq N \cdot N_G(P)$.

2.3 Lemma If G is a finite group and $H \leq G$ such that $H\Phi(G) = G$ then H = G.

Proof Assume that H < G. Then there exists a maximal subgroup U of G with $H \leq U$. This implies $G = H\Phi(G) \leq U \cdot U = U$, which is a contradiction.

2.4 Lemma Let G be a finite group and let H and N be normal subgroups of G such that $N \leq H \cap \Phi(G)$. If H/N is nilpotent then every Sylow subgroup of H is normal in G. In particular, H is nilpotent.

Proof Let $P \in \operatorname{Syl}_p(H)$ for some prime p. Then $PN/N \in \operatorname{Syl}_p(H/N)$. Since H/N is nilpotent, PN/N is normal in H/N (cf. [P, 8.7]) and also characteristic in H/N. Since also H/N is normal in G/N, PN/N is normal in G/N and further, PN is normal in G. Since $P \in \operatorname{Syl}_p(PN)$ and $PN \leq G$, the Frattini Argument implies that $G = PN \cdot N_G(P) = NN_G(P) \leq \Phi(G)N_G(P)$ and therefore $G = N_G(P)\Phi(G)$. By Lemma 2.3, we have $N_G(P) = G$ and Pis normal in G.

2.5 Corollary (Frattini 1885) For every finite group G, the Frattini subgroup $\Phi(G)$ is nilpotent.

Proof This follows from Lemma 2.4 with $H := N := \Phi(G)$.

2.6 Corollary Let G be a finite group. If $G/\Phi(G)$ is nilpotent then G is nilpotent.

Proof This follows from Lemma 2.4 with H := G and $N := \Phi(G)$.

2.7 Theorem For every finite group G the following are equivalent:

- (i) G is nilpotent.
- (ii) $G/\Phi(G)$ is nilpotent.
- (iii) $G' \leq \Phi(G)$.
- (iv) $G/\Phi(G)$ is abelian.

Proof (i) \Rightarrow (ii): This follows from [P, 8.8]

(ii) \Rightarrow (i): This follows from Corollary 2.6.

(ii) \Rightarrow (iii): Let U < G be a maximal subgroup. Then $U/\Phi(G)$ is a maximal subgroup of the nilpotent group $G/\Phi(G)$. By [P, 8.8], $U/\Phi(G)$ is normal in $G/\Phi(G)$, and therefore U is normal in G. Since U is maximal in G, G/Uhas no subgroup different from U/U and G/U. This implies that G/U is a cyclic group of prime order. In particular, G/U is abelian. This implies that $G' \leq U$. Since this holds for every maximal subgroup U of G, we have $G' \leq \Phi(G).$

(iii) \Rightarrow (iv): This follows from [P, 4.3(c)]. $(iv) \Rightarrow (ii)$: This is clear.

3 The Fitting Subgroup

3.1 Remark Let p be a prime and let G be a finite group. If P and Q are normal p-subgroups of G then PQ is again a normal p-subgroup of G, since $|QP| = |P| \cdot |Q|/|P \cap Q|$. Therefore, the product of all normal p-subgroups of G is again a normal p-subgroup which we denote by $O_p(G)$. By definition it is the largest normal p-subgroup of G. Clearly, O_p is also characteristic in G.

3.2 Definition Let G be a finite group. The *Fitting subgroup* F(G) of G is defined as the product of the subgroups $O_p(G)$, where p runs through the prime divisors of p. If G = 1 we set F(G) := 1.

3.3 Remark Let G be a finite group and let p_1, \ldots, p_r denote the prime divisors of the finite group G. Then O_{p_i} is a Sylow p_i -subgroup of F(G) for every $i = 1, \ldots, r$. Since $O_{p_i}(G)$, $i = 1, \ldots, r$, is normal in G it is also normal in F(G). It follows that F(G) is nilpotent and that F(G) is the direct product of the subgroups $O_{p_1}, \ldots, O_{p_r}(G)$. Moreover, since O_{p_i} is characteristic in G for all $i = 1, \ldots, r$, also F(G) is characteristic in G.

3.4 Proposition Let G be a finite group. Then F(G) is the largest normal nilpotent subgroup of G; i.e., it is a normal nilpotent subgroup of G and contains every other normal nilpotent subgroup of G.

Proof We have already seen in the previous remark that F(G) is a normal nilpotent subgroup of G. Let N be an arbitrary normal nilpotent subgroup of G and let p be a prime divisor of |N|. Then N has a normal Sylow p-subgroup P. This implies that P is characteristic in N. Since N is normal G, we obtain that P is normal in G. Therefore, $P \leq O_p(G) \leq F(G)$. Since N is the product of its Sylow p-subgroups, for the different prime divisors p of |N|, we obtain $N \leq F(G)$, as desired.

3.5 Corollary Let N_1 and N_2 be normal nilpotent subgroups of a finite group G. Then N_1N_2 is again a normal nilpotent subgroup of G.

Proof By Proposition 3.4, N_1 and N_2 are contained in F(G). Therefore $N_1N_2 \leq F(G)$. since F(G) is nilpotent, also its subgroup N_1N_2 is nilpotent. Clearly N_1N_2 is normal in G.

3.6 Definition A minimal normal subgroup of a finite group G is a normal subgroup M of G such that $M \neq 1$ and every normal subgroup N of G with is contained in M is equal to 1 or to M.

3.7 Proposition Let G be a finite group.

(a) $C_G(F(G))F(G)/F(G)$ does not contain any solvable normal subgroup of G/F(G) different from the trivial one.

(b) $\Phi(G) \leq F(G)$ and if G is solvable and non-trivial then $\Phi(G) < F(G)$.

(c) $F(G/\Phi(G)) = F(G)/\Phi(G)$ is abelian.

(d) If N is a minimal normal subgroup of G then $N \leq C_G(F(G))$. If moreover N is abelian then $N \leq Z(F(G))$.

Proof (a) It suffices to show that $C_G(F(G))F(G)/F(G)$ contains no abelian normal subgroup of G/F(G) different from 1. So let N/F(G) be an abelian subgroup of $C_G(F(G))F(G)/F(G)$ which is normal in G/F(G). Then F(G)/leN. We need to show that F(G) = N. Note that N = F(G)C with C = $N \cap C_G(F(G))$. Since $N/C \cong F(G)/(F(G) \cap C)$ is nilpotent, there exists $l \in \mathbb{N}$ such that $Z_l(N/C) = 1$. Since $N \leq C(F(G))F(G)$, it follows that

 $Z_l(N) \leqslant C \cap N' \leqslant C \cap F(G) \leqslant Z(F(G)) \leqslant Z(N).$

This implies that $Z_{l+1}(N) = [Z_l(N), N] = 1$ and that N is nilpotent. Therefore, $N \leq F(G)$.

(b) Since $\Phi(G)$ is nilpotent (cf. Corollary 2.5) and normal in G, we have $\Phi(G) \leq F(G)$. Assume moreover that G is solvable and $G \neq 1$. Then $G/\Phi(G)$ is solvable and $\Phi(G) < G$. There exists an abelian normal subgroup $1 \neq M/\Phi(G) \trianglelefteq G/\Phi(G)$. Since $M/\Phi(G)$ is abelian (and hence nilpotent), Lemma 2.4 (with H = M and $N = \Phi(G)$) implies that M is nilpotent. But then $M \leq F(G)$. Therefore, $\Phi(G) < M \leq F(G)$.

(c) Since F(G) is nilpotent also $F(G)/\Phi(G)$ is nilpotent. Moreover, $F(G)/\Phi(G)$ is normal in $G/\Phi(G)$. Therefore $F(G)/\Phi(G) \leq F(G/\Phi(G))$. Conversely, we can write $F(G/\Phi(G)) = H/\Phi(G)$ with $\Phi(G) \leq H \leq G$. Since $H/\Phi(G)$ is nilpotent, Lemma 2.4 (with $N = \Phi(G)$) implies that H is nilpotent and therefore $H \leq F(G)$. Thus, $F(G/\Phi(G)) = H/\Phi(G) \leq F(G)/\Phi(G)$. Since F(G) is normal in G, we have $\Phi(F(G)) \leq \Phi(G) \leq F(G)$. Since F(G) is nilpotent, Theorem 2.7 implies that $F(G)/\Phi(F(G))$ is abelian. But $F(G)/\Phi(G)$ is isomorphic to a factor group of $F(G)/\Phi(F(G))$ and therefore also abelian. (d) Since N is a minimal normal subgroup, we either have $N \cap F(G) = 1$ or $N \cap F(G) = N$. If N is abelian then, N is nilpotent and $N \leq F(G)$. It follows that $1 \neq N \cap Z(F(G)) \trianglelefteq G$ (see homework problem), and the minimiality of N implies $N \leq Z(F(G))$. If N is not abelian then $N \cap F(G) = 1$ (since otherwise $N \leq F(G)$ implies 1 < N' < N with $N' \trianglelefteq N \trianglelefteq G$ and thus $N' \trianglelefteq G$, a contradiction). But $N \cap F(G) = 1$ implies $[N, F(G)] \leq N \cap F(G) = 1$ and $N \leq C_G(F(G))$.

4 *p*-Groups

4.1 Lemma Let G be a group and assume there exists $H \leq Z(G)$ such that G/H is cyclic. Then G is abelian.

Proof Let $x \in G$ with $\langle xH \rangle = G/H$. Every element of G can be written in the form x^nh with $n \in \mathbb{Z}$ and $h \in H$. For $n, n' \in \mathbb{Z}$ and $h, h' \in H$ we have:

$$x^{n}hx^{n'}h' = x^{n}x^{n'}hh' = x^{n'}x^{n}h'h = x^{n'}h'x^{n}h,$$

and the lemma is proved.

4.2 Corollary If p is a prime and if G is a group of order p^2 , then G is abelian.

Proof By [P, 5.10], we have Z(G) > 1. Therefore, |G/Z(G)| divides p so that G/Z(G) is cyclic. Now Lemma 4.1 applies.

4.3 Definition Let p be a prime. An abelian p-group G is called *elementary* abelian, if $x^p = 1$ for all $x \in G$. Equivalently, G is isomorphic to a direct product of cyclic groups of order p. If G is elementary abelian of order p^n , we call n the rank of G.

4.4 Remark Let p be a prime. If G is an elementary abelian p-group, then G is a finite dimensional vector space over the field $\mathbb{Z}/p\mathbb{Z}$ in a natural way, namely by defining the scalar multiplication $(k + p\mathbb{Z}) \cdot x := x^k$ for $x \in G$ and $k \in \mathbb{Z}$. Conversely, each $\mathbb{Z}/p\mathbb{Z}$ -vector space has an elementary abelian p-group as underlying group. Therefore, elementary abelian p-groups and finite dimensional $\mathbb{Z}/p\mathbb{Z}$ -vector spaces are the same thing. Moreover, every $\mathbb{Z}/p\mathbb{Z}$ -linear map between $\mathbb{Z}/p\mathbb{Z}$ -vector spaces is a group homomorphism and every group homomorphism between elementary abelian p-groups is also a $\mathbb{Z}/p\mathbb{Z}$ -linear map. Therefore, $\operatorname{Aut}(G) \cong \operatorname{GL}_n(\mathbb{Z}/p\mathbb{Z})$ for any elementary abelian p-group G of rank n. Note also that a subgroup of an elementary abelian p-group G is the same thing as a subspace and that for $X \subseteq G$ the $\mathbb{Z}/p\mathbb{Z}$ -span of X is the same as the subgroup generated by X.

4.5 Theorem Let p be a prime and let G be a p-group. Then:

(a) $\Phi(G) = G' \cdot G^p$, where $G^p := \langle \{g^p \mid g \in G\} \rangle$. If p = 2, one has $\Phi(G) = G^2$.

- (b) $G/\Phi(G)$ is elementary abelian.
- (c) For every $N \leq G$ on has: G/N is elementary abelian $\iff \Phi(G) \leq N$.
- (d) If $U \leq G$, then $\Phi(U) \leq \Phi(G)$.
- (e) If $N \leq G$, then $\Phi(G/N) = \Phi(G)N/N$.

Proof (a)–(c): By Theorem 2.7 and since G is nilpotent, we have $G' \leq \Phi(G)$. Each maximal subgroup U of G is normal and of index p in G. Therefore, $(gU)^p = U$ and $g^p \in U$ for each $g \in G$. This implies that $G^p \leq \Phi(G)$, and we have $G' \cdot G^p \leq \Phi(G)$. This implies (b); in fact, $G/\Phi(G)$ is abelian, since $G' \leq \Phi(G)$ and $(g\Phi(G))^p = g^p\Phi(G) = \Phi(G)$, since $G^p \leq \Phi(G)$. Next we show (c). If $\Phi(G) \leq N$, then $G/N \cong (G/\Phi(G))/(N/\Phi(G))$ is elementary abelian by (b). Conversely, assume that G/N is elementary abelian and that $N \neq G$. Then N is the intersection of all maximal subgroups of G that contain N; in fact, the intersection of all hyperplanes of G/N is N/N. This implies that $N \leq \Phi(G)$ and (c) is proved. From (c) we now obtain $\Phi(G) \leq G' \cdot G^p$, since $G/(G' \cdot G^p)$ is elementary abelian. If p = 2 each commutator

$$xyx^{-1}y^{-1} = xy^{2}x^{-1}x^{2}x^{-1}y^{-1}x^{-1}y^{-1} = (xyx^{-1})^{2}x^{2}(x^{-1}y^{-1})^{2}$$

is a product of squares, and therefore $G' \leq G^2$. This implies $\Phi(G) = G^2$.

(d) This follows from (a), since $U' \leq G'$ and $U^p \leq \overline{G^p}$.

(e) We have $(G/N)^p = \langle \{g^p N \mid g \in G\} \rangle = G^P N/N$ and (G/N)' = G'N/N. Now (a) implies

$$\Phi(G/N) = (G/N)^p \cdot (G/N)' = (G^p N/N) \cdot (G'N/N)$$
$$= (G^p G'N)/N = \Phi(G)N/N,$$

and the proof of the theorem is complete.

4.6 Theorem (Burnside's Basis Theorem) Let p be a prime and let G be a p-group with $|G/\Phi(G)| = p^d$, $d \in \mathbb{N}$. Then:

(a) Let $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$. Then

$$\langle x_1, \dots, x_n \rangle = G \iff \langle x_1 \Phi(G), \dots, x_n \Phi(G) \rangle = G/\Phi(G).$$

(b) Each minimal generating set of G has d elements.

(c) Each element $x \in G \setminus \Phi(G)$ occurs in some minimal generating set of G.

Proof (a) With Lemma 2.3 we obtain

$$\langle x_1, \dots, x_n \rangle = G \iff \langle x_1, \dots, x_n \rangle \Phi(G) = G$$

$$\iff \langle x_1 \Phi(G), \dots, x_n \Phi(G) \rangle = G/\Phi(G) .$$

(b) Let $\{x_1, \ldots, x_n\}$ be a minimal generating set of G consisting of n elements. By (a) we have $\langle x_1 \Phi(G), \ldots, x_n \Phi(G) \rangle = G/\Phi(G)$, and therefore $d \leq n$. Assume that n > d. Then there exists a proper subset of $\{x_1 \Phi(G), \ldots, x_n \Phi(G)\}$ which still generates $G/\Phi(G)$. By (a) the corresponding proper subset of $\{x_1, \ldots, x_n\}$ then generates G. This contradicts the minimality of the set $\{x_1, \ldots, x_n\}$.

(c) If $x \in G \setminus \Phi(G)$, then $x\Phi(G)$ is nonzero in the vector space $G/\Phi(G)$ and can be extended to a basis $x\Phi(G), x_2\Phi(G), \ldots, x_d\Phi(G)$. Then, by (a) and (b), $\{x, x_2, \ldots, x_d\}$ is a minimal set of generators of G.

4.7 Remark (a) Burnside's Basis Theorem implies that every *p*-group *G* with $|G/\Phi(G)| = p$ is cyclic.

(b) Part (b) of Burnside's Basis Theorem does not hold for arbitrary finite groups. For example, the group $\mathbb{Z}/6\mathbb{Z}$ has the minimal generating sets $\{1 + 6\mathbb{Z}\}$ and $\{3 + 6\mathbb{Z}, 2 + 6\mathbb{Z}\}$.

4.8 Examples (a) We already know two non-isomorphic groups of order 8, namely the dihedral group D_8 and the quaternion group

$$Q_8 = \langle \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle$$

(b) Let p be an odd prime. We will construct a non-abelian group of order p^3 as a semidirect product $\mathbb{Z}/p^2\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$ with the following action. Recall that $\operatorname{Aut}(\mathbb{Z}/p^2\mathbb{Z}) \cong (\mathbb{Z}/p^2\mathbb{Z})^{\times}$ where $i + p^2\mathbb{Z} \in (\mathbb{Z}/p^2\mathbb{Z})^{\times}$ corresponds to the automorphism σ_i of $\mathbb{Z}/p^2\mathbb{Z}$ which raises every element to its *i*-th power. We have $|\operatorname{Aut}(\mathbb{Z}/p^2\mathbb{Z})| = p(p-1)$ and we observe that $1+p+p^2\mathbb{Z}$ is an element of order p in $(\mathbb{Z}/p^2\mathbb{Z})^{\times}$, since $(1+p+p^2\mathbb{Z})^p = (1+p)^p+p^2\mathbb{Z} = 1+p^2\mathbb{Z}$. Therefore, if $Y = \langle y \rangle$ is a cyclic group of order p^2 and $X = \langle x \rangle$ is a cyclic group of order p, there exists a non-trivial group homomorphism $\rho \colon X \to \operatorname{Aut}(Y)$ such that the corresponding action satisfies ${}^{x}y = y^{p+1}$. This gives rise to a semidirect product $Y \rtimes X$ of order p^3 . In Lemma 4.12 we will need the following property of $Y \rtimes X$ which is now easy to verify:

$$\{a \in Y \rtimes X \mid a^p = 1\} = \langle x, y^p \rangle.$$
(4.8.a)

(c) Let p be an odd prime and let $n \in \mathbb{N}$. Then

$$E_{p^{2n+1}} := \left\{ \begin{pmatrix} 1 & \beta_1 & \cdots & \beta_n & \gamma \\ & 1 & & & \alpha_1 \\ & & \ddots & & \vdots \\ & & & 1 & \alpha_n \\ & & & & 1 \end{pmatrix} \mid \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n, \gamma \in \mathbb{Z}/p\mathbb{Z} \right\}$$

(with zeros in the empty spots) is a subgroup of $\operatorname{GL}_{n+2}(\mathbb{Z}/p\mathbb{Z})$ of order p^{2n+1} , since

$$= \begin{pmatrix} 1 & \beta_1 & \cdots & \beta_n & \gamma \\ 1 & & \alpha_1 \\ & \ddots & \vdots \\ & & 1 & \alpha_n \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & \beta'_1 & \cdots & \beta'_n & \gamma' \\ 1 & & \alpha'_1 \\ & \ddots & \vdots \\ & & 1 & \alpha'_n \\ & & & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \beta_1 + \beta'_1 & \cdots & \beta_n + \beta'_n & \gamma + \gamma' + \alpha'_1\beta_1 + \cdots + \alpha'_n\beta_n \\ 1 & & & \alpha_1 + \alpha'_1 \\ & & & \vdots \\ & & 1 & & \alpha_n + \alpha'_n \\ & & & 1 \end{pmatrix}$$

•

The group $E_{p^{2n+1}}$ is called the *extra-special group* of order p^{2n+1} and exponent p. Let $z, x_i, y_i \in E_{p^{2n+1}}, i = 1, ..., n$, be defined as the elements with precisely one non-zero entry off the diagonal, namely the entry $\gamma = 1$ for $z, \alpha_i = 1$ for x_i , and $\beta_i = 1$ for y_i . Then it is easy to see that the following assertions hold:

(i) For all $i, j \in \{1, \ldots, n\}$ one has

$$zx_{i} = x_{i}z, \ zy_{i} = y_{i}z, \ x_{j}x_{i} = x_{i}x_{j}, \ y_{j}y_{i} = y_{i}y_{j},$$
$$y_{j}x_{i} = \begin{cases} x_{i}y_{j}, & \text{if } i \neq j, \\ x_{i}y_{j}z, & \text{if } i = j. \end{cases}$$

(ii) Every element $g \in E_{p^{2n+1}}$ can be written uniquely in the form

$$g = x_1^{a_1} \cdots x_n^{a_n} y_1^{b_1} \cdots y_n^{b_n} z^c$$

with $a_1, \ldots, a_n, b_1, \ldots, b_n, c \in \{0, 1, \ldots, p-1\}.$

- (iii) $g^p = 1$ for all $g \in E_{p^{2n+1}}$.
- (iv) The subgroups $\langle x_1, \ldots, x_n, z \rangle$ and $\langle y_1, \ldots, y_n, z \rangle$ are normal and elementary abelian.
- (v) $Z(E_{p^{2n+1}}) = E'_{p^{2n+1}} = \Phi(E_{p^{2n+1}}) = \langle z \rangle.$
- (vi) If we identify $Z := \langle z \rangle$ with $\mathbb{Z}/p\mathbb{Z}$ via $z^i \leftrightarrow i + p\mathbb{Z}$ for $i \in \mathbb{Z}$, then the commutator defines a bilinear form on the 2*n*-dimensional vector space $V = E_{p^{2n+1}}/Z$ by

$$V \times V \longrightarrow \mathbb{Z}/p\mathbb{Z}, \quad (gZ, hZ) \mapsto [g, h],$$

for $g, h \in E_{p^{2n+1}}$. This bilinear form is skew-symmetric ([a, b] = -[b, a])and non-degenerate ([a, b] = 0 for all a implies b = 0).

For n = 1 we obtain a non-abelian group G of order p^3 and exponent p, which is generated by a central element z and two elements x, y such that $G = \langle x, z \rangle \rtimes \langle y \rangle$ under the action ${}^{y}x = xz$.

4.9 Lemma Let G be a p-group and let $x, y \in G$.

(a) If G/Z(G) is abelian, then

$$[x, y]^i = [x^i, y]$$
 and $(xy)^i = x^i y^i [y^{-1}, x^{-1}]^{\binom{i}{2}}$,

for all $i \in \mathbb{N}_0$.

(b) If G/Z(G) is elementary abelian, then $(xy)^p = x^p y^p$ for odd p and $(xy)^4 = x^4 y^4$ for p = 2.

Proof (a) Note that $[x, y], [y^{-1}, x^{-1}] \in G' \leq Z(G)$, since G/Z(G) is abelian. We prove the two equations by induction on *i*. If i = 0 this is trivial. Assume the equations hold for some $i \in \mathbb{N}_0$. Then

$$\begin{split} [x,y]^{i+1} &= [x,y][x,y]^i = [x,y][x^i,y] = \underbrace{xyx^{-1}y^{-1}}_{\in Z(G)} x^i yx^{-i}y^{-1} \\ &= x^i (xyx^{-1}y^{-1})yx^{-i}y^{-1} = x^{i+1}yx^{-i-1}y^{-1} = [x^{i+1},y] \end{split}$$

and

$$(xy)^{i+1} = (xy)^i xy = x^i y^i xy [y^{-1}, x^{-1}]^{\binom{i}{2}}$$

with

$$y^{i}x = xy^{i}y^{-i}x^{-1}y^{i}x = xy^{i}[y^{-i}, x^{-1}] = xy^{i}[y^{-1}, x^{-1}]^{i},$$

and we obtain

$$(xy)^{i+1} = x^{i+1}y^{i+1}[y^{-1}, x^{-1}]^{\binom{i+1}{2}}.$$

(b) Note that since G/Z(G) is elementary abelian, we have $G^p \leq \Phi(G) \leq Z(G)$ by Theorem 4.5. By Part (a) we have for odd p:

$$(xy)^p = x^p y^p [y^{-1}, x^{-1}]^{\binom{p}{2}}.$$

Since $p \mid {p \choose 2}$, it suffices to show that $[y^{-1}, x^{-1}]^p = 1$. But again by (a), we have $[y^{-1}, x^{-1}]^p = [y^{-p}, x^{-1}] = 1$, since $y^{-p} \in G^p \leq Z(G)$.

Finally, for p = 2, part (a) implies

$$(xy)^4 = x^4 y^4 [y^{-1}, x^{-1}]^6 = x^4 y^4 [y^{-6}, x^{-1}] = x^4 y^4 ,$$
 since $y^6 \in G^2 \leqslant Z(G).$

4.10 Theorem Let p be a prime and let G be a non-abelian group of order p^3 .

(a) If p = 2, then $G \cong D_8$ or $G \cong Q_8$.

(b) If p is odd, then G is isomorphic to E_{p^3} or to the group constructed in Example 4.8(b).

(c) If G is isomorphic to the group in Example 4.8(b) then $f: G \mapsto G$, $a \mapsto a^p$, is a group homomorphism with image Z(G) and elementary abelian kernel of rank 2.

Proof From Lemma 4.1 we have $|G/Z(G)| \ge p^2$ and from [P, 5.10] we have $|Z(G)| \ge p$. This implies |Z(G)| = p. Lemma 4.1 also implies that G/Z(G) is elementary abelian. With Theorem 4.5(a) and (c) we have $1 < G' \le \Phi(G) \le Z(G)$, and therefore $G' = \Phi(G) = Z(G)$.

(a) Assume that p = 2. Then there exists an element of order 4 in G. In fact, if every element in G is of order 2, G is abelian, since then $[x, y] = xyx^{-1}y^{-1} = xyxy = (xy)^2 = 1$ for all $x, y \in G$. So let $y \in G$ be an element of order 4 and set $Y := \langle y \rangle$. Since Y has index 2 in G, it is normal in G and $Y \cap Z(G) > 1$ by Theorem 2.9. This implies that Z(G) < Y and $Z(G) = \{1, y^2\}$.

(i) If there exists an element $x \in G \setminus Y$ of order 2, then $G \cong Y \rtimes X$ with $X := \{1, x\}$ and with the only possible non-trivial action $xyx^{-1} = y^{-1}$. Therefore $G \cong D_8$.

(ii) If there exists no element $x \in G \setminus Y$ of order 2, then we pick an element $x \in G \setminus Y$ of order 4. Everything we proved about y also holds for x. Therefore, $Z(G) = \{1, x^2\}$ and $x^2 = y^2$. Moreover $\langle x \rangle$ acts on Y via conjugation in the only non-trivial way: $xyx^{-1} = y^{-1}$. This implies $G = \{x^i y^j \mid 0 \leq i \leq 3, 0 \leq j \leq 1\}$ with $x^4 = 1$, $y^4 = 1$, $x^2 = y^2$, and $yx = xy^3 = yx^2x^{-1} = x^2yx^{-1} = x^2x^{-1}y^3 = xy^3 = x^3y$, i.e. the multiplication in G coincides with the multiplication in Q_8 when we identify x with $\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$ and y with $\begin{pmatrix} 0 & 1 \\ 0 & i \end{pmatrix}$. Therefore, $G \cong Q_8$.

and
$$y$$
 with $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Therefore, $G \cong Q_8$

(b) Now we assume that p is odd.

(i) We first consider the case that there exists an element $y \in G$ of order p^2 . Then $Y := \langle y \rangle$ is a maximal subgroup of G and therefore normal in G. Moreover, $Z(G) \cap Y > 1$ so that $Z(G) = \langle y^p \rangle$. We claim that there exists an element $x \in G \setminus Y$ of order p such that $xyx^{-1} = y^{1+p}$ which then implies that G is isomorphic to the semidirect product of Example 4.8(b). We prove the claim. First choose any $x_1 \in G \setminus Y$. Then there exists $i \in \{1, \ldots, p\}$ with $x_1^p = y^{pi}$, since $x_1^p \in G^p \leq \Phi(G) = Z(G) = \langle y^p \rangle$. By Lemma 4.9(b) we have $(x_1y^{-i})^p = x_1^py^{-ip} = 1$ and therefore the element $x_2 := x_1y^{-i} \in G \setminus Y$ has order p. The conjugation of x_2 on Y is non-trivial. Therefore, the resulting homomorphism $\rho: X := \langle x_2 \rangle \to \operatorname{Aut}(Y) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$ has as image the Sylow p-subgroup $\langle 1 + p + p^2\mathbb{Z} \rangle$ of $(\mathbb{Z}/p^2\mathbb{Z})^{\times}$. In particular, $\rho(x_2^j) = 1 + p + p^2\mathbb{Z}$ for some $j \in \{1, \ldots, p-1\}$ and the element $x := x_2^j$ satisfies our claim.

(ii) If there exists no element of order p^2 in G we denote by z a generator of Z(G) and choose an element $x \in G \setminus Z(G)$. Then $X := \langle x, z \rangle$ is elementary abelian of order p^2 and also maximal in G. Let $y_1 \in G \setminus X$. Then $G \cong X \rtimes Y$ with $Y := \langle y_1 \rangle$ and with the conjugation action of Y on X. Since z is central, we have $y_1 z y_1^{-1} = z$. Moreover $y_1 x y_1^{-1} = x^i z^j$ for some $i, j \in \{0, \ldots, p-1\}$. Since the classes of y_1 and x commute in G/Z(G), we obtain i = 1. Since G is not abelian we have $j \neq 0$, and therefore $y_1 x y_1^{-1} = x z^j$ for some $j \in \{1, \ldots, p-1\}$. Let $k \in \{1, \ldots, p-1\}$ with $kj \equiv 1 \mod p$ and set $y := y_1^k$. Then $y z y^{-1} = 1$, $y x y^{-1} = y_1^k x y_1^{-k} = x z^{kj} = xz$ and we obtain $G \cong X \rtimes Y \cong E_{p^3}$ as described at the end of Example 4.8(c).

(c) We may assume that $G = Y \rtimes X$ with the notation from Example 4.8(b). By Lemma 4.9(b), the map f is a homomorphism. Obviously, $\langle x, y^p \rangle \leq \ker(f)$ and $Z(G) = \langle y^p \rangle \leq \operatorname{im}(f) \leq G^p = Z(G)$. By the fundamental theorem of homomorphisms we even have equality everywhere.

4.11 Notation For a *p*-group G and $n \in \mathbb{N}_0$ we set

$$\Omega_n(G) := \langle x \in G \mid x^{p^n} = 1 \rangle$$

Obviously, this is a characteristic subgroup of G.

4.12 Lemma Let G be a p-group for an odd prime p and let $N \leq G$. If N is not cyclic then N contains an elementary abelian subgroup of rank 2 which is normal in G.

Proof Induction on |G|. The base case is $|G| = p^2$. The hypothesis implies that N = G and that N is elementary abelian. Therefore, we can choose N as the desired subgroup.

Now let $|G| \ge p^3$. Since $N \ne 1$ it follows from a homework problem that N has a subgroup M of order p with is normal in G. By [P, 5.10]applied to M and N, $M \leq Z(N)$. We first consider the case that N/M is cyclic. Then N is abelian. Since N is not cyclic, it is a direct product of two non-trivial cyclic subgroups. This implies that the characteristic subgroup $\Omega_1(N)$ of N is elementary abelian of rank 2. Thus, $\Omega_1(N)$ is a subgroup as desired. From now on we can assume that N/M is not cyclic. By induction, applied to $N/M \triangleleft G/M$ there exists $N < U \leq M$ with $U \triangleleft G$ and U/Nelementary abelian of rank 2. Since U is not cyclic, U can be elementary abelian, the direct product of two non-trivial cyclic subgroups, isomorphic to E_{p^3} or isomorphic to the group in Example 4.8(b). In the first and third case, choose any subgroup of U of order p^2 which is normal in G (see homework problem for the existence). This subgroup has the desired property. In the second and fourth case consider $\Omega_1(U)$. This group again has the desired property, cf. Theorem 4.10.

4.13 Corollary Let G be a p-group for an odd prime p and assume that G has precisely one subgroup of order p. Then G is cyclic.

Proof Assume that G is not cyclic. Then Lemma 4.12 with N = G implies that G has a normal subgroup which is elementary abelian of rank 2. But then G has at least p + 1 subgroups of order p. This is a contradiction.

4.14 Definition (a) For every integer $n \ge 3$ we define the generalized quaternion group Q_{2^n} of order 2^n as

$$Q_{2^n} := \langle x, y \mid x^{2^{n-1}} = 1, x^{2^{n-2}} = y^2, yxy^{-1} = x^{-1} \rangle.$$

(b) For every integer $n \ge 4$ we define the semidihedral group SD_{2^n} by

$$SD_{2^n} := \langle x, y \mid x^{2^{n-1}} = 1, y^2 = 1, yxy^{-1} = x^{2^{n-2}-1} \rangle.$$

4.15 Remark (a) The group Q_{2^n} has actually order 2^n , $\langle x \rangle$ is a subgroup of index 2 in Q_{2^n} , Q_{2^n} has only one element of order 2 namely $z := y^2 = x^{2^{n-2}}$ and $\langle z \rangle = Z(Q_{2^n})$, cf. homework.

(b) It follows from (a) and Theorem 4.10 that the generalized quaternion group of order 8 is equal to the quaternion group of order 8.

(c) The group SD_{2^n} has order 2^n , the subgroup $\langle x \rangle$ has index 2. It is the semidirect product of the cyclic group $\langle x \rangle$ with the group $\langle y \rangle$ of order 2.

(d) Without proof we state: If G is a 2-group with precisely one subgroup of order 2 then G is cyclic or isomorphic to a generalized quaternion group.

(e) Again without proof we state the following result: Let G be a non-abelian 2-group of order 2^n , and assume that G has a cyclic subgroup of order 2^{n-1} . Then $n \ge 3$ and exactly one of the four statements holds:

- (i) G is isomorphic to the dihedral group D_{2^n} .
- (ii) G is isomorphic to the generalized quaternion group Q_{2^n} .
- (iii) $n \ge 4$ and G is isomorphic to the semidihedral group SD_{2^n} .
- (iv) $n \ge 4$ and G is isomorphic to the group $\langle x, y \mid x^{2^{n-1}} = 1, y^2 = 1, yxy^{-1} = x^{2^{n-2}+1} \rangle$.

The groups in (i),(iii),(iv) are semidirect products of the cyclic subgroup of order 2^{n-1} with a subgroup of order 2. The group in (ii) is not a semidirect product. They are pairwise non-isomorphic, because the numbers of elements of order 2 they contain are different.

5 Group Cohomology

Throughout this section we fix two groups A and G and we assume that A is abelian.

5.1 Definition Let $\alpha: G \to \operatorname{Aut}(K)$, $x \mapsto \alpha_x$ be a homomorphism. We write the corresponding left action exponentially: $\alpha_x(a) = {}^xa$ for $x \in G$ and $a \in A$. For $n \in \mathbb{N}_0$, we denote by $F(G^n, A)$ the abelian group of functions $f: G^n \to A$ under the multiplication $(fg)(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)g(x_1, \ldots, x_n)$, for $f, g \in F(G^n, A)$ and $x_1, \ldots, x_n \in G$. If n = 0 we set $G^n := \{1\}$. For each $n \in \mathbb{N}_0$ there is a group homomorphism

$$d^n := d^n_{\alpha} \colon F(G^n, A) \to F(G^{n+1}, A)$$

given by

$$(d_{\alpha}^{n}(f))((x_{0},\ldots,x_{n}) := {}^{x_{0}}f(x_{1},\ldots,x_{n}) \cdot \left(\prod_{i=1}^{n} f(x_{0},\ldots,x_{i-1}x_{i},\ldots,x_{n})^{(-1)^{i}}\right) \cdot f(x_{0},\ldots,x_{n-1})^{(-1)^{n+1}},$$

for $f \in F(G^n, A)$ and $(x_0, \ldots, x_n) \in G^{n+1}$. For n = 0 we interpret this as $(d^0(f))(x) := {}^x f(1) \cdot f(1)^{-1}$. It is not difficult to see that $d^{n+1} \circ d^n = 1$ for $n \in \mathbb{N}_0$. This implies that $\operatorname{im}(d^n) \leq \operatorname{ker}(d^{n+1}) \leq F(G^{n+1}, A)$, for all $n \in \mathbb{N}_0$. We write

$$B^n(G,A) := B^n_\alpha(G,A) := \operatorname{im}(d^{n-1}_\alpha)$$

and

$$Z^n(G,A) := Z^n_\alpha(G,A) := \ker(d^n_\alpha),$$

for $n \in \mathbb{N}_0$, where we set $B^0(G, A) := B^0_{\alpha}(G, A) := 1$. The elements of $B^n_{\alpha}(G, A)$ are called *n*-coboundaries and the elements of $Z^n_{\alpha}(G, A)$ are called *n*-cocycles of G with coefficients in A (under the action α). Finally, we set

$$H^{n}(G, A) := H^{n}(G, A) := Z^{n}_{\alpha}(G, A) / B^{n}_{\alpha}(G, A).$$

The group $H^n_{\alpha}(G, A)$ is called the *n*-th cohomology group of G with coefficients in A (under the action α) and its elements are called *cohomology classes*. If $f \in Z^n(G, A)$, we denote its cohomology class by $[f] \in H^n(G, A)$. **5.2 Remark** Let $\alpha \colon G \to \operatorname{Aut}(A)$ be a homomorphism.

(a) We can identify $F(G^0, A)$ with A under the map $f \mapsto f(1)$. With this identification, we obtain

$$Z^{0}(G, A) = A^{G} := \{ a \in A \mid {}^{x}a = a \text{ for all } x \in G \},\$$

the subgroup of G-fixed points of A. Since $B^0(G, A) = 1$, we obtain $H^0(G, A) \cong A^G$.

(b) A function $f: G \to A$ is in $Z^1(G, A)$, if and only if

$$f(xy) = {}^{x}f(y) \cdot f(x)$$

for all $x, y \in G$. The 1-cocycles of G with coefficients in A are also called the *crossed homomorphisms* from G to A. If the action of G on A is trivial, then the crossed homomorphisms are exactly the homomorphisms. A function $f: G \to A$ is a 1-boundary, if and only if there exists an element $a \in A$ such that

$$f(x) = {}^x\!a \cdot a^{-1},$$

for all $x \in G$. These functions are called the *principal* crossed homomorphisms. If G acts trivially on A, then they are all trivial and $H^0(G, A) \cong$ Hom(G, A).

(c) A function $f: G^2 \to A$ is a 2-cocycle, if and only if

$${}^{x}f(y,z)f(x,yz) = f(xy,z)f(x,y),$$

for all $x, y, z \in G$, and it is a 2-coboundary, if and only if there exists a function $g: G \to A$ such that

$$f(x,y) = {}^{x}g(y)g(x)g(xy)^{-1}$$

for all $x, y \in G$. We will see later that $H^2(G, A)$ describes the extensions $1 \to A \to X \to G \to 1$ of G by A, up to a suitable equivalence.

(d) If A has finite exponent e then $f^e = 1$ for all $f \in F(G^n, A)$ and all $n \in \mathbb{N}_0$. In particular, each cocycle and each cohomology class has an order which divides e.

5.3 Proposition Let $\alpha: G \to \operatorname{Aut}(A)$ be a homomorphism and assume that G is finite. Then $[f]^{|G|} = 1$ for all *n*-cocycles $f \in Z^n_{\alpha}(G, A)$ and all $n \in \mathbb{N}$.

Proof Let $n \in \mathbb{N}$, let $f \in Z^n_{\alpha}(G, A)$, and let $x_0, \ldots, x_n \in G$. Then

$$f(x_0, \dots, x_{n-1})^{(-1)^n} = {}^{x_0} f(x_1, \dots, x_n) \cdot \left(\prod_{i=1}^n f(x_0, \dots, x_{i-1}x_i, \dots, x_n)^{(-1)^i}\right).$$

If we fix $x_0, \ldots, x_{n-1} \in G$ and multiply the above equations for the different elements $x_n \in G$, we obtain

$$f(x_0, \dots, x_{n-1})^{(-1)^n |G|} = {}^{x_0} \Big(\prod_{x_n \in G} f(x_1, \dots, x_n) \Big) \cdot \prod_{i=1}^n \Big(\prod_{x_n \in G} f(x_0, \dots, x_{i-1}x_i, \dots, x_n) \Big)^{(-1)^i}.$$

If we define $g: G^{n-1} \to A$ by $g(x_1, \ldots, x_{n-1}) := \prod_{x \in G} f(x_1, \ldots, x_{n-1}, x)$, then the above equation shows that

$$f^{|G|} = d^{n-1}(g^{(-1)^n}),$$

and $[f]^{|G|} = 1$ in $H^n(G, A)$.

5.4 Corollary Let G and A be finite groups of coprime orders. Then $H^n_{\alpha}(G, A) = 1$ for all $\alpha \in \text{Hom}(G, \text{Aut}(A))$ and all $n \in \mathbb{N}$.

Proof Let k := |G| and l := |A|. Then there exist elements $r, s \in \mathbb{Z}$ such that 1 = rk + sl. From Remark 5.2(d) and Proposition 5.3 we know that $[f]^k = 1$ and $[f]^l = 1$ for all $f \in Z^n_{\alpha}(G, A)$ and all $n \in \mathbb{N}$. Therefore also $[f] = [f]^1 = [f]^{rk+sl} = ([f]^k)^r ([f]^l)^s = 1$.

6 Group Extensions and Parameter Systems

In this section we will try to find a way to describe for given groups K and G all possible groups H which have a normal subgroup N which is isomorphic to K and whose factor group H/N is isomorphic to G. We fix K and G throughout this section. We do not require G or K to be finite.

6.1 Definition A group extension of G by K is a short exact sequence

$$1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1,$$

i.e., H is a group, and at each of the three groups K, H, G, the image of the incoming map is equal to the kernel of the outgoing map. Equivalently, ε is injective, $\operatorname{im}(\varepsilon) = \operatorname{ker}(\nu)$, and ν is surjective. We say that the above group extensions is *equivalent* to the group extension

$$1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$$

if and only if there exists an isomorphism $\varphi \colon H \to \tilde{H}$ such that the diagram

(6.1.a)

commutes. Obviously, this defines an equivalence relation on the set ext(G, K) of extensions of G by K. The set of equivalence classes of ext(G, K) is denoted by Ext(G, K).

6.2 Remark (a) If $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ is a group extension of G by K, then H has the normal subgroup $\varepsilon(K)$ with factor group $H/\varepsilon(K) = H/\ker(\nu) \cong G$. Conversely, whenever H is a group having a normal subgroup N such that $N \cong K$ and $H/N \cong G$, then there is a group extension

 $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$, where ε is the composition of the isomorphism $K \cong N$ and the inclusion $N \leq H$, and ν is the composition of the natural epimorphism $H \twoheadrightarrow H/N$ and the isomorphism $H/N \cong G$. Moreover, if $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ are equivalent extensions then H and \tilde{H} are isomorphic by definition. Warning: the converse is not true. There are examples of group extensions of K by G which are not equivalent but involve isomorphic groups H and \tilde{H} .

(b) Two group extensions

 $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1 \quad \text{and} \quad 1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$

are already equivalent if there exists a homomorphism $\gamma: H \to H$ which makes Diagram (6.1.a) commutative. In fact, it is easy to see that in this case it follows that γ is an isomorphism.

6.3 Proposition Let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension of G by K. For each $x \in G$, let $h_x \in H$ be such that $\nu(h_x) = x$. Then the following hold:

(a) For every $h \in H$ there exist unique elements $x \in G$ and $a \in K$ such that $h = h_x \varepsilon(a)$.

(b) For every $x \in G$ and $a \in K$ there exists a unique element $\alpha_x(a) \in K$ such that $\varepsilon(\alpha_x(a)) = h_x \varepsilon(a) h_x^{-1}$. Moreover, $\alpha_x \in \operatorname{Aut}(K)$.

(c) For every $x, y \in G$ there exists a unique element $\kappa(x, y) \in K$ such that $h_x h_y = \varepsilon(\kappa(x, y))h_{xy}$. In particular, $h_1 = \varepsilon(\kappa(1, 1))$. Moreover, $\alpha_x \circ \alpha_y = c_{\kappa(x,y)}\alpha_{xy}$, where $c_a \in \operatorname{Aut}(K)$ denotes the conjugation automorphism $k \mapsto aka^{-1}$ for $a \in K$.

(d) For every $x, y, z \in G$ on has $\kappa(x, y)\kappa(xy, z) = \alpha_x(\kappa(y, z))\kappa(x, yz)$.

(e) Let also $h'_x \in H$ be such that $\nu(h'_x) = x$ for all $x \in G$. Then there exists a unique function $g: G \to K$ such that $h'_x = h_x \cdot \varepsilon(g(x))$ for all $x \in G$. If $\alpha': G \to \operatorname{Aut}(K)$ and $\kappa': G \times G \to K$ are constructed from $h'_x, x \in G$, then

$$\alpha'_x = c_{f(x)} \circ \alpha_x$$
 and $\kappa'(x, y) = f(x) \cdot \alpha_x(f(y)) \cdot \kappa(x, y) \cdot f(xy)^{-1}$

for all $x, y \in G$, where $f: G \to K$ is defined by $f(x) := \alpha_x(g(x))$ for all $x \in G$.

Proof (a) Let $h \in H$ and set $x := \nu(h)$. Then $\nu(h_x^{-1}h) = \nu(h_x)^{-1}\nu(h) = x^{-1}x = 1$ and there exists $a \in K$ such that $\varepsilon(a) = h_x^{-1}h$. Assume that also

 $h = h_y \varepsilon(b)$ for $y \in G$ and $b \in K$. Then $x = \nu(h) = \nu(h_y)\nu(\varepsilon(b)) = y \cdot 1 = y$ and therefore $\varepsilon(a) = \varepsilon(b)$. Since ε is injective, also a = b.

(b) For $x \in G$ and $a \in K$, we have $h_x \varepsilon(a) h_x^{-1} \in \ker(\nu) = \operatorname{im}(\varepsilon)$. Therefore, there exists $b \in K$ with $\varepsilon(b) = h_x \varepsilon(a) h_x^{-1}$. Since ε is injective, $b \in K$ is unique. We set $\alpha_x(a) := b$.

Let $a, b \in K$ and $x \in G$. Then $\alpha_x(a)\alpha_x(b) \in K$ and

$$\varepsilon(\alpha_x(a)\alpha_x(b)) = \varepsilon(\alpha_x(a))\varepsilon(\alpha_x(b)) = h_x\varepsilon(a)h_x^{-1}h_x\varepsilon(b)h_x^{-1}$$
$$= h_x\varepsilon(ab)h_x^{-1} = \varepsilon(\alpha_x(ab)).$$

Since ε is injective, we have $\alpha_x(a)\alpha_x(b) = \alpha_x(ab)$ and α_x is a group homomorphism from K to K. If $\alpha_x(a) = 1$, then $1 = \varepsilon(\alpha_x(a)) = h_x\varepsilon(a)h_x^{-1}$ and therefore, $\varepsilon(a) = 1$. Since ε is injective, also a = 1. This shows that α_x is injective. Finally, let $b \in K$ be arbitrary. Then $h_x^{-1}\varepsilon(b)h_x \in \ker(\nu) = \operatorname{im}(\varepsilon)$ and there exists $a \in K$ such that $h_x^{-1}\varepsilon(b)h_x = \varepsilon(a)$. This implies $b = \alpha_x(a)$ and α_x is surjective.

(c) Let $x, y \in G$. Then $\nu(h_x h_y h_{xy}^{-1}) = xy(xy)^{-1} = 1$ and there exists a unique element $a \in K$ such that $\varepsilon(a) = h_x h_y h_{xy}^{-1}$. We set $\kappa(x, y) := a$. For $x, y \in G$ and $a \in K$ we then have

$$\begin{split} \varepsilon(\alpha_x(\alpha_y(a))) &= h_x \varepsilon(\alpha_y(a)) h_x^{-1} = h_x h_y \varepsilon(a) h_y^{-1} h_x^{-1} \\ &= h_x h_y h_{xy}^{-1} h_{xy} \varepsilon(a) h_{xy}^{-1} h_{xy} h_{yy}^{-1} h_x^{-1} \\ &= \varepsilon(\kappa(x,y)) h_{xy} \varepsilon(a) h_{xy}^{-1} \varepsilon(\kappa(x,y))^{-1} \\ &= \varepsilon(\kappa(x,y)) \varepsilon(\alpha_{xy}(a)) \varepsilon(\kappa(x,y))^{-1} \\ &= \varepsilon(\kappa(x,y) \alpha_{xy}(a) \kappa(x,y)^{-1}) \,, \end{split}$$

and the injectivity of ε implies $(\alpha_x \circ \alpha_y)(a) = (c_{\kappa(x,y)} \circ \alpha_{xy})(a)$.

(d) Let $x, y, z \in G$. Then

$$\varepsilon \Big(\kappa(x,y)\kappa(xy,z) \Big) h_{xyz} = \varepsilon (\kappa(x,y))\varepsilon (\kappa(xy,z))h_{(xy)z} = \varepsilon (\kappa(x,y))h_{xy}h_z$$
$$= (h_x h_y)h_z$$

and

$$\varepsilon \Big(\alpha_x(\kappa(y,z))\kappa(x,yz) \Big) h_{xyz} = \varepsilon (\alpha_x(\kappa(y,z)))\varepsilon(\kappa(x,yz))h_{x(yz)} \\ = h_x \varepsilon (\kappa(y,z))h_x^{-1}h_x h_{yz} = h_x \varepsilon (\kappa(y,z))h_{yz} \\ = h_x (h_y h_z) \,.$$

Now the injectivity of ε implies the desired equation.

(e) Let $x \in G$. Since $\nu(h_x^{-1}h'_x) = x^{-1}x = 1$, there exists a unique element $g(x) \in K$ such that $\varepsilon(g(x)) = h_x^{-1}h'_x$. Moreover, for each $a \in K$ and $x \in G$ we have

$$\varepsilon(\alpha'_x(a)) = h'_x \varepsilon(a) {h'_x}^{-1} = h_x \varepsilon(g(x) a g(x)^{-1}) h_x^{-1}$$

which implies $\alpha'_x(a) = \alpha_x(g(x)ag(x)^{-1})$ and $\alpha'_x = c_{\alpha_x(g(x))} \circ \alpha_x = c_{f(x)} \circ \alpha_x$. Moreover, for all $x, y \in G$ we have

$$\begin{split} \varepsilon(\kappa'(x,y)) &= h'_x \cdot h'_y \cdot {h'_{xy}}^{-1} \\ &= h_x \cdot \varepsilon(g(x)) \cdot h_y \cdot \varepsilon(g(y)) \cdot \varepsilon(g(xy))^{-1} \cdot h_{xy}^{-1} \\ &= h_x \cdot \varepsilon(g(x)) \cdot h_x^{-1} \cdot h_x \cdot h_y \cdot h_{xy}^{-1} \cdot h_{xy} \cdot \varepsilon(g(y)g(xy)^{-1}) \cdot h_{xy}^{-1} \\ &= \varepsilon(\alpha_x(g(x))) \cdot \varepsilon(\kappa(x,y)) \cdot \varepsilon(\alpha_{xy}(g(y)g(xy)^{-1})) \\ &= \varepsilon \Big[\alpha_x(g(x)) \cdot \kappa(x,y) \cdot \alpha_{xy}(g(y)) \cdot \alpha_{xy}(g(xy))^{-1} \Big] \\ &= \varepsilon \Big[f(x) \cdot \kappa(x,y) \cdot \alpha_{xy}(g(y)) \cdot \kappa(x,y)^{-1} \cdot \kappa(x,y) \cdot f(xy)^{-1} \Big] \\ &= \varepsilon \Big[f(x) \cdot \alpha_x(\alpha_y(g(y))) \cdot \kappa(x,y) \cdot f(xy)^{-1} \Big] \\ &= \varepsilon \Big[f(x) \cdot \alpha_x(f(y)) \cdot \kappa(x,y) \cdot f(xy)^{-1} \Big] . \end{split}$$

Since ε is injective, this implies the desired equation.

6.4 Definition (a) A parameter system of G in K is a pair (α, κ) of maps $\alpha: G \to \operatorname{Aut}(K), x \mapsto \alpha_x$, and $\kappa: G \times G \to K$ with the following properties:

- (i) For every $x, y \in G$ one has $\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy}$.
- (ii) For every $x, y, z \in G$ one has $\kappa(x, y)\kappa(xy, z) = \alpha_x(\kappa(y, z))\kappa(x, yz)$.

We call α the *automorphism system* and κ the *factor system* of (α, κ) , and we denote the set of parameter systems of G in K by par(G, K).

(b) The set F(G, K) of functions from G to K is a group under the multiplication (fg)(x) := f(x)g(x) for $f, g: G \to K$ and $x \in G$. If $(\alpha, \kappa) \in$ par and $f: G \to K$ we set $f(\alpha, \kappa) := (\alpha', \kappa')$ with

$$\alpha'_x := c_{f(x)} \circ \alpha_x, \quad \text{and} \quad \kappa'(x, y) := f(x)\alpha_x(f(y))\kappa(x, y)f(xy)^{-1},$$

for $x, y \in G$. As the next lemma shows, this defines a group action of F(G, K)on the set par(G, K). We call two parameter systems of G in K equivalent if they belong to the same F(G, K)-orbit and we denote the set of equivalence classes by Par(G, K). **6.5 Remark** Every extension of G by K and every choice of elements h_x as in Proposition 6.3 leads to a parameter system (α, κ) of G and K. If h'_x is another choice of elements then, by Proposition 6.3(e), one obtains an equivalent parameter system (α', κ') . Thus, Proposition 6.3 defines a function

$$\varphi \colon \operatorname{ext}(G, K) \to \operatorname{Par}(G, K)$$
.

6.6 Lemma (a) Let $(\alpha, \kappa) \in par(G, K)$. Then $\alpha_1 = c_{\kappa(1,1)}, \kappa(1,1) = \kappa(1,z)$, and $\kappa(x,1) = \alpha_x(\kappa(1,1))$ for all $x, z \in G$.

(b) The definition of ${}^{f}(\alpha, \kappa)$ in Definition 6.4(b) defines a group action of F(G, K) on par(G, K).

Proof (a) By Axiom (i) in Definition 6.4(a), we have $\alpha_1 \circ \alpha_1 = c_{\kappa(1,1)} \circ \alpha_1$ which implies $\alpha_1 = c_{\kappa(1,1)}$. For $z \in G$, this and Axiom (ii) in Definition 6.4(a) imply

$$\kappa(1,1)\kappa(1\cdot 1,z) = \alpha_1(\kappa(1,z))\kappa(1,1\cdot z) = \kappa(1,1)\kappa(1,z)\kappa(1,1)^{-1}\kappa(1,z).$$

Therefore, $\kappa(1, z) = \kappa(1, 1)$. For $x \in G$, Axiom (ii) in Definition 6.4(a) implies $\kappa(x, 1 \cdot 1)\kappa(x \cdot 1, 1) = \alpha_x(\kappa(1, 1))\kappa(x, 1 \cdot 1)$. Thus, $\kappa(x, 1) = \alpha_x(\kappa(1, 1))$.

(b) Let $f, g \in F(G, K)$ and $\kappa \in par(G, K)$. We set $(\alpha', \kappa') := {}^{f}(\alpha, \kappa)$ and $(\alpha'', \kappa'') := {}^{g}(\alpha', \kappa')$. For all $x, y \in G$, we then have

$$\alpha_x'' = c_{g(x)} \circ \alpha_x' = c_{g(x)} \circ c_{f(x)} \circ \alpha_x = c_{g(x)f(x)} \circ \alpha_x = c_{(fg)(x)} \circ \alpha_x$$

and

$$\begin{aligned} \kappa''(x,y) &= g(x)\alpha'_x(g(y))\kappa'(x,y)g(xy)^{-1} \\ &= g(x)f(x)\alpha_x(g(y))f(x)^{-1}f(x)\alpha_x(f(y))\kappa(x,y)f(xy)^{-1}g(xy)^{-1} \\ &= (gf)(x)\cdot\alpha_x((gf)(y))\cdot\kappa(x,y)\cdot(gf)(xy)^{-1}. \end{aligned}$$

This implies that $(\alpha'', \kappa'') = {}^{gf}(\alpha, \kappa)$. If f = 1, then $\alpha'_x = \alpha_x$ by definition and $\kappa'(x, y) = \alpha_x(1)\kappa(x, y) = \kappa(x, y)$ for all $x, y \in G$. Therefore, ${}^1(\alpha, \kappa) = (\alpha, \kappa)$. We still have to show that (α', κ') is again a parameter system. For $x, y, z \in G$, we have

$$\alpha'_{x} \circ \alpha'_{y} = c_{f(x)} \circ \alpha_{x} \circ c_{f(y)} \circ \alpha_{y} = c_{f(x)} \circ \alpha_{x} \circ c_{f(y)} \circ \alpha_{x}^{-1} \circ \alpha_{x} \circ \alpha_{y}$$
$$= c_{f(x)} \circ c_{\alpha_{x}(f(y))} \circ c_{\kappa(x,y)} \circ \alpha_{xy} = c_{f(x)\alpha_{x}(f(y))\kappa(x,y)} \circ c_{f(xy)}^{-1} \circ \alpha'_{xy}$$
$$= c_{\kappa'(x,y)} \circ \alpha'_{xy}$$

and

$$\begin{split} &\kappa'(x,y)\kappa'(xy,z) \\ &= f(x)\alpha_x(f(y))\kappa(x,y)f(xy)^{-1}f(xy)\alpha_{xy}(f(z))\kappa(xy,z)f(xyz)^{-1} \\ &= f(x)\alpha_x(f(y))\kappa(x,y)\alpha_{xy}(f(z))\kappa(x,y)^{-1}\kappa(x,y)\kappa(xy,z)f(xyz)^{-1} \\ &= f(x)\alpha_x(f(y))\alpha_x(\alpha_y(f(z)))\alpha_x(\kappa(y,z))\kappa(x,yz)f(xyz)^{-1} \\ &= f(x)\alpha_x\Big(f(y)\alpha_y(f(z))\kappa(y,z)f(yz)^{-1}\Big)\alpha_x(f(yz))\kappa(x,yz)f(xyz)^{-1} \\ &= \alpha'_x(\kappa'(y,z))f(x)\alpha_x(f(yz))\kappa(x,yz)f(xyz)^{-1} \\ &= \alpha'_x(\kappa'(y,z))\kappa'(x,yz) \,. \end{split}$$

This implies that $(\alpha', \kappa') \in par(G, K)$.

6.7 Proposition Let $(\alpha, \kappa) \in par(G, K)$. Then the set $K \times G$ together with the multiplication

$$(a, x)(b, y) := (a \cdot \alpha_x(b) \cdot \kappa(x, y), xy), \quad \text{for } a, b \in K, \, x, y \in G,$$

is a group with identity element $(\kappa(1,1)^{-1},1)$ and inverse element $(a,x)^{-1} = (\kappa(1,1)^{-1}\kappa(x^{-1},x)^{-1}\alpha_{x^{-1}}(a)^{-1},x^{-1})$. Moreover, the functions $\varepsilon \colon K \to K \times G$, $a \mapsto (\kappa(1,1)^{-1}a,1)$, and $\nu \colon K \times G \to G$, $(a,x) \mapsto x$, are group homomorphisms such that $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ is a group extension of G by K.

Proof First we prove associativity. Let $a, b, c \in K$ and $x, y, z \in G$. Then

$$[(a, x)(b, y)](c, z) = (a\alpha_x(b)\kappa(x, y), xy)(c, z)$$
$$= (a\alpha_x(b)\kappa(x, y)\alpha_{xy}(c)\kappa(xy, z), xyz)$$

and

$$\begin{aligned} (a,x)[(b,y)(c,z)] &= (a,x)(b\alpha_y(c)\kappa(y,z),yz) \\ &= (a\alpha_x(b\alpha_y(c)\kappa(y,z))\kappa(x,yz),xyz) \\ &= (a\alpha_x(b)\alpha_x(\alpha_y(c))\alpha_x(\kappa(y,z))\kappa(x,yz),xyz) \\ &= (a\alpha_x(b)\kappa(x,y)\alpha_{xy}(c)\kappa(x,y)^{-1}\kappa(x,y)\kappa(xy,z),xyz) \\ &= (a\alpha_x(b)\kappa(x,y)\alpha_{xy}(c)\kappa(xy,z),xyz) \,. \end{aligned}$$

Next we show that $(\kappa(1,1)^{-1},1)$ is a left identity element. In fact, for $b \in K$ and $y \in G$ we have

$$(\kappa(1,1)^{-1},1)(b,y) = (\kappa(1,1)^{-1}\alpha_1(b)\kappa(1,y),1\cdot y)$$

= $(\kappa(1,1)^{-1}\kappa(1,1)b\kappa(1,1)^{-1}\kappa(1,y),y) = (b,y).$

Moreover, for $b \in K$ and $y \in G$ we have

$$\begin{aligned} & (\kappa(1,1)^{-1}\kappa(y^{-1},y)^{-1}\alpha_{y^{-1}}(b)^{-1},y^{-1})(b,y) \\ & = (\kappa(1,1)^{-1}\kappa(y^{-1},y)^{-1}\alpha_{y^{-1}}(b)^{-1}\alpha_{y^{-1}}(b)\kappa(y^{-1},y),y^{-1}y) \\ & = (\kappa(1,1)^{-1},1) \,. \end{aligned}$$

This shows that H is a group.

For $a, b \in K$ we have

$$\begin{split} \varepsilon(a)\varepsilon(b) &= (\kappa(1,1)^{-1}a,1)(\kappa(1,1)^{-1}b,1) \\ &= (\kappa(1,1)^{-1}a\alpha_1(\kappa(1,1)^{-1}b)\kappa(1,1),1\cdot 1) \\ &= (\kappa(1,1)^{-1}a\kappa(1,1)\kappa(1,1)^{-1}b\kappa(1,1)^{-1}\kappa(1,1),1) \\ &= (\kappa(1,1)^{-1}ab,1) = \varepsilon(ab) \,, \end{split}$$

which shows that ε is a homomorphism. Obviously, ε is injective. For all $a, b \in K$ and $x, y \in G$, we have

$$\nu((a,x)(b,y)) = \nu(a\alpha_x(b)\kappa(x,y),xy) = xy = \nu(a,x)\nu(b,y),$$

which shows that ν is a homomorphism. Obviously, ν is surjective. Finally, for $a \in K$ and $x \in G$ we have

$$(a, x) \in \ker(\nu) \iff x = 1 \iff (a, x) \in \varepsilon(K),$$

and the proof is complete.

6.8 Theorem (Schreier) The constructions in Proposition 6.3 and Proposition 6.7 induce mutually inverse bijections between Ext(G, K) and Par(G, K).

Proof First assume that

 $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1 \quad \text{and} \quad 1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$

are equivalent group extensions of G by K. Then there exists an isomorphism $\gamma \colon H \to \tilde{H}$ such that the diagram

is commutative. For each $x \in G$ let $h_x \in H$ such that $\nu(h_x) = x$ and assume that $\alpha \colon G \to \operatorname{Aut}(K)$ and $\kappa \colon G \times G \to K$ is constructed as in Proposition 6.3, i.e.,

$$\varepsilon(\alpha_x(a)) = h_x \varepsilon(a) h_x^{-1}$$
 and $h_x h_y = \varepsilon(\kappa(x, y)) h_{xy}$

for all $x, y \in G$ and $a \in K$. We set $\tilde{h}_x := \gamma(h_x)$ for each $x \in G$. Then, $\tilde{\nu}(\tilde{h}_x) = \tilde{\nu}(\gamma(h_x)) = \nu(h_x) = x$ for each x and we can use the elements \tilde{h}_x in order to construct a parameter system $(\tilde{\alpha}, \tilde{\kappa})$ associated to the group extension $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$. But applying γ to the two above equations we obtain

$$\tilde{\varepsilon}(\alpha_x(a)) = \tilde{h}_x \tilde{\varepsilon}(a) \tilde{h}_x^{-1}$$
 and $\tilde{h}_x \tilde{h}_y = \tilde{\varepsilon}(\kappa(x,y)) \tilde{h}_{xy}^{-1}$

This implies that $\tilde{\alpha} = \alpha$ and $\tilde{\kappa} = \kappa$. Therefore, the construction in Proposition 6.3 induces a map

$$\Phi \colon \operatorname{Ext}(G, K) \to \operatorname{Par}(G, K)$$
.

Next let $(\alpha, \kappa) \in \operatorname{par}(G, K)$, $f \in F(G, K)$, and set $(\tilde{\alpha}, \tilde{\kappa}) := {}^{f}(\alpha, \kappa)$. Moreover, let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ be the group extensions associated to (α, κ) and $(\tilde{\alpha}, \tilde{\kappa})$ by the construction in Proposition 6.7. We want to show that they are equivalent. We define $\gamma: H \to \tilde{H}$ by

 $\gamma(a,x) := \left(ea\alpha_x(e)^{-1}f(x)^{-1},x\right) \quad \text{with} \quad e := \kappa(1,1)^{-1}f(1)^{-1}\kappa(1,1) \,.$ For all $a, b \in K$ and $x, y \in G$ we have

$$\begin{split} \gamma(a,x)\varphi(b,y) &= (ea\alpha_x(e)^{-1}f(x)^{-1},x) \cdot (eb\alpha_y(e)^{-1}f(y)^{-1},y) \\ &= (ea\alpha_x(e)^{-1}f(x)^{-1}\tilde{\alpha}_x(eb\alpha_y(e)^{-1}f(y)^{-1})\tilde{\kappa}(x,y),xy) \\ &= (ea\alpha_x(e)^{-1}f(x)^{-1}f(x)\alpha_x(eb\alpha_y(e)^{-1}f(y)^{-1})f(x)^{-1} \cdot \\ &\quad \cdot f(x)\alpha_x(f(y))\kappa(x,y)f(xy)^{-1},xy) \\ &= (ea\alpha_x(b)\alpha_x(\alpha_y(e))^{-1}\kappa(x,y)f(xy)^{-1},xy) \end{split}$$

and

$$\begin{aligned} \gamma((a,x)(b,y)) &= \varphi(a\alpha_x(b)\kappa(x,y),xy) \\ &= (ea\alpha_x(b)\kappa(x,y)\alpha_{xy}(e)^{-1}f(xy)^{-1},xy) \\ &= (ea\alpha_x(b)\kappa(x,y)\alpha_{xy}(e)^{-1}\kappa(x,y)^{-1}\kappa(x,y)f(xy)^{-1},xy) \\ &= (ea\alpha_x(b)\alpha_x(\alpha_y(e))^{-1}\kappa(x,y)f(xy)^{-1},xy) \,. \end{aligned}$$

This implies that γ is a homomorphism. Moreover, for $a \in K$ and $x \in G$, we have

$$\begin{split} \gamma(\varepsilon(a)) &= \gamma(\kappa(1,1)^{-1}a,1) = (e\kappa(1,1)^{-1}a\alpha_1(e)^{-1}f(1)^{-1},1) \\ &= (\kappa(1,1)^{-1}f(1)^{-1}a\kappa(1,1)d^{-1}\kappa(1,1)^{-1}f(1)^{-1},1) \\ &= (\kappa(1,1)^{-1}f(1)^{-1}a,1)) = (\tilde{\kappa}(1,1)^{-1}a,1) = \tilde{\varepsilon}(a) \end{split}$$

and

$$\tilde{\nu}(\gamma(a,x)) = \tilde{\nu}(ea\alpha_x(e)^{-1}f(x)^{-1},x) = x = \nu(a,x).$$

Together with Remark 6.2(b), this implies that the two group extensions $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ are equivalent. Therefore, the construction in Proposition 6.7 induces a map

$$\Psi \colon \operatorname{Par}(G, K) \longrightarrow \operatorname{Ext}(G, K)$$
.

Finally, we show that Φ and Ψ are mutually inverse bijections. Let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension and, for each $x \in G$, let $h_x \in H$ be such that $\nu(h_x) = x$. Moreover, let (α, κ) be the parameter system defined in Proposition 6.3 from $h_x, x \in G$, and let $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ be the group extension constructed from (α, κ) according to Proposition 6.7. We show that the two group extensions

$$1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1 \quad \text{and} \quad 1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$$

are equivalent. In fact, let $\gamma \colon \tilde{H} \to H$ be defined by

$$\gamma(a, x) := \varepsilon(\kappa(1, 1)a\kappa(x, 1)^{-1})h_x \,,$$

for all $a, b \in K$ and $x, y \in G$. Then

$$\gamma((a, x)(b, y)) = \gamma(a\alpha_x(b)\kappa(x, y), xy)$$

= $\varepsilon \Big(\kappa(1, 1)a\alpha_x(b)\kappa(x, y)\kappa(xy, 1)^{-1}\Big)h_{xy}$
= $\varepsilon \Big(\kappa(1, 1)a\alpha_x(b)\alpha_x(\kappa(y, 1))^{-1}\kappa(x, y)\Big)h_{xy}$
= $\varepsilon \Big(\kappa(1, 1)a\alpha_x(b)\alpha_x(\kappa(y, 1))^{-1}\Big)h_xh_y$

and

$$\begin{split} \gamma(a,x)\gamma(b,y) &= \varepsilon \Big(\kappa(1,1)a\kappa(x,1)^{-1}\Big)h_x \varepsilon \Big(\kappa(1,1)b\kappa(y,1)^{-1}\Big)h_y \\ &= \varepsilon \Big(\kappa(1,1)a\kappa(x,1)^{-1}\Big)\varepsilon \Big(\alpha_x(\kappa(1,1)b\kappa(y,1)^{-1})\Big)h_xh_y \\ &= \varepsilon \Big(\kappa(1,1)a\kappa(x,1)^{-1}\alpha_x(\kappa(1,1))\alpha_x(b)\alpha_x(\kappa(y,1))^{-1}\Big)h_xh_y \\ &= \varepsilon \Big(\kappa(1,1)a\alpha_x(b)\alpha_x(\kappa(y,1))^{-1}\Big)h_xh_y \,. \end{split}$$

This shows that γ is a homomorphism. Moreover, for $a \in K$ and $x \in G$ we have

$$\gamma(\tilde{\epsilon}(a)) = \gamma(\kappa(1,1)^{-1}a,1) = \varepsilon(\kappa(1,1)\kappa(1,1)^{-1}a\kappa(1,1)^{-1})h_1 = \varepsilon(a)\varepsilon(\kappa(1,1))^{-1}h_1 = \varepsilon(a),$$

by Proposition 6.3(c), and

$$\nu(\gamma(a,x)) = \nu(\varepsilon(\kappa(1,1)a\kappa(x,1)^{-1})h_x) = \nu(h_x) = x = \tilde{\nu}(a,x).$$

Therefore, the two group extensions

$$1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1 \quad \text{and} \quad 1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$$

are equivalent, and $\Psi \circ \Phi = id$.

Now let $(\alpha, \kappa) \in par(G, K)$ and let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be the group extension constructed in Proposition 6.7. We set

$$h_x := (\kappa(1,1)^{-1}\kappa(x,1), x) \in H$$

for $x \in G$ and observe that $\nu(h_x) = x$. Let $x \in G$ and $a \in K$, then

$$h_x \varepsilon(a) = (\kappa(1, 1)^{-1} \kappa(x, 1), x) \cdot (\kappa(1, 1)^{-1} a, 1)$$

= $(\kappa(1, 1)^{-1} \kappa(x, 1) \alpha_x(\kappa(1, 1))^{-1} \alpha_x(a) \kappa(x, 1), x)$
= $(\kappa(1, 1)^{-1} \alpha_x(a) \kappa(x, 1), x)$

and

$$\varepsilon(\alpha_x(a))h_x = (\kappa(1,1)^{-1}\alpha_x(a),1) \cdot (\kappa(1,1)^{-1}\kappa(x,1),x) = (\kappa(1,1)^{-1}\alpha_x(a)\alpha_1(\kappa(1,1)^{-1}\kappa(x,1))\kappa(1,x),x) = (\kappa(1,1)^{-1}\alpha_x(a)\kappa(x,1)\kappa(1,1)^{-1}\kappa(1,x),x) = (\kappa(1,1)^{-1}\alpha_x(a)\kappa(x,1),x).$$

Moreover, for all $x, y \in G$ we have

$$h_x h_y = (\kappa(1,1)^{-1} \kappa(x,1), x) \cdot (\kappa(1,1)^{-1} \kappa(y,1), y)$$

= $(\kappa(1,1)^{-1} \kappa(x,1) \alpha_x(\kappa(1,1))^{-1} \alpha_x(\kappa(y,1)) \kappa(x,y), xy)$
= $(\kappa(1,1)^{-1} \alpha_x(\kappa(y,1)) \kappa(x,y), xy)$
= $(\kappa(1,1)^{-1} \kappa(x,y) \kappa(xy,1), xy)$

and

$$\varepsilon(\kappa(x,y))h_{xy} = (\kappa(1,1)^{-1}\kappa(x,y),1) \cdot (\kappa(1,1)^{-1}\kappa(xy,1),xy)$$

= $(\kappa(1,1)^{-1}\kappa(x,y)\alpha_1(\kappa(1,1)^{-1}\kappa(xy,1))\kappa(1,xy),xy)$
= $(\kappa(1,1)^{-1}\kappa(x,y)\kappa(xy,1)\kappa(1,1)^{-1}\kappa(1,xy),xy)$
= $(\kappa(1,1)^{-1}\kappa(x,y)\kappa(xy,1),xy)$

This shows that the parameter system constructed from the group extension $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ equals (α, κ) . Therefore $\Phi \circ \Psi = id$, and the proof is complete.

6.9 Proposition Let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension of G by K. Then the following are equivalent:

- (i) There exists a homomorphism $\sigma: G \to H$ such that $\nu \circ \sigma = \mathrm{id}_G$.
- (ii) $\varepsilon(K)$ has a complement in H.

Proof (i) \Rightarrow (ii): Let $\sigma: G \to H$ be a homomorphism satisfying $\nu \circ \sigma = \operatorname{id}_G$. We show that $\sigma(G)$ is a complement of $\varepsilon(K) = \ker(\nu)$ in H. Let $h \in \ker(\nu) \cap \sigma(G)$. Then $h = \sigma(x)$ for some $x \in G$ and we obtain $x = \nu\sigma(x) = \nu(h) = 1$ and $h = \sigma(x) = 1$. Now let $h \in H$ be arbitrary. Then $h = h\sigma(\nu(h))^{-1}\sigma(\nu(h))$ with $h\sigma(\nu(h))^{-1} \in \ker(\nu)$ and $\sigma(\nu(h)) \in \sigma(G)$.

(ii) \Rightarrow (i): Let *C* be a complement of $\varepsilon(K) = \ker(\nu)$ in *H*. Then the map $\delta: C \to H/\varepsilon(K), c \mapsto c\varepsilon(K)$ is an isomorphism. By the homomorphism theorem, also the map $\bar{\nu}: H/\varepsilon(K) \to G, h\varepsilon(K) \mapsto \nu(h)$, is an isomorphism. Now the map

$$\sigma \colon G \xrightarrow{\bar{\nu}^{-1}} H/\varepsilon(K) \xrightarrow{\delta^{-1}} C \rightarrowtail H$$

satisfies $\nu(\sigma(x)) = (\nu \circ \iota \circ \delta^{-1} \circ \bar{\nu}^{-1})(x) = x$. In fact, we can write $x = \bar{\nu}(\delta(c))$ for a unique $c \in C$. Then it suffices to show that $\nu(\iota(c) = \bar{\nu}(\delta(c)))$. But $\bar{\nu}(\delta(c)) = \bar{\nu}(c \ker(\nu)) = \nu(c) = \nu(\iota(c))$.

6.10 Remark (a) If the conditions in Proposition 6.9 is satisfied, then we say that the group extension $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ splits and that σ is a splitting map.

(b) If $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ splits and $\sigma: G \to H$ satisfies $\nu \circ \sigma = \mathrm{id}_G$, then we may use the elements $h_x := \sigma(x), x \in G$, in order to construct a corresponding parameter system. Since $h_x h_y = h_{xy}$ for all $x, y \in G$, one has $\kappa(x, y) = 1$ for all $x, y \in G$. Moreover, this implies that $\alpha: G \to \mathrm{Aut}(K)$ is a homomorphism.

Conversely, if $\alpha \colon G \to \operatorname{Aut}(K)$ is a homomorphism and $\kappa(x, y) = 1$ for all $x, y \in G$, then (α, κ) is a parameter system of G in K and the corresponding group extension splits and is represented by the semidirect product of G with K under the action defined by α .

6.11 Definition Even if K is not abelian, one can still define the so-called *non-commutative* cohomology $H^0(G, K)$ and $H^1(G, K)$ of G with values in K as follows:

(a) $H^0(G, K) := K^G$, the set of G-fixed points of K. This is a subgroup of K.

(b) $Z^1(G, K)$ is defined as the set of all functions $\mu: G \to K$ satisfying

$$\mu(xy) = {}^{x}\mu(y)\mu(x) \,.$$

It's elements are called *1-cocycles* or crossed homomorphisms from G to K. Two functions $\lambda, \mu \in Z^1(G, K)$ are called *equivalent* if there exists $a \in K$ such that

$$\lambda = {}^{x}a \cdot \mu(x) \cdot a^{-1}$$

for all $x \in G$. This defines an equivalence relation (see Homework problem). The equivalence class of $\mu \in Z^1(G, K)$ is denoted by $[\mu]$. The set of equivalence classes of $Z^1(G, K)$ is denoted by $H^1(G, K)$. It is not a group, but it has the structure of a *pointed set*, a set with a distinguished element, namely the class [1] of the constant function 1: $G \to K$.

6.12 Remark (a) There are no non-commutative versions of $H^n(G, K)$ for $n \ge 2$.

(b) If K = A is abelian then the definitions in 6.11 coincide with the usual cohomology groups.

(c) If G acts on K and $\mu \in Z^1(G, K)$ then the equation $\mu(xy) = {}^x \mu(y)\mu(x)$ implies that $\mu(1) = 1$ by setting x = y = 1. Moreover, by setting $y = x^{-1}$ we obtain ${}^x \mu(x^{-1}) = \mu(x)^{-1}$ and $x^{-1}\mu(x) = \mu(x^{-1})^{-1}x^{-1}$.

6.13 Theorem Let $\alpha: G \to \operatorname{Aut}(K)$ be a group homomorphism and let $H := K \rtimes G$ be the corresponding semidirect product. To simplify notation we assume that $K \trianglelefteq H$ and $G \leqslant H$ with $K \cap G = 1$ and KG = H. Let \mathcal{C} denote the set of all complements of K in H, i.e., subgroups $C \leqslant H$, satisfying $K \cap C = 1$ and KC = H.

(a) *H* acts by conjugation on \mathbb{C} and the *H*-orbits of \mathbb{C} are equal to the *K*-orbits of \mathbb{C} . The *K*-conjugacy classes of \mathbb{C} will be denoted by $\overline{\mathbb{C}}$.

(b) For each $C \in \mathfrak{C}$ there exists a unique function $\mu_C \colon G \to K$ such that

$$\mu_C(x) \in xC$$
 for all $x \in G$

Moreover, $\mu_C \in Z^1(G, K)$. Conversely, for every $\mu \in Z^1(G, K)$, the set

$$C_{\mu} := \{\mu(x)^{-1}x \mid x \in G\}$$

is a subgroup and a complement of K in H. These two constructions define mutual inverse bijections

$$\mathcal{C} \leftrightarrow Z^1(G, K)$$
.

Moreover, these bijections induce mutually inverse bijections

$$\overline{\mathcal{C}} \leftrightarrow H^1(G, K)$$
.

Proof Both statements of (a) are easy to verify.

(b) Let $C \in \mathfrak{C}$. For every $x \in G$ there exist unique elements $\mu(x) \in K$ and $c \in C$ such that

$$x = \mu(x)c$$
.

This implies the first statement. Next we show that the function $\mu: G \to K$ is a 1-cocycle. Let $x, y \in G$ and let $c, d \in C$ with $x = \mu(x)c$ and $y = \mu(y)d$. Then

$$xy = x\mu(y)d = {}^x\!\mu(y)xd = {}^x\!\mu(y)\mu(x)cd$$

with ${}^{x}\mu(y)\mu(x) \in K$ and $cd \in C$.

Next let $\mu \in Z^1(G, K)$ and let C_{μ} be defined as in the theorem. First we show that C_{μ} is a subgroup: For $x, y \in G$ we have

$$\mu(x)^{-1}x\mu(y)^{-1}y = \mu(x)^{-1}{}^x\mu(y)^{-1}xy = \mu(xy)^{-1}xy$$

which shows that the product of two elements in C_{μ} is again in C_{μ} . Moreover, if for $x \in G$ we have

$$x^{-1}\mu(x) = \mu(x^{-1})^{-1}x^{-1}$$

by Remark 6.12(c). If x is an element in G such that $\mu(x)^{-1}x \in K$, then also x is in K and therefore, x = 1 and $\mu(x)^{-1}x = 1$. Therefore, $K \cap C_{\mu} = 1$. Finally, every element in H can be written as ax with $a \in K$ and $x \in G$ and $ax = a\mu(x)\mu(x)^{-1}x \in KC_{\mu}$. This completes the proof that $C_{\mu} \in \mathcal{C}$.

It is easy to see that the two constructions are inverse to each other so that we obtain a bijection $\mathcal{C} \leftrightarrow Z^1(G, K)$.

Next assume that $C, D \in \mathfrak{C}$ and that $D = {}^{a}C$ with $a \in K$. Let $x \in G$ and let $c \in C$ such that $x = \mu_C(x)c$. Then,

$$x = \mu_C(x)c = \mu(x) \cdot {}^c a \cdot a^{-1} \cdot {}^a c$$

with $\mu_C(x) \cdot {}^c a \cdot a^{-1} \in K$ and ${}^a c \in D$. Therefore,

$$\mu_D = \mu(x) \cdot {}^c a \cdot a^{-1} = \mu_C(x) \cdot {}^{\mu_C(x)^{-1}x} a \cdot a^{-1} = {}^x a \cdot \mu(x) \cdot a^{-1}.$$

Therefore, $[\mu_C] = [\mu_D] \in H^1(G, K)$. Conversely, let $\lambda, \mu \in Z^1(G, K)$ and let $a \in K$ such that $\lambda(x) = {}^xa \cdot \mu(x) \cdot a^{-1}$ for all $x \in G$. Then C_{λ} consists of all elements of the form $\lambda(x)^{-1}x = a \cdot \mu(x)^{-1} \cdot {}^xa^{-1} \cdot x = a\mu(x)^{-1}xa^{-1}$ with $x \in G$. But this is just $aC_{\mu}a^{-1}$. This completes the proof of the Theorem. \Box

7 Group Extensions with Abelian Kernel

Throughout this section let A be an abelian group and let G be an arbitrary group.

7.1 Remark Let $1 \longrightarrow A \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension, let $h_x \in H$ with $\nu(h_x) = x$ for all $x \in G$, and let $(\alpha, \kappa) \in par(G, A)$ be the parameter system as defined in Proposition 6.3. Then

$$\varepsilon(\alpha_x(a)) = h_x \varepsilon(a) h_x^{-1}, \quad h_x h_y = \varepsilon(\kappa(x, y)) h_{xy},$$

$$\alpha_x \circ \alpha_x = c_{\kappa(x,y)} \circ \alpha_{xy}, \quad \text{and} \quad \alpha_x(\kappa(y, z)) \kappa(x, yz) = \kappa(xy, z) \kappa(x, y),$$

for all $a \in A$ and $x, y, z \in G$. Since A is abelian, $c_{\kappa(x,y)} = \mathrm{id}_K$ and the map $\alpha \colon G \to \mathrm{Aut}(A)$ is a homomorphism. Moreover, κ is a 2-cocycle of G with coefficients in A under the action defined by α . If $(\alpha', \kappa') \in \mathrm{par}(G, A)$ is equivalent to (α, κ) , then there exists a function $f \colon G \to A$ such that

$$\alpha'_x = c_{\alpha_x(f(x))} \circ \alpha_x$$
 and $\kappa'(x, y) = f(x)\alpha_x(f(y))\kappa(x, y)f(xy)^{-1}$,

for all $x, y \in G$. Again, since A is abelian, this implies $\alpha' = \alpha$. Moreover, we can see that κ and κ' belong to the same cohomology class. Altogether we see that two parameter systems (α, κ) and (α', κ') are equivalent, if and only if $\alpha = \alpha'$ and $[\kappa] = [\kappa'] \in H^2_{\alpha}(G, A)$.

Therefore we can partition Ext(G, A) and Par(G, A) into disjoint unions indexed by $\alpha \in \text{Hom}(G, \text{Aut}(A))$, i.e., by the possible actions of G on A:

$$\operatorname{Par}(G,A) = \bigcup_{\alpha}^{\bullet} H^2_{\alpha}(G,A)$$

and

$$\operatorname{Ext}(G, A) = \bigcup_{\alpha} \operatorname{Ext}_{\alpha}(G, A)$$

where $\operatorname{Ext}_{\alpha}(G, A)$ denotes those extensions which induce the automorphism system α . For given action $\alpha \colon G \to \operatorname{Aut}(A)$, we have the bijections from Schreier's Theorem 6.8:

$$\operatorname{Ext}_{\alpha}(G, A) \leftrightarrow H^2_{\alpha}(G, A)$$
.

Recall that $H^2_{\alpha}(G, A)$ is an abelian group. Its identity element [1] corresponds to the semidirect product extension of G by A under the action α . The multiplication in the group $H^2_{\alpha}(G, A)$ corresponds to the so-called *Baer product* which can be defined purely in terms of extensions. Finally, if the above extension splits then the A-conjugacy classes (recall that they are the same as the H-conjugacy classes) of complements of A in H are parametrized by $H^1(G, A)$, by Theorem 6.13

7.2 Corollary Assume that gcd(|G|, |A|) = 1.

(a) Every extensions of G by A splits. In particular, for every action $\alpha \in \operatorname{Hom}(G, \operatorname{Aut}(A))$, there exist precisely one extension of G by A (up to equivalence) with automorphism system α , namely the semidirect product $A \rtimes_{\alpha} G$.

(b) Let $\alpha \in \text{Hom}(G, \text{Aut}(A))$ and let $H := A \rtimes_{\alpha} G$ be the corresponding semidirect product. Then any two complements of A in H are conjugate under A.

Proof (a) We have $\operatorname{Ext}_{\alpha}(G, A) \cong H^2_{\alpha}(G, A)$ by the above remark. But the latter group is trivial by Corollary 5.4. Thus, the only extension of G by A, up to equivalence, that has automorphism system α , is the semidirect product.

(b) This follows immediately from Theorem 6.13.

8 Group Extensions with Non-Abelian Kernel

Throughout this section let K and G be arbitrary groups.

8.1 Remark An automorphism $f \in \operatorname{Aut}(K)$ is called an *inner* automorphism, if $f = c_a$ for some $a \in K$. The set $\operatorname{Inn}(K)$ of inner automorphisms is the image of the homomorphism $c: K \to \operatorname{Aut}(K)$, $a \mapsto c_a$. Therefore, $\operatorname{Inn}(K)$ is a subgroup of $\operatorname{Aut}(K)$. It is even a normal subgroup, since $f \circ c_a \circ f^{-1} = c_{f(a)}$ for all $f \in \operatorname{Aut}(K)$ and all $a \in K$. We call the quotient $\operatorname{Out}(K) := \operatorname{Aut}(K)/\operatorname{Inn}(K)$ the group of *outer* automorphisms of K.

For each $(\alpha, \kappa) \in par(G, K)$ one has $\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy}$ for all $x, y \in G$. This shows that the function $\omega \colon G \to Out(K), x \mapsto \alpha_x Inn(K)$, is a group homomorphism. We call ω the *pairing* induced by the automorphism system α . If (α', κ') is an equivalent parameter system, then $\alpha'_x = c_{f(x)} \circ \alpha_x$ for some function $f \colon G \to K$, which shows that the pairing ω' induced by α' is equal to ω . Therefore, each element in Par(G, K) defines a pairing $\omega \colon G \to$ Out(K). By Schreier's Theorem also every element in Ext(G, K) defines a pairing. If K is abelian, then Inn(K) = 1 and $Out(K) = Aut(K)/Inn(K) \cong$ Aut(K), and we do not have to distinguish between automorphism systems and pairings.

For each $\omega \in \text{Hom}(G, \text{Out}(K))$ we denote by $\text{ext}_{\omega}(G, K)$ (resp. $\text{par}_{\omega}(G, K)$) the set of extensions of G by K (resp. parameter systems of G in K) which induce the pairing ω , and by $\text{Ext}_{\omega}(G, K)$ (resp. $\text{Par}_{\omega}(G, K)$) the set of equivalence classes of extensions of G by K (resp. parameter systems of G in K) which induce the pairing ω . Then we have

$$\operatorname{Ext}(G, K) = \bigcup_{\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))}^{\bullet} \operatorname{Ext}_{\omega}(G, K)$$

and

$$\operatorname{Par}(G, K) = \bigcup_{\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))}^{\bullet} \operatorname{Par}_{\omega}(G, K),$$

and Schreier's Theorem gives an isomorphism between $\operatorname{Ext}_{\omega}(G, K)$ and $\operatorname{Par}_{\omega}(G, K)$ for each $\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))$. It may happen that $\operatorname{Ext}_{\omega}(G, K)$ is empty. In the sequel we will find out, exactly when this happens, and we will also give a description of $\operatorname{Ext}_{\omega}(G, K)$ in the case, where it is non-empty. Both results will use group cohomology of G with coefficients in Z(K). For each automorphism $f \in \operatorname{Aut}(K)$, the restriction $f|_{Z(K)}$ defines an automorphism of Z(K), since Z(K) is characteristic in K. This defines a group homomorphism $\operatorname{res}_{Z(K)}^{K}$: $\operatorname{Aut}(K) \to \operatorname{Aut}(Z(K))$ whose kernel contains $\operatorname{Inn}(K)$. By the fundamental theorem of homomorphisms, we obtain a homomorphism $\operatorname{Out}(K) \to \operatorname{Aut}(Z(K))$, $f\operatorname{Inn}(K) \mapsto f|_{Z(K)}$, which we denote again by $\operatorname{res}_{Z(K)}^{K}$.

If $\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))$, then its composition with $\operatorname{res}_{Z(K)}^{K}$ gives a homomorphism $\zeta := \operatorname{res}_{Z(K)}^{K} \circ \omega \colon G \to \operatorname{Aut}(Z(K))$. The next theorem will show that, if $\operatorname{Par}_{\omega}(G, K)$ is non-empty then it is in bijection with $H^{2}_{\mathcal{L}}(G, Z(K))$.

In the sequel we will write $[\alpha, \kappa]$ for the equivalence class of any element $(\alpha, \kappa) \in par(G, K)$.

8.2 Theorem Let $\omega \in \text{Hom}(G, \text{Out}(K))$ with $\text{Par}_{\omega}(G, K) \neq \emptyset$ and let $\zeta := \text{res}_{Z(K)}^{K} \circ \omega \in \text{Hom}(G, \text{Aut}(Z(K)))$. Then the function

$$Z^2_{\zeta}(G, Z(K)) \times \operatorname{par}_{\omega}(G, K) \to \operatorname{par}_{\omega}(G, K), \quad (\gamma, (\alpha, \kappa)) \mapsto (\alpha, \gamma \kappa),$$

with

$$(\gamma \kappa)(x, y) := \gamma(x, y) \kappa(x, y) \,,$$

for $x, y \in G$, defines an action of the group $Z^2_{\zeta}(G, Z(K))$ on the set $\operatorname{par}_{\omega}(G, K)$. Moreover, this action induces an action of $H^2_{\zeta}(G, Z(K))$ on $\operatorname{Par}_{\omega}(G, K)$ which is transitive and free. In particular, for any element $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$, the map

$$H^2_{\zeta}(G, Z(K)) \to \operatorname{Par}_{\omega}(G, K), \quad [\gamma] \longmapsto {}^{[\gamma]}[\alpha, \kappa] = [\alpha, \gamma \kappa],$$

is a bijection.

Proof We first show that for $\gamma \in Z^2_{\zeta}(G, Z(K))$ and $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$ also $(\alpha, \gamma \kappa) \in \operatorname{par}_{\omega}(G, K)$. In fact, for all $x, y, z \in G$ we have

$$\begin{aligned} (\gamma\kappa)(x,y) \cdot (\gamma\kappa)(xy,z) &= \gamma(x,y)\kappa(x,y)\gamma(xy,z)\kappa(xy,z) \\ &= \gamma(x,y)\gamma(xy,z)\kappa(x,y)\kappa(xy,z) \\ &= \zeta_x(\gamma(y,z))\gamma(x,yz)\alpha_x(\kappa(y,z))\kappa(x,yz) \\ &= \alpha_x(\gamma(y,z)\kappa(y,z))\gamma(x,yz)\kappa(x,yz) \\ &= \alpha_x((\gamma\kappa)(y,z))(\gamma\kappa)(x,yz) \,, \end{aligned}$$

since $\alpha(z) = \zeta(z)$ for each $z \in Z(K)$, and

$$c_{(\gamma\kappa)(x,y)} \circ \alpha_{xy} = c_{\gamma(x,y)\kappa(x,y)} \circ \alpha_{xy}$$

= $c_{\gamma(x,y)} \circ c_{\kappa(x,y)} \circ \alpha_{xy}$
= $c_{\kappa(x,y)} \circ \alpha_{xy} = \alpha_x \circ \alpha_y$,

since $\gamma(x,y) \in Z(K)$. Moreover, for all $(\alpha,\kappa) \in \operatorname{par}_{\omega}(G,K)$ and $\gamma,\delta \in Z^2_{\zeta}(G,Z(K))$ we have

$${}^{\delta} \left({}^{\gamma} (\alpha, \kappa) \right) = {}^{\delta} (\alpha, \gamma \kappa) = (\alpha, \delta \gamma \kappa) = {}^{\delta \gamma} (\alpha, \kappa)$$

and ${}^{1}(\alpha, \kappa) = (\alpha, \kappa)$ so that we have established an action of $Z^{2}_{\zeta}(G, Z(K))$ on $\operatorname{par}_{\omega}(G, K)$.

Next, let $(\alpha, \kappa), (\alpha', \kappa') \in \operatorname{par}_{\omega}(G, K)$ be equivalent and let $\gamma \in Z^2_{\zeta}(G, Z(K))$. Then there exists a function $f: G \to K$ such that

$$\alpha'_x = c_{f(x)} \circ \alpha_x$$
 and $\kappa'(x, y) = f(x)\alpha_x(f(y))\kappa(x, y)f(xy)^{-1}$,

for all $x, y \in G$. Multiplication of the last equation with $\gamma(x, y)$ yields

$$\gamma(x,y)\kappa'(x,y) = f(x)\alpha_x(f(y))\gamma(x,y)\kappa(x,y)f(xy)^{-1},$$

which shows that also $\gamma(\alpha, \kappa) = (\alpha, \gamma \kappa)$ and $\gamma(\alpha', \kappa') = (\alpha', \gamma \kappa')$ are equivalent. Therefore, we obtain an action of $Z^2_{\zeta}(G, Z(K))$ on $\operatorname{Par}_{\omega}(G, K)$.

Now let $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$ and let $\gamma \in B^2_{\zeta}(G, Z(K))$. We will show that $\gamma(\alpha, \kappa)$ is equivalent to (α, κ) . In fact, there exists a function $f: G \to Z(K)$ such that $\gamma(x, y) = \zeta_x(f(y))f(xy)^{-1}f(x) = \alpha_x(f(y))f(xy)^{-1}f(x)$ for all $x, y \in G$. With this function we have

$$\alpha_x = c_{f(x)} \circ \alpha_x$$

and

$$(\gamma\kappa)(x,y) = \gamma(x,y)\kappa(x,y) = f(x)\alpha_x(f(y))\kappa(x,y)f(xy)^{-1}$$

for all $x, y \in G$ and the claim is proven. Therefore, we have an action of $H^2_{\zeta}(G, Z(K))$ on $\operatorname{Par}_{\omega}(G, K)$.

Now we show that this action is free. Let $\gamma_1, \gamma_2 \in Z^2_{\zeta}(G, Z(K))$ and $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$ such that $\gamma_1(\alpha, \kappa)$ and $\gamma_2(\alpha, \kappa)$ are equivalent. Set $\gamma := \gamma_1^{-1}\gamma_2$. Then $\gamma(\alpha, \kappa) = (\alpha, \kappa)$ is equivalent to (α, κ) . Therefore, there exists a function $f: G \to K$ such that $\alpha_x = c_{f(x)} \circ \alpha_x$ and $\gamma(x, y)\kappa(x, y) =$

 $f(x)\alpha_x(f(y))\kappa(x,y)f(xy)^{-1}$ for all $x, y \in G$. This implies that $c_{f(x)} = \mathrm{id}_K$ for all $x \in K$ so that $f(x) \in Z(K)$ for all $x \in K$. Using this we also obtain $\gamma(x,y) = f(x)\alpha_x(f(y))f(xy)^{-1} = f(x)\zeta_x(f(y))f(xy)^{-1}$. Therefore, $\gamma \in B^2_{\zeta}(G, Z(K))$ and $[\gamma_1] = [\gamma_2] \in H^2_{\zeta}(G, Z(K))$.

Finally, we show that the action of $H^2_{\zeta}(G, Z(K))$ on $\operatorname{Par}_{\omega}(G, K)$ is transitive. Let $(\alpha, \kappa), (\beta, \lambda) \in \operatorname{par}_{\omega}(G, K)$. We will show that there exists $\gamma \in Z^2_{\zeta}(G, Z(K))$ such that (α, κ) and $\gamma(\beta, \lambda)$ are equivalent. For each $x \in G$ we have $\alpha_x \operatorname{Inn}(K) = \omega(x) = \beta_x \operatorname{Inn}(K)$. Thus, there exists an element $f(x) \in K$ such that $c_{f(x)} \circ \alpha_x = \beta_x$. We set $\kappa'(x, y) := f(x)\alpha_x(f(y))\kappa(x, y)f(xy)^{-1}$ for all $x, y \in G$. Then $(\beta, \kappa') \in \operatorname{par}_{\omega}(G, K)$ and (α, κ) is equivalent to (β, κ') . Since also $(\beta, \lambda) \in \operatorname{par}_{\omega}(G, K)$, we obtain $c_{\kappa'(x,y)} \circ \beta_{xy} = \beta_x \circ \beta_y = c_{\lambda(x,y)} \circ \beta_{xy}$ and $c_{\kappa'(x,y)} = c_{\lambda(x,y)}$ for all $x, y \in K$. This implies that $\gamma(x, y) := \kappa'(x, y)\lambda(x, y)^{-1} \in Z(K)$ for all $x, y \in G$. We show that $\gamma \in Z^2_{\zeta}(G, Z(K))$. In fact, for $x, y, z \in G$ we have

$$\begin{split} \gamma(x,y)\gamma(xy,z) &= \kappa'(x,y)\lambda(x,y)^{-1}\gamma(xy,z) \\ &= \kappa'(x,y)\gamma(xy,z)\lambda(x,y)^{-1} \\ &= \kappa'(x,y)\kappa'(xy,z)\lambda(xy,z)^{-1}\lambda(x,y)^{-1} \\ &= \beta_x(\kappa'(y,z))\kappa'(x,yz)\lambda(x,yz)^{-1}\beta_x(\lambda(y,z))^{-1} \\ &= \beta_x(\kappa'(y,z))\gamma(x,yz)\beta_x(\lambda(y,z))^{-1} \\ &= \beta_x(\kappa'(y,z)\lambda(y,z)^{-1})\gamma(x,yz) \\ &= \zeta_x(\gamma(y,z))\gamma(x,yz) \,. \end{split}$$

This implies that $(\beta, \kappa') = {}^{\gamma}(\beta, \lambda)$ and that (α, κ) is equivalent to $(\beta, \kappa') = {}^{\gamma}(\beta, \lambda)$. This completes the proof of the Theorem.

8.3 Theorem Assume that Z(K) = 1. Then $|\operatorname{Par}_{\omega}(G, K)| = 1$ for every $\omega \colon G \to \operatorname{Out}(K)$.

Proof For each $x \in G$ we choose $\alpha_x \in \operatorname{Aut}(K)$ such that $\omega(x) = \alpha_x \operatorname{Inn}(K)$. For all $x, y \in G$ we have $\alpha_x \alpha_y \operatorname{Inn}(K) = \omega(x)\omega(y) = \omega(xy) = \alpha_{xy} \operatorname{Inn}(K)$. Therefore, there exist elements $\kappa(x, y) \in K$, such that $\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy}$ for all $x, y \in G$. For all $x, y, z \in G$ we obtain

$$\begin{aligned} c_{\kappa(x,y)\kappa(xy,z)} \circ \alpha_{xyz} &= c_{\kappa(x,y)} \circ c_{\kappa(xy,z)} \circ \alpha_{xyz} \\ &= c_{\kappa(x,y)} \circ \alpha_{xy} \circ \alpha_{z} \\ &= \alpha_{x} \circ \alpha_{y} \circ \alpha_{z} \\ &= \alpha_{x} \circ c_{\kappa(y,z)} \circ \alpha_{yz} \\ &= \alpha_{x} \circ c_{\kappa(y,z)} \circ \alpha_{x}^{-1} \circ \alpha_{x} \circ \alpha_{yz} \\ &= c_{\alpha_{x}(\kappa(y,z))} \circ c_{\kappa(x,yz)} \circ \alpha_{x(yz)} \\ &= c_{\alpha_{x}(\kappa(y,z))\kappa(x,yz)} \circ \alpha_{xyz} , \end{aligned}$$

and therefore, $c_{\kappa(x,y)\kappa(xy,z)} = c_{\alpha_x(\kappa(y,z))\kappa(x,yz)}$. Since Z(K) = 1, this implies $\kappa(x,y)\kappa(xy,z) = \alpha_x(\kappa(y,z))\kappa(x,yz)$ for all $x, y, z \in G$. Therefore, $(\alpha, \kappa) \in \text{par}_{\omega}(G,K)$, and $\text{Par}_{\omega}(G,K)$ is not empty. On the other hand, by Theorem 8.2, $\text{Par}_{\omega}(G,K)$ is in bijection to $H^2_{\zeta}(G,Z(K))$, where $\zeta := \text{res}^K_{Z(K)} \circ \omega$. Again since Z(K) = 1, we have $F(G^2, Z(K)) = 1$ and also $H^2_{\zeta}(G, Z(K)) = 1$. \Box

8.4 Theorem Let $\omega: G \to \operatorname{Out}(K)$ be a group homomorphism and let $\zeta := \operatorname{res}_{Z(K)}^{K} \circ \omega \in \operatorname{Hom}(G, \operatorname{Aut}(Z(K)))$. Moreover, for each $x \in G$, let $\alpha_x \in \operatorname{Aut}(K)$ be an automorphism with $\omega(x) = \alpha_x \operatorname{Inn}(K)$. Then the following assertions hold:

(a) For all $x, y \in G$ there exists an element $\chi(x, y) \in K$ such that $\alpha_x \circ \alpha_y = c_{\chi(x,y)} \circ \alpha_{xy}$.

(b) Let $\chi(x,y) \in K$ be chosen as in (a). Then, for all $x, y, z \in G$ the element $\vartheta(x, y, z) := \alpha_x(\chi(y, z))\chi(x, yz)\chi(xy, z)^{-1}\chi(x, y)^{-1}$ lies in Z(K), and the function $\vartheta : G^3 \to Z(K)$ is an element of $Z_{\zeta}^3(G, Z(K))$.

(c) The cohomology class $[\vartheta] \in H^3_{\zeta}(G, Z(K))$ of the element $\vartheta \in Z^3_{\zeta}(G, Z(K))$ defined in (b) does not depend on the choices of $\alpha_x \in \operatorname{Aut}(K)$ and $\chi(x, y) \in K$ for $x, y \in G$.

Proof (a) For all $x, y \in G$ we have

$$\alpha_x \alpha_y \operatorname{Inn}(K) = \omega(x)\omega(y) = \omega(xy) = \alpha_{xy} \operatorname{Inn}(K) \,,$$

which implies that $\alpha_x \alpha_y \alpha_{xy}^{-1} \in \text{Inn}(K)$.

(b) For all $x, y, z \in G$ we have

$$\begin{split} & c_{\vartheta(x,y,z)} \\ &= c_{\alpha_x(\chi(y,z))} \circ c_{\chi(x,yz)} \circ c_{\chi(xy,z)}^{-1} \circ c_{\chi(xy)}^{-1} \\ &= \alpha_x \circ c_{\chi(y,z)} \circ \alpha_x^{-1} \circ \alpha_x \circ \alpha_{yz} \circ \alpha_{xyz}^{-1} \circ \alpha_{xyz} \circ \alpha_z^{-1} \circ \alpha_{xy}^{-1} \circ \alpha_{xy} \circ \alpha_y^{-1} \circ \alpha_x^{-1} \\ &= \alpha_x \circ \alpha_y \circ \alpha_z \circ \alpha_{yz}^{-1} \circ \alpha_{yz} \circ \alpha_z^{-1} \circ \alpha_y^{-1} \circ \alpha_x^{-1} \\ &= \mathrm{id}_K \,, \end{split}$$

which implies that $\vartheta(x, y, z) \in Z(K)$.

Next we show that $\vartheta \in Z^3_{\zeta}(G, Z(K))$. Let $x, y, z, w \in G$. Then

$$\begin{split} &\zeta_x(\vartheta(y,z,w))\vartheta(x,yz,w)\vartheta(x,y,z) \\ &= \alpha_x(\alpha_y(\chi(z,w)))\alpha_x(\chi(y,zw))\alpha_x(\chi(yz,w))^{-1}\alpha_x(\chi(y,z))^{-1}\vartheta(x,yz,w)\cdot \\ &\quad \cdot \vartheta(x,y,z) \\ &= \alpha_x(\alpha_y(\chi(z,w)))\alpha_x(\chi(y,zw))\alpha_x(\chi(yz,w))^{-1}\vartheta(x,yz,w)\alpha_x(\chi(y,z))^{-1}\cdot \\ &\quad \cdot \vartheta(x,y,z) \\ &= \alpha_x(\alpha_y(\chi(z,w)))\alpha_x(\chi(y,zw))\chi(x,yzw)\chi(xyz,w)^{-1}\chi(x,yz)^{-1}\alpha_x(\chi(y,z))^{-1}\cdot \\ &\quad \cdot \alpha_x(\chi(y,z))\chi(x,yz)\chi(xy,z)^{-1}\chi(x,y)^{-1} \\ &= \alpha_x(\alpha_y(\chi(z,w)))\alpha_x(\chi(y,zw))\chi(x,yzw)\chi(xyz,w)^{-1}\chi(xy,z)^{-1}\chi(x,y)^{-1} \\ &= \alpha_x(\alpha_y(\chi(z,w)))\alpha_x(\chi(y,zw))\chi(x,yzw)\chi(xyz,w)^{-1}\chi(x,y)^{-1} \\ &= \alpha_x(\alpha_y(\chi(z,w)))\vartheta(x,y,zw)\chi(xyz,w)^{-1}\chi(xy,z)^{-1}\chi(x,y)^{-1} \\ &= \alpha_x(\alpha_y(\chi(z,w)))\vartheta(x,y,zw)\chi(xyz,w)^{-1}\chi(xy,z)^{-1}\chi(x,y)^{-1} \\ &= \alpha_x(\alpha_y(\chi(z,w)))\vartheta(x,y,zw)\chi(xyz,w)^{-1}\chi(xy,z)^{-1}\chi(x,y)^{-1} \\ &= \chi(x,y)\alpha_{xy}(\chi(z,w))\chi(xy,zw)\chi(xyz,w)^{-1}\cdot \\ &\quad \cdot \chi(xy,z)^{-1}\chi(x,y)^{-1}\vartheta(x,y,zw) \\ &= \chi(x,y)\vartheta(xy,z,w)\chi(x,y)^{-1}\vartheta(x,y,zw) \\ &= \chi(x,y)\vartheta(xy,z,w)\chi(x,y,zw). \end{split}$$

(c) If, for each $x \in G$, also $\alpha'_x \in \operatorname{Aut}(K)$ is chosen such that $\alpha'_x \operatorname{Inn}(K) = \omega(x)$, and if, for each $x, y \in G$, an element $\chi'(x, y) \in K$ is chosen such that $\alpha'_x \circ \alpha'_y = c_{\chi'(x,y)} \circ \alpha'_{xy}$, then there exists a function $f \colon G \to K$ such that

 $\alpha'_x = c_{f(x)} \circ \alpha_x$. This implies

$$\begin{aligned} \alpha'_x \circ \alpha'_y &= c_{f(x)} \circ \alpha_x \circ c_{f(y)} \circ \alpha_y \\ &= c_{f(x)} \circ \alpha_x \circ c_{f(y)} \circ \alpha_x^{-1} \circ \alpha_x \circ \alpha_y \\ &= c_{f(x)} \circ c_{\alpha_x(f(y))} \circ c_{\chi(x,y)} \circ \alpha_{xy} \\ &= c_{f(x)\alpha_x(f(y))\chi(x,y)} \circ c_{f(xy)}^{-1} \circ \alpha'_{xy} \\ &= c_{f(x)\alpha_x(f(y))\chi(x,y)f(xy)^{-1}} \circ \alpha'_{xy} \,, \end{aligned}$$

and we obtain

$$\chi'(x,y) = f(x)\alpha_x(f(y))\chi(x,y)f(xy)^{-1}g(x,y)$$

for all $x, y \in G$ with a function $g \colon G \times G \to Z(K)$. For all $x, y, z \in G$, the corresponding function

$$\vartheta'(x,y,z) := \alpha'_x(\chi'(y,z))\chi'(x,yz)\chi'(xy,z)^{-1}\chi'(x,y)^{-1}$$

then satisfies

$$\begin{split} \vartheta'(x,y,z) &= f(x)\alpha_x \Big(f(y)\alpha_y(f(z))\chi(y,z)f(yz)^{-1}g(y,z) \Big) f(x)^{-1} \cdot \\ &\cdot f(x)\alpha_x(f(yz))\chi(x,yz)f(xyz)^{-1}g(x,yz) \cdot \\ &\cdot g(xy,z)^{-1}f(xyz)\chi(xy,z)^{-1}\alpha_{xy}(f(z))^{-1}f(xy)^{-1} \cdot \\ &\cdot g(x,y)^{-1}f(xy)\chi(x,y)^{-1}\alpha_x(f(y))^{-1}f(x)^{-1} \\ &= f(x)\alpha_x(f(y))\alpha_x(\alpha_y(f(z)))\alpha_x(\chi(y,z)) \cdot \\ &\cdot \chi(x,yz)\chi(xy,z)^{-1}\alpha_{xy}(f(z)^{-1})\chi(x,y)^{-1}\alpha_x(f(y)^{-1})f(x)^{-1} \cdot \\ &\cdot \alpha_x(g(y,z))g(x,yz)g(xy,z)^{-1}g(x,y)^{-1} \\ &= f(x)\alpha_x(f(y))\alpha_x(\alpha_y(f(z)))\vartheta(x,y,z)\chi(x,y)\alpha_{xy}(f(z)^{-1}) \cdot \\ &\cdot \chi(x,y)^{-1}\alpha_x(f(y)^{-1})f(x)^{-1}(\partial_{\zeta}^2(g))(x,y,z) \\ &= f(x)\alpha_x(f(y))\alpha_x(\alpha_y(f(z)))\alpha_x(\alpha_y(f(z)^{-1})) \cdot \\ &\cdot \alpha_x(f(y)^{-1})f(x)^{-1}\vartheta(x,y,z)(\partial_{\zeta}^2(g))(x,y,z) \\ &= \vartheta(x,y,z)(\partial_{\zeta}^2(g))(x,y,z) \,, \end{split}$$

which shows that the cohomology classes $[\vartheta]$ and $[\vartheta']$ coincide.

8.5 Definition Let $\omega: G \to \operatorname{Out}(K)$ be a homomorphism and let $\zeta := \operatorname{res}_{Z(K)}^{K} \circ \omega \in \operatorname{Hom}(G, \operatorname{Aut}(Z(K)))$. The element $[\vartheta] \in H^{3}_{\zeta}(G, Z(K))$ defined in Theorem 8.4 is called the *obstruction* of ω .

8.6 Theorem Let $\omega : G \to \operatorname{Out}(K)$ be a group homomorphism and let $\zeta := \operatorname{res}_{Z(K)}^{K} \circ \omega \in \operatorname{Hom}(G, \operatorname{Aut}(Z(K)))$. Then, $\operatorname{Par}_{\omega}(G, K) \neq \emptyset$ if and only if the obstruction $[\vartheta] \in H^{3}_{\zeta}(G, Z(K))$ of ω is trivial.

Proof First assume that $\operatorname{Par}_{\omega}(G, K) \neq \emptyset$ and let $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$. Then we have

$$\omega(x) = \alpha_x \operatorname{Inn}(K), \ \alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy} \text{ and} \\ \alpha_x(\kappa(y,z))\kappa(x,yz)\kappa(xy,z)^{-1}\kappa(x,y)^{-1} = 1,$$

for all $x, y, z \in G$. This implies that we may define the obstruction $[\vartheta]$ of ω using the elements $\alpha_x \in \operatorname{Aut}(K)$ and $\kappa(x, y) \in K$ for $x, y \in G$, and that $[\vartheta] = 1$.

Conversely, if we choose elements $\alpha_x \in \operatorname{Aut}(K)$ such that $\omega(x) = \alpha_x \operatorname{Inn}(K)$ for all $x \in G$, and elements $\chi(x, y) \in K$ such that $\alpha_x \circ \alpha_y = c_{\chi(x,y)} \circ \alpha_{xy}$ for all $x, y \in G$, then we obtain the obstruction $[\vartheta] \in H^3_{\zeta}(G, Z(K))$ of ω from the 3-cocycle $\vartheta(x, y, z) := \alpha_x(\chi(y, z))\chi(x, yz)\chi(xy, z)^{-1}\chi(x, y)^{-1} \in Z(K)$, for $x, y, z \in G$. Since $[\vartheta] = 1$, there exists an element $\varphi \colon G \times G \to Z(K)$ such that $\vartheta = d^2_{\zeta}(\varphi)$. We set $\kappa(x, y) := \varphi(x, y)^{-1}\chi(x, y)$ for $x, y \in G$ and show that $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$. In fact, for all x, y, z in G we have

$$\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy}$$

and

$$\begin{split} \kappa(x,y)\kappa(xy,z) &= \varphi(x,y)^{-1}\chi(x,y)\varphi(xy,z)^{-1}\chi(xy,z) \\ &= \varphi(x,y)^{-1}\varphi(xy,z)^{-1}\chi(x,y)\chi(xy,z) \\ &= \varphi(x,yz)^{-1}\alpha_x(\varphi(y,z))^{-1}(\partial_{\zeta}^2(\varphi))(x,y,z)\chi(x,y)\chi(xy,z) \\ &= \varphi(x,yz)^{-1}\alpha_x(\varphi(y,z))^{-1}\vartheta(x,y,z)\chi(x,y)\chi(xy,z) \\ &= \varphi(x,yz)^{-1}\alpha_x(\varphi(y,z))^{-1}\alpha_x(\chi(y,z))\chi(x,yz) \\ &= \alpha_x(\kappa(y,z))\kappa(x,yz) \,, \end{split}$$

which completes the proof.

9 The Theorem of Schur-Zassenhaus

9.1 Definition Let π be a set of primes. We denote by π' the set of primes not contained in π .

(a) Let $n \in \mathbb{N}$. If $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is the prime factorization of n then the π -part n_{π} of n is defined as $\prod_{p_i \in \pi} p_i^{\alpha_i}$. One has $n = n_{\pi} n_{\pi'}$.

(b) A finite group G is called a π -group, if $|G|_{\pi} = |G|$. For an arbitrary finite group G we call a subgroup $H \leq G$ a π -subgroup, if H is a π -group. A subgroup $H \leq G$ is called a Hall π -subgroup of G if $|H|_{\pi} = |G|_{\pi}$. A subgroup $H \leq G$ is called a Hall subgroup of G if it is a Hall π -subgroup for some π . This is obviously equivalent to gcd(|H|, [G : H]) = 1.

(c) For every element g of a finite group G there exist unique elements g_{π} and $g_{\pi'}$ of G such that $\langle g_{\pi} \rangle$ is a π -subgroup, $\langle g_{\pi'} \rangle$ is a π' -subgroup, and $g_{\pi}g_{\pi'} = g = g_{\pi'}g_{\pi}$. These elements are called the π -part and the π' -part of g. One has $g_{\pi}, g_{\pi'} \in \langle g \rangle$.

(d) For every finite group G there exists a largest normal π -subgroup of G. It will be denoted by $O_{\pi}(G)$.

9.2 Remark Let G be a finite group and let π be a set of primes. It is easy to see that $O_{\pi}(G)$ is characteristic in G. Considering the group Alt(5) and $\pi = \{2, 5\}$ or $\pi = \{3, 5\}$ one sees that in general Hall π -subgroups do not exist.

9.3 Theorem Let G be a finite group. Then the following are equivalent: (i) G is solvable.

(ii) For every $N \triangleleft G$ there exists a prime p such that $O_p(G/N) > 1$.

Proof (i) \Rightarrow (ii): We may assume that N = 1 and G > 1. Since G is solvable, there exists $n \in \mathbb{N}$ such that $G^{(n)} = 1$ and $G^{(n-1)} > 1$. Then $G^{(n-1)}$ is abelian. Let p be a prime divisor of $|G^{(n-1)}|$, then the set $U := \{x \in G^{(n-1)} \mid x^p = 1 \text{ is a non-trivial characteristic } p$ -subgroup of $G^{(n-1)}$ and therefore normal in G. This implies $O_p(G) \ge U > 1$.

(ii) \Rightarrow (i): By (ii) there exist primes p_1, \ldots, p_r and normal subgroups N_0, N_1, \ldots, N_r of G such that $1 = N_0 < N_1 < \cdots < N_r = G$ and $N_i/N_{i-1} = O_{p_i}(G/N_{i-1})$ for each $i = 1, \ldots, r$. Since N_i/N_{i-1} is solvable for $i = 1, \ldots, r$, also G is solvable.

9.4 Remark Let G be a finite group. If U is a Hall π -subgroup of G for some π , then $H \leq G$ is a complement of U in G if and only if H is a Hall π' -subgroup of G.

9.5 Theorem (Schur-Zassenhaus) Let G be a finite group and assume that $H \leq G$ is a normal Hall π -subgroup of G. Then:

(a) There exists a complement of H in G.

(b) If H or G/H is solvable, any two complements of H in G are conjugate in G.

Proof In the case that H is abelian, Parts (a) and (b) are immediate from Corollary 7.2.

From now on we assume that H is not abelian. We will show (a) and (b) by induction on |G|. If G = 1, the assertions are trivial. Therefore, we assume |G| > 1 and we also assume that (a) and (b) hold for every group of order smaller than |G|. Finally we may assume that |H| > 1. This will be done in 7 steps.

Claim 1: If U < G, then $U \cap H$ has a complement in U. Proof: $U \cap H$ is normal in U and a π -subgroup of U. Moreover, $U/U \cap H \cong UH/H$ implies $[U : U \cap H] \mid [G : H]$. Therefore, $U \cap H$ is a normal Hall π -subgroup of U and, by induction, has a complement in U.

Claim 2: If $1 < N \triangleleft G$, then HN/N has a complement in G/N. Proof: HN/N is normal in G/N and $HN/N \cong H/H \cap N$ implies that HN/N is a π -subgroup of G/N. Moreover, [G/N : HN/N] = [G : HN] is a π' -number and HN/N is a normal Hall π -subgroup of G/N. Now, by induction the claim follows.

Claim 3: If H has a subgroup 1 < N < H which is normal in G, then (a) and (b) hold. Proof: (a) By Claim 2, HN/N = H/N has a complement U/Nin G/N, where $N \leq U \leq G$. One has U < G, since otherwise U/N = G/Nimplies H/N = N/N and N = H. By Claim 1, $U \cap H$ has a complement K in U. We show that K is also a complement of H in G. We have $KH = K(U \cap H)H = UH = G$ and $K \cap H = 1$, since $K \cong U/U \cap H \cong UH/H \leq G/H$ implies that K is a π' -group.

(b) Assume that K and K' are complements of H in G. Then KN/N and K'N/N are complements of the normal Hall π -subgroup H/N or G/N in G/N. In fact, (KN/N)(H/N) = KHN/N = G/N and $KN/N \cong K/K \cap N$ is a π' -group. With H or G/H also H/N or $(G/N)/(H/N) \cong G/H$ are

solvable. By induction there exists $g \in G$ such that

$$KN/N = gN(K'N/N)g^{-1}N = gK'Ng^{-1}/N = gK'g^{-1}N/N$$
,

and therefore, $KN = gK'g^{-1}N$. But now K and $gK'g^{-1}$ are complements of the normal Hall π -subgroup N of KN in KN. Moreover, if H or G/H is solvable, then N or $KN/N \cong K \cong G/H$ are solvable. Again by induction, the groups K and $gK'g^{-1}$ are conjugate in KN. Therefore, K and K' are conjugate in G.

Claim 4: If $O_p(H) > 1$ for some prime p, then (a) and (b) hold. Proof: If $O_p(H) < H$, this follows from Claim 3, since $O_p(H)$ is characteristic in Hand therefore normal in G. If $O_p(H) = H$, then H is a p-group and we can consider the characteristic subgroup $\Phi(H)$ of H which is again normal in G. since H is not abelian, we have $1 < \Phi(H) < H$. Now Claim 3 applies and (a) and (b) hold.

Claim 5: If H is solvable, then (a) and (b) hold. *Proof:* This follows immediately from Theorem 9.3 and Claim 4.

Claim 6: Part (a) holds. Proof: Let p be a prime divisor of |H| and let P be a Sylow p-subgroup of H. By Claim 4 we may assume that P is not normal in G. Then $U = N_G(P) < G$. By Claim 1 there exists a complement K of $U \cap H$ in U. The Frattini-Argument implies that $G = HU = H(U \cap H)K = HK$. Moreover, $K \cong U/U \cap H \cong UH/H = G/H$ is a π' -group. This implies that K is a complement of H in G.

Claim 7: Part (b) holds. Proof: By Claim 5 we may assume that G/His solvable. By Theorem 9.3, there exists a prime p such that $O_p(G/H) > 1$. Write $O_p(G/H) = R/H$ with $H < R \trianglelefteq G$. Let K and K' be two complements of H in G. Then we have $(K \cap R)H = KH \cap R = G \cap R = R$ with $H \cap (K \cap R) = 1$. Since $p \nmid |H|$ and $K \cap R \cong K \cap R/K \cap R \cap H \cong$ $(K \cap R)H/H = R/H$ is a p-group, $1 \neq K \cap R$ is a Sylow p-subgroup of R. Similarly, $K' \cap R$ is a Sylow p-subgroup of R. Therefore, there exists $g \in R$ such that $K \cap R = g(K' \cap R)g^{-1} = gK'g^{-1} \cap gRg^{-1} = gK'g^{-1} \cap R$. Set $V := N_G(K \cap R)$. Since $K \cap R \trianglelefteq K$ and $K \cap R = gK'g^{-1} \cap R \oiint gK'g^{-1}$, we have $\langle K, gK'g^{-1} \rangle \leqslant V$. We observe that K is a complement of the normal Hall π -subgroup $V \cap H$ of V in V, since $K(V \cap H) = V \cap KH = V \cap G = V$, |K| = |G/H|, and $|V \cap H| \mid |H|$. Similarly, $gK'g^{-1}$ is a complement of $V \cap H$ in V. Note that with G/H also $V/V \cap H \cong VH/H \leqslant G/H$ is solvable. If V < G, then K and $gK'g^{-1}$ are conjugate in V by induction, and K and K' are conjugate in G. Therefore, we may assume that V = G and we set $M := K \cap R \trianglelefteq G$. Since K and $gK'g^{-1}$ are complements of H in G, K/M and $gK'g^{-1}/M$ are complements of the normal Hall π -subgroup HM/M of G/M in G/M; in fact, (K/M)(HM/M) = KHM/M = G/M with K/M a π '-group and $HM/M \cong H/(H \cap M)$ a π -group, and similar for $gK'g^{-1}/M$. Moreover, $(G/M)/(HM/M) \cong G/HM \cong (G/H)/(HM/H)$ is solvable. By induction, K/M and $gK'g^{-1}/M$ are conjugate in G/M. But then also K and $gK'g^{-1}$ are conjugate in G. This implies that K and K' are conjugate in G and finishes the proof of the theorem.

9.6 Remark Feit and Thompson proved the celebrated *Odd-Order-Theorem* stating that every finite group of odd order is solvable. Therefore, the solvability condition in Theorem 8.5(b) is always satisfied.

10 The π -Sylow Theorems

Throughout this Section let G denote a finite group and π a set of primes.

10.1 Definition (a) G is called π -separable, if G has a normal series

$$1 = G_0 \leqslant G_1 \leqslant \dots \leqslant G_r = G$$

such that each factor G_i/G_{i-1} , i = 1..., r, is a π -group or a π' -group.

(b) G is called π -solvable, if G has a normal series each of whose factors is a solvable π -groups or an arbitrary π' -groups.

10.2 Remark (a) G is π -separable if and only if G is π '-separable.

(b) If G is π -solvable, then G is π -separable.

(c) With the Odd-Order-Theorem of Feit and Thompson we see that if G is π -separable, then G is π -solvable or π' -solvable.

(d) Subgroups and factor groups of π -separable (resp. π -solvable) groups are again π -separable (resp. π -solvable).

(e) If G is π -solvable and $1 \leq H_0 \leq H_1 \leq G$ are subgroups such that H_1/H_0 is a π -group, then H_1/H_0 is solvable.

(f) One has: G is solvable \iff G is π -solvable for all π . In fact, if G is solvable then, by Theorem 9.3 G has a normal series whose factors are pgroups. Therefore, G is π -solvable for every π . Conversely, if G is π -solvable for $\pi := \{p \mid p \mid |G|\}$, then the claim follows from part (e).

(g) If $N \leq G$ and $H \leq G$ is a Hall π -subgroup of G, then HN/N is a Hall π -subgroup of G/N and $H \cap N$ is a Hall π -subgroup of N. In fact, $HN/N \cong H/(N \cap H \text{ and } H \cap N \text{ are } \pi$ -groups and [G/N : HN/N] = [G : HN] | [G : H] and $[N : H \cap N] = [HN : H] | [G : H]$ are π '-numbers.

10.3 Theorem (\pi-Sylow Theorem, Ph. Hall 1928) (a) If G is π -separable, then there exist Hall π -subgroups and Hall π '-subgroups in G.

(b) If G is π -solvable, any two Hall π -subgroups and any two Hall π' -subgroups are conjugate in G.

(c) If G is π -solvable, then any π -subgroup (resp. π' -subgroup) of G is contained in some Hall π -subgroup (resp. Hall π' -subgroup).

Proof We prove the statements by induction on |G|. If G = 1, all assertions are clearly true. Now let G > 1. Since G is π -separable, we have $O_{\pi}(G) > 1$ or $O_{\pi'}(G) > 1$. Let $N := O_{\pi}(G) > 1$ or $N := O_{\pi'}(G) > 1$.

(a) By induction there exists a Hall π -subgroup H/N of G/N. Then [H:N] is a π -number and [G:H] is a π' -number. If N is a π -group, then H is a Hall π -subgroup of G. If N is a π' -group, then by the Theorem of Schur-Zassenhaus it has a complement K in H. Therefore, K is π -group and $[G:K] = |G|/(|H|/|N|) = [G:H] \cdot |N|$ is a π' -number. Therefore, K is a Hall π -subgroup of G. Similarly, there exists a Hall π' -subgroup of G.

(b) Let $\mu = \pi$ or $\mu = \pi'$ and U and V be two Hall μ -subgroup of G. Then UN/N and VN/N are Hall μ -subgroups of G/N by Remark 10.2(g). By induction, there exists $g \in G$ such that $gUNg^{-1} = VN$ and so $gUg^{-1}N = VN$. If also N is a μ -group, then $|VN| = |V||N|/|V \cap N|$ is a μ -number and therefore, VN = V. This implies $N \leq V$, $gUg^{-1} \leq VN = V$, and $gUg^{-1} = V$. If N is a μ' -number, then $|gUg^{-1}| = |V|$ and |N| are coprime. This implies $V \cap N = gUg^{-1} \cap N = 1$ so that V and gUg^{-1} are complements of the normal Hall μ -group N of $VN = gUg^{-1}N$. Now either $VN/N \cong V$ or N is a π -group and by Remark 10.2(e) solvable. By Schur-Zassenhaus, the complements gUg^{-1} and V are conjugate in VN. Therefore, U and V are conjugate in G.

(c) Let $\mu = \pi$ or $\mu = \pi'$ and let $U \leq G$ be a μ -subgroup. Moreover, let $H \leq G$ be a Hall μ -subgroup of G (which exists by (a)). Then $UN/N \cong U/(U \cap N)$ is a μ -subgroup of G/N and by induction and by (b) there exists $g \in G$ such that $UN \leq gHg^{-1}N$, since HN/N is a Hall μ -subgroup of G/N by Remark 10.2(g). If N is a μ -group, then $gHg^{-1}N = gHg^{-1}$ and $U \leq UN \leq gHg^{-1}N = gHg^{-1}$. If N is a μ' -group, then $U \cap N = 1$. Moreover, $UN = UN \cap gHg^{-1}N = (UN \cap gHg^{-1})N$ and $V \cap N = 1$, where $V := UN \cap gHg^{-1}$. Therefore, U and V are two complements of the normal Hall μ' -subgroup N of UN = VN. Moreover, N or $UN/N \cong U$ is a π -group and solvable by Remark 10.2(e). Therefore, by Schur-Zassenhaus, there exists $x \in UN$ such that $U = xVx^{-1} = x(UN \cap gHg^{-1})x^{-1} \leq (xg)H(xg)^{-1}$.

10.4 Remark By the Odd-Order-Theorem of Feit-Thompson, it would be enough to require G to be π -separable in Theorem 10.3(b) and (c).

10.5 Corollary Let G be solvable and let π be arbitrary. Then G has a Hall π -subgroup, any two Hall π -subgroups of G are conjugate in G, and any π -subgroup of G is contained in a Hall π -subgroup.

Proof Clear with Theorem 10.3 and Remark 10.2(f).

10.6 Lemma Let $U, V \leq G$.

(a) If $\mathcal{R} \subseteq U$ is a set of representatives for the cosets $U/U \cap V$, then $UV = \bigcup_{x \in \mathcal{R}} xV$ and $|UV| = |U| \cdot |V|/|U \cap V|$.

(b) One has $UV \leq G$ if and only if UV = VU.

(c) One has $[G : U \cap V] \leq [G : U][G : V]$ with equality if and only if UV = G.

(d) If [G:U] and [G:V] are coprime, then $[G:U \cap V] = [G:U] \cdot [G:V]$ and UV = G.

Proof (a) Obviously, $xV \subseteq UV$ for each $x \in \mathcal{R}$. Conversely, if $u \in U$, then there exists $x \in \mathcal{R}$ and $y \in U \cap V$ such that u = xy. Therefore, uV = xyV = xV. Disjointness: Let $x, x' \in \mathcal{R}$ and let $v, v' \in V$ such that xv = x'v'. Then $x'^{-1}x = v'v^{-1} \in U \cap V$. This implies x' = x. The remaining formula follows from the established equality: $|UV| = |\mathcal{R}| \cdot |V| = |U||V|/|U \cap V|$.

(b) If UV is a subgroup of G, then $vu \in UV$ for all $u \in U$ and all $v \in V$. Therefore, $VU \subseteq UV$. By the formula in (a) one has |UV| = |VU| and therefore UV = VU. Conversely, if UV = VU, then with $u, u' \in U$ and $v, v' \in V$ also $(uv)(u'v')^{-1} = uvv'^{-1}u'^{-1} \in UVU = UUV = UV$. This implies that UV is a subgroup of G.

(c) By (a) we have

$$[G:U \cap V] = \frac{|G|}{|U \cap V|} = \frac{|G| \cdot |UV|}{|U| \cdot |V|} \le \frac{|G| \cdot |G|}{|U| \cdot |V|} = [G:U] \cdot [G:V],$$

with equality if and only if UV = G.

(d) Since $[G:U] | [G:U \cap V]$ and $[G:V] | [G:U \cap V]$, and since [G:U] and [G:V] are coprime, we obtain $[G:U] \cdot [G:V] | [G:U \cap V]$. Now (c) implies (d).

10.7 Lemma If G has three solvable subgroups H_1, H_2, H_3 of pairwise coprime indices, then G is solvable.

Proof We prove the assertion by induction on G. If G = 1, then G is solvable. Now we assume that G > 1. If $H_1 = 1$, then $H_2 = G$ and G is solvable. If $H_1 > 1$, then H_1 has a normal p-subgroup N > 1, for some prime p by Theorem 9.3. Since $[G : H_2]$ and $[G : H_3]$ are coprime, one of them is not divisible by p. By symmetry we may assume that $p \nmid [G : H_2]$. Set $D := H_1 \cap H_2$. Then, by Lemma 10.6, we have $H_1H_2 = G$ and $[G : H_1] \cdot [G : H_2] = [G : D] = [G : H_1] \cdot [H_1 : D]$. This implies $[G : H_2] = [H_1 : D]$.

Now $ND \leq H_1$ and $[ND : D] = [N : N \cap D]$ is a *p*-power which divides $[H_1 : D] = [G : H_2]$. This implies ND = D and $N \leq D$.

For all $g \in G$ we have $gNg^{-1} \leq H_2$; in fact, since $G = H_1H_2 = H_2H_1$, there exist $h_1 \in H_1$ and $h_2 \in H_2$ such that $g = h_2h_1$ and we obtain $h_2h_1Nh_1^{-1}h_2^{-1} = h_2Nh_2^{-1} \leq h_2Dh_2^{-1} \leq H_2$. This implies that 1 < I := $\langle \bigcup_{g \in G} gNg^{-1} \rangle \leq H_2$ and that I is a solvable normal subgroup of G. The group G/I has the solvable subgroups H_iI/I , i = 1, 2, 3, with pairwise coprime indices $[G/I : H_iI/I] = [G : H_iI] | [G : H_i]$. By induction, G/I is solvable, and with I also G is solvable.

10.8 Remark A famous theorem of Burnside states that every finite group of order $p^a q^b$, with primes p and q and with $a, b \in \mathbb{N}_0$, is solvable. A purely group theoretical proof of this result is quite lengthy. There is a more elegant proof using representation theory. We will use Burnside's Theorem in order to prove the following Theorem.

10.9 Theorem (Ph. Hall, 1937) Let $|G| = p_1^{e_1} \cdots p_r^{e_r}$ be the prime factor decomposition of |G|. If there exists for each $i \in \{1, \ldots, r\}$ a Hall p'_i -subgroup of G, then G is solvable.

Proof We prove the assertion by induction on r. If r = 0, then G = 1 and solvable. If r = 1, then G is a p-group and solvable. If r = 2, then G is solvable by Burnside's Theorem. Now assume that $r \ge 3$. For $i \in \{1, \ldots, r\}$ let H_i be a Hall p'_i -subgroup of G. For $i \ne j$ in $\{1, \ldots, r\}$, we set $V_{ij} := U_i \cap U_j$. Then, by Lemma 10.6(d), $[G: U_{ij}] = p_i^{e_i} p_j^{e_j}$ and $[H_i: U_{ij}] = p_j^{e_i}$. Therefore, each H_i satisfies the hypothesis of the theorem with r-1 prime divisors. By induction, each H_i is solvable. By Lemma 10.7, G is solvable.

10.10 Corollary The following assertions are equivalent:

- (i) G is solvable.
- (ii) G has Hall π -subgroups for each π .
- (iii) G has Hall p'-subgroups for each prime p.

Proof (i) \Rightarrow (ii): This follows from the π -Sylow Theorem.

(ii) \Rightarrow (iii): This is trivial.

(iii) \Rightarrow (i): This follows from Theorem 10.9.

10.11 Theorem Let G be solvable, let p_1, \ldots, p_r be the prime divisors of G, and let H_i be a Hall p'_i -subgroup of G for $i = 1, \ldots, r$. Then for each $i = 1, \ldots, r$, the group $P_i := \bigcap_{j \neq i} H_j$ is a Sylow p_i -subgroup of G such that $P_i P_j = P_j P_i$ for all $i, j \in \{1, \ldots, r\}$.

Proof The assertion is clear for r = 0 and r = 1. If r = 2, by Lemma 10.6(d) and (b) we have $P_1P_2 = G = P_2P_1$. From now on we assume that $r \ge 3$. For every $\pi \subseteq \{p_1, \ldots, p_r\}$, the subgroup $\bigcap_{p_i \in \pi} H_i$ is a Hall π' -subgroup of G. In fact, this follows from repeated use of Lemma 10.6(d). In particular, for $i \ne j$ in $\{1, \ldots, r\}$, the group $G_{ij} := \bigcap_{k \in \{1, \ldots, r\} \setminus \{i, j\}} H_k$ is a Hall $\{p_i, p_j\}$ -subgroup of G, and $P_i := G_{ij} \cap H_j$ (resp. $P_j := G_{ij} \cap H_i$) is a Sylow p_i -subgroup (resp. Sylow p_j -subgroup) of G_{ij} and of G. As in the case r = 2 we obtain $P_iP_j = G_{ij} = P_jP_i$.

10.12 Definition Let $|G| = p_1^{e_1} \cdots p_r^{e_r}$ be the prime factor decomposition of |G| with $p_1 < \cdots < p_r$.

(a) A tuple (P_1, \ldots, P_r) consisting of Sylow p_i -subgroups P_i of G, $i = 1, \ldots, r$, is called a *Sylow system* of G if $P_i P_j = P_j P_i$ for all $i, j \in \{1, \ldots, r\}$.

(b) A tuple (K_1, \ldots, K_r) consisting of Hall p'_i -subgroups of $G, i = 1, \ldots, r$, is called a *Sylow complement system* of G.

10.13 Proposition Assume the notation from the previous definition and let $\pi \subseteq \{p_1, \ldots, p_r\}$. Let (P_1, \ldots, P_r) be a Sylow system of G. Then $\prod_{p_i \in \pi} P_i$ is a Hall π -subgroup of G.

Proof The equalities $P_iP_j = P_jP_i$ for $i, j \in \{1, \ldots, r\}$ imply by repeated use of Lemma 10.6(b) that $\prod_{p_i \in \pi} P_i$ is a subgroup of G. Moreover, by induction on $|\pi|$ it is easy to see that $\prod_{p_i \in \pi} P_i$ is a Hall π -subgroup of G. In fact, if $|\pi| = 0$ or $|\pi| = 1$, this is clear, and if $|\pi| > 1$ we choose $p_{i_0} \in \pi$ and set $\tilde{\pi} := \pi \setminus \{p_{i_0}\}$. Then, by induction, $\prod_{p_i \in \tilde{\pi}} P_i$ is a Hall $\tilde{\pi}$ -subgroup of Gso that $(\prod_{p_i \in \tilde{\pi}} P_i) \cap P_{i_0} = 1$. Now Lemma 10.6(a) implies that $\prod_{p_i \in \pi} P_i = (\prod_{p_i \in \tilde{\pi}} P_i)P_{i_0}$ is a Hall π -subgroup of G.

10.14 Corollary The following assertions are equivalent:

- (i) G is solvable.
- (ii) G has a Sylow system.
- (iii) G has a Sylow complement system.

Proof By Theorem 10.11, (i) implies (ii). Moreover, by Proposition 10.13, (ii) implies (iii). Finally, by Corollary 10.10, (iii) implies (i). \Box

10.15 Remark Let S denote the set of Sylow systems of G, let \mathcal{K} denote the set of Sylow complement systems of G, and assume that $p_1 < \cdots < p_r$ are the prime divisors of |G|. Then, the maps

$$\mathcal{S} \underset{\psi}{\overset{\varphi}{\longleftrightarrow}} \mathcal{K}$$
$$(P_1, \dots, P_r) \mapsto (\prod_{i \neq 1} P_i, \dots, \prod_{i \neq r} P_i)$$
$$\bigcap_{i \neq 1} K_i, \dots, \bigcap_{i \neq r} K_i) \longleftrightarrow (K_1, \dots, K_r)$$

are well-defined inverse bijections. In fact, by Proposition 10.13, φ is welldefined, and by the arguments in the proof of Theorem 10.11, ψ is welldefined. If $(P_1, \ldots, P_r) \in S$, and $K_j := \bigcap_{i \neq j} P_i$, then $P_{i_0} \leq \bigcap_{j \neq i_0} K_j$ for all $i_0 = 1, \ldots, r$. This implies $P_i = \bigcap_{j \neq i} K_j$, since both groups are Sylow p_i subgroups of G. On the other hand, if $(K_1, \ldots, K_r) \in \mathcal{K}$ and $P_j := \bigcap_{i \neq j} K_i$, then $\prod_{j \neq i_0} P_j \leq K_{i_0}$ for all $i_0 = 1, \ldots, r$. This implies $\prod_{j \neq i} P_j = K_i$, since both groups are Hall p'_i -subgroups of G.

Note that \mathcal{S} and \mathcal{K} are G-sets under the conjugation action of G and that φ and ψ are isomorphisms of G-sets.

10.16 Theorem (a) Let (P_1, \ldots, P_r) and (Q_1, \ldots, Q_r) be Sylow systems of G. Then there exists $g \in G$ such that $gP_ig^{-1} = Q_i$ for all $i \in \{1, \ldots, r\}$.

(b) Let (K_1, \ldots, K_r) and (L_1, \ldots, L_r) be Sylow complement systems of G. Then there exists $g \in G$ such that $gK_ig^{-1} = L_i$ for all $i \in \{1, \ldots, r\}$.

Proof Let $|G| = p_1^{e_1} \cdots p_r^{e_r}$.

(

(b) By the π -Sylow theorem, for fixed $i \in \{1, \ldots, r\}$ all Hall p'_i -subgroups of G are conjugate in G. In particular, G has $[G : N_G(K_i)]$ Hall p'_i -subgroups and $[G : N_G(K_i)]$ divides $[G : K_i] = p^{e_i}$. Therefore, the number of Sylow complement systems of G is $k := \prod_{i=1}^r [G : N_G(K_i)]$. Since $[G : N_G(K_i)]$, $i = 1, \ldots, r$, are pairwise coprime, repeated application of Lemma 10.6(d) yields

$$k = \prod_{i=1}^{r} [G : N_G(K_i)] = [G : \bigcap_{i=1}^{r} N_G(K_i)].$$

Therefore, the stabilizer of (K_1, \ldots, K_r) in G has index k in G, which implies that the G-orbit of (K_1, \ldots, K_r) contains all Sylow complement systems.

(a) This follows immediately from part (b) and Remark 10.15, since the maps φ and ψ are inverse isomorphisms of *G*-sets.

10.17 Theorem (Hall-Higman 1.2.3) Let G be a π -separable group and assume that $O_{\pi'}(G) = 1$. Then $C_G(O_{\pi}(G)) \leq O_{\pi}(G)$.

Proof We set $C := C_G(O_\pi(G))$ and $B := C \cap O_\pi(G)$. It suffices to show that B = C. We assume that B < C and will derive a contradiction. Note that B and C are normal in G and that B is a π -group. Since C/B is a non-trivial π -separable group, it has a non-trivial characteristic subgroup K/B which is a π -group or a π' -group. Therefore $K/B \trianglelefteq G/B$ and $K \trianglelefteq G$. First we consider the case that K/B is a π -group. Since B is a π -group, also K is a π -group. Since $K \trianglelefteq G$, we obtain $K \leqslant O_{\pi}(G)$ and $K \leqslant O_{\pi}(G) \cap C = B$, in contradiction to K/B > 1. Next consider the case that K/B is a π' -group. Then, by Schur-Zassenhaus, the normal Hall π -subgroup B of K has a complement H, and since K/B > 1, we have H > 1. We have $H \leqslant C = C_G(O_{\pi}(G)) \leqslant C_G(B)$. Thus, B centralizes H. Since K = BH, this implies that $H \trianglelefteq K$. Thurs $1 < H \leqslant O_{\pi'}(K) \trianglelefteq G$. This is a contradiction to the hypothesis $O_{\pi'}(G) = 1$.

10.18 Definition For a π -separable group G we define its π -length as the minimum number of factors that are π -groups in any normal series of G in which each factor is either a π -group or a π' -group. For example G has π -length 0 if and only if G is a π' -group. And, G has π -length 1 if and only if G has a normal series $1 = G_0 \leq G_1 < G_2 \leq G_3 = G$ such that G_1 is a π' -group, G_2/G_1 is a non-trivial π -group and G_3/G_2 is a π' -group.

10.19 Theorem Let G be a π -separable group and suppose that a Hall π -subgroup of G is abelian. Then the π -length of G is at most 1.

Proof Set $\overline{G} := G/\mathcal{O}_{\pi'}(G)$. Then $\mathcal{O}_{\pi'}(\overline{G}) = 1$. Let H be an abelian Hall π -subgroup of G. Then $\overline{H} = H\mathcal{O}_{\pi'}(G)/\mathcal{O}_{\pi'}(G)$ is a Hall π -subgroup of \overline{G} , and it contains every normal π -subgroup of \overline{G} . In particular, it contains $\mathcal{O}_{\pi}(\overline{G})$. Since \overline{H} is abelian, we have $\overline{H} \leq C_{\overline{G}}(\mathcal{O}_{\pi}(\overline{G})) \leq \mathcal{O}_{\pi}(\overline{G})$, where the last containment follows from Hall-Higman. This implies $\overline{H} = \mathcal{O}_{\pi}(\overline{G})$ and $\overline{H} \leq \overline{G}$. This shows that $1 \leq \mathcal{O}_{\pi'}(G) \leq H\mathcal{O}_{\pi'}(G) \leq G$ is a normal sequence

whose first and third factor is a π' -group and whose second factor is a π -group.

11 Coprime Action

Throughout this section let G and A be finite groups. We assume that A acts by group automorphisms on G. We denote this action by $(a, g) \mapsto {}^{a}g$. The resulting semi-direct product will be denoted by $\Gamma := G \rtimes A$. Recall that $(g, a)(h, b) = (g {}^{a}h, ab)$ for $g, h \in G$ and $a, b \in A$. We will view G and S as subgroups of Γ via the usual embeddings and then have $\Gamma = GA = AG$ with $A \cap G = 1$. Recall that

$$C_A(G) = \{a \in A \mid {}^a g = g \text{ for all } g \in G\} \leq A$$

denotes the kernel of the action of A on G and

$$C_G(A) = \{g \in G \mid {}^a g = g \text{ for all } a \in A\} \leqslant G$$

denotes the A-fixed points of G, previously also denoted by G^A .

11.1 Remark (a) We will often consider a set X on which A and G acts. We will denote these actions by $(a, x) \mapsto a \cdot x$ and $(g, x) \mapsto g \cdot x$. It is easy to verify that the map

$$\Gamma \times X \to X$$
, $(ga, x) \mapsto g \cdot (a \cdot x)$,

defines an action of Γ on X if and only if the the actions of A and G on X are compatible in the following sense:

$$a \cdot (g \cdot x) = {}^{a}g \cdot (a \cdot x) \tag{11.1.a}$$

for $x \in X$, $a \in A$ and $g \in G$.

(b) Assume that the compatibility condition (11.1.a) is satisfied. We will denote the A-fixed points of X by

$$X^A := \{ x \in X \mid \ ^a x = x \text{ for all } a \in A \}.$$

It is easy to see that X^A is stable under the action of $C_G(A) = G^A$.

11.2 Lemma (Glauberman) Assume that G and A act on a set X such that (11.1.a) is satisfied. Moreover assume that gcd(|G|, |A|) = 1, that G acts transitively on X and that G or A is solvable. Then the following hold:

- (a) The set of A-fixed points X^A is non-empty.
- (b) The action of G^A on X^A is transitive.

Proof (a) Let $x \in X$ and set $U = \Gamma_x$ denote the stabilizer of x in Γ . We claim that $GU = UG = \Gamma$. In fact, if $\gamma \in \Gamma$ then, by the transitivity of the action of G on X there exists $g \in G$ such that $\gamma \cdot x = g \cdot x$. Thus, $g^{-1}\gamma \in U$ and the claim is proved. Since

$$U/U \cap G \cong GU/G = \Gamma/G \cong A$$
,

 $U \cap G$ is a normal Hall subgroup of U. By Schur-Zassenhaus, $U \cap G$ has a complement H in U. Then $|H| = [U : U \cap G] = |A|$ and H is also a complement of G in Γ . Again by Schur-Zassenhaus, A is conjugate to H in Γ and there exists $\gamma \in \Gamma$ such that $A = {}^{\gamma}H$. Since H stabilizes x, A stabilizes $\gamma \cdot x$ and $\gamma \cdot x \in X^A$.

(b) Let x and y be arbitrary elements in X^A . Set $M := \{g \in G \mid g \cdot x = y\}$. Since G acts transitively on X, the subset M of G is non-empty. Moreover, set $H := G_y$, the stabilizer of y in G. Then H acts by left multiplication on M. Also, M is A-stable, since ${}^a\!m \cdot x = {}^a\!m \cdot (a \cdot x) = a \cdot (m \cdot x) = a \cdot y = y$. Therefore, M is a left A-set and a left H-set and gcd(|H|, |A|) = 1. We want to apply Part (a) to this situation. The actions of A and H on M satisfy (11.1.a), since ${}^a(hm) = {}^a\!h {}^a\!m$ for all $a \in A$, $h \in H$ and $m \in M$ (because A acts on G by group automorphisms). Finally, H acts transitively on M, since for $m, n \in M$ we have $m \cdot x = y = n \cdot x$ and therefore, $mn^{-1} \in G_y = H$ which implies that m = hn for some $h \in H$. Now Part (a) implies that there exists an A-fixed point on M, i.e., an element $m \in M$ which is also in G^A . \Box

Note that, since A acts on G via group automorphisms, A also acts on the set of subgroups of G, and also on the set of subgroups of G of a fixed order, by ${}^{a}H := \{ {}^{a}h \mid h \in H \}$ for $a \in A$ and $H \leq G$. In particular, A acts on $\operatorname{Syl}_{p}(G)$ for every prime p of G. We say that H is A-invariant if ${}^{a}H = H$ for all $a \in A$.

11.3 Theorem Assume that gcd(G, A) = 1 and that G or A is solvable. Moreover, let p be a prime. Then the following hold:

(a) There exists an A-invariant Sylow p-subgroup of G.

(b) Any two A-invariant Sylow p-subgroups of G are conjugate by an element in G^A .

(c) Every A-invariant p-subgroup of G is contained in some A-invariant Sylow p-subgroup of G.

Proof Parts (a) and (b) follow immediately from Lemma 11.2. In fact, A and G act on $X := \operatorname{Syl}_p(G)$, G acts transitively on X, and the compatibility condition (11.1.a) is satisfied: ${}^{a}g \cdot (a \cdot P) = {}^{a}g({}^{a}P) = {}^{a}({}^{g}P) = a \cdot (g \cdot P)$, for all $a \in A$, $g \in G$ and $P \in \operatorname{Syl}_p(G)$.

(c) It suffices to show that every maximal A-invariant p-subgroup P of G is a Sylow p-subgroup of G. Set $N := N_G(P)$ and note that with P also N is A-invariant. By Part (a) (applied to N instead of G), we may choose an A-invariant Sylow p-subgroup S of N. Since P is normal in N, we have $P \leq S$. Since P was a maximal A-invariant p-subgroup of G, we have P = S and P is a Sylow p-subgroup of N. But this implies that P is a Sylow p-subgroup of G. In fact assume this is not the case; then P is properly contained in some Sylow p-subgroup T of G and $Q := N_T(P) > P$, since T is nilpotent. Thus, $Q \leq N_G(P)$, contradicting the fact that P is a Sylow p-subgroup of N.

Since A acts on G by automorphisms, we have for every $a \in A$ and $g, h \in G$: g and h are conjugate in G if and only if ^ag and ^ah are conjugate in G. This implies that for every conjugacy class K of G the subset ^aK := $\{ {}^{a}g \mid g \in K \}$ is again a conjugacy class of G. Thus, A acts on the set cl(G) of conjugacy classes of G. If $K \in cl(G)^{A}$, we also say that K is A-invariant.

11.4 Theorem Assume that gcd(|G|, |A|) = 1 and that A or G is solvable. Then the map

$$\operatorname{cl}(G)^A \to \operatorname{cl}(G^A), \quad K \mapsto K \cap G^A,$$

is a well-defined bijection.

Proof Let $K \in cl(G)^A$. We first show that $K \cap G^A$ is a conjugacy class of G^A . We will apply Glauberman's Lemma 11.2 to the set X = K on which G acts transitively by conjugation and on which A acts, since K is A-invariant. It is straightforward to verify that the compatibility condition (11.1.a) holds: For $a \in A$, $g \in G$ and $x \in K$, the left hand side equals ${}^a(gxg^{-1}) = {}^ag{}^ax({}^ag)^{-1}$ and the last expression equals the right hand side in (11.1.a). By Glauberman's Lemma, $K^A = K \cap G^A$ is not empty and it is a single orbit under the G^A -conjugation action. Therefore, $K \cap G^A \in cl(G^A)$. Next we show that the map in the theorem is surjective. Let $L \in cl(G^A)$ and let $x \in L$. Let $K \in cl(G)$ denote the conjugacy class of x. Then K is Ainvariant, since it contains the A-fixed point x. By the previous paragraph, $K \cap G^A$ is a single conjugacy class of G^A . But since it contains x, it is equal to L.

Finally, we show that the map in the theorem is injective. Assume that K_1 and K_2 are A-invariant conjugacy classes of G with $K_1 \cap G^A = K_2 \cap G^A$. By the first part of the proof, this latter is a non-epmty set. This implies that K_1 and K_2 have non-empty intersection. Therefore, $K_1 = K_2$.

Since A acts on G, it acts on the set of subsets of G via ${}^{a}Y = \{ {}^{a}y \mid y \in Y \}$ for $a \in A$ and $Y \subseteq G$. Since A acts on G via group automorphisms, it also acts on the set of subgroups. We say that a subset Y of G is A-invariant it it is a fixed point under this action, i.e., if ${}^{a}y \in Y$ for all $a \in A$ and $y \in Y$. In this case, A also acts on Y, and if Y is a subgroup of G then A acts on Y via group automorphisms. If the subgroup Y of G is A-stable then A also acts on the set G/Y of left cosets of Y and on the set $Y \setminus G$ of right cosets of Y.

11.5 Theorem Assume that $H \leq G$ is an A-invariant subgroup of G, that gcd(|A|, |H|) = 1 and that A or H is solvable. Then, the A-invariant left (or right) cosets of H are precisely those that contain an A-fixed point.

Proof Clearly, if a coset contains an A-fixed point g then it is equal to gH (or Hg) and it is A-invariant. Conversely, assume that the coset gH is A-invariant (right cosets can be treated similarly). We can consider X := gH as a left A-set and also as a left H-set via $h \cdot (gh') := gh'h^{-1}$, for $h, h' \in H$. Note that H acts transitively on X. We verify that the compatibility condition (11.1.a) is satisfied. For $h' \in H$, $a \in A$ and $x \in X$, its left hand side equals $a \cdot (h \cdot gh') = {}^agh'h^{-1} = {}^agh'({}^ah)^{-1}$ and the last expression is equal to ${}^ah \cdot (a \cdot gh')$. By Glauberman's Lemma 11.2 X has an A-fixed point. This completes the proof.

If N is an A invariant normal subgroup of G then A acts on G/N via group automorphisms by ${}^{a}gN = {}^{a}g{}^{a}N = {}^{a}gN$, for $a \in A$ and $g \in G$.

11.6 Corollary Let N be an A-invariant normal subgroup of G and assume that gcd(|A|, |N|) = 1 and that A or N is solvable. Then $(G/N)^A = G^A N/N$.

Proof This follows immediately from Theorem11.5, since $(G/N)^A$ is the set of A-invariant cosets of N and $G^A N/N$ is the set of cosets of N which contain an A-fixed point.

Since the Frattini subgroup $\Phi(G)$ is characteristic in G, it is an A-stable normal subgroup of G and the action of A on G induces an action of A on $G/\Phi(G)$ via group automorphisms.

11.7 Corollary Assume that $gcd(|A|, |\Phi(G)|) = 1$ and that A acts trivially on $G/\Phi(G)$. Then A acts trivially on G.

Proof It suffices to show that for every element $a \in A$ the cyclic subgroup $B := \langle a \rangle$ of A acts trivially on G. Note that with A also B acts trivially on $G/\Phi(G)$ and since B is solvable, we can apply Corollary 11.6 to G, $\Phi(G)$ and B to obtain $G^B \Phi(G)/\Phi(G) = (G/\Phi(G))^B = G/\Phi(G)$. The correspondence theorem implies $G^B \Phi(G) = G$ and Lemma 2.3 implies that $G^B = G$. Therefore, B acts trivially on G.

11.8 Corollary Assume that $gcd(|A|, |\Phi(G)|) = 1$ and that the action of A on G is faithful. Then the action of A on $G/\Phi(G)$ is faithful.

Proof Let *B* denote the kernel of the action of *A* on $G/\Phi(G)$. Then Corollary 11.7 implies that *B* acts trivailly on *G*. But since *A* acts faithfully on *G* we obtain B = 1. But this means that *A* acts faithfully on $G/\Phi(G)$.

12 Commutators

Throughout this section we fix a group G.

12.1 Definition (a) For $x, y \in G$ we define their *commutator* by $[x, y] := xyx^{-1}y^{-1}$. For $n \ge 3$ and elements x_1, \ldots, x_n in G we define their commutator recursively by

$$[x_1, \ldots, x_n] := [x_1, [x_2, \ldots, x_n]].$$

(b) For subgroups X and Y of G we define their commutator [X, Y] as the subgroup generated by all commutators [x, y] for $x \in X$ and $y \in Y$. For $n \ge 3$ and subgroups X_1, \ldots, X_n of G we define their commutator recursively by

$$[X_1, \ldots, X_n] := [X_1, [X_2, \ldots, X_n]]$$

Warning: In general, $[X_1, \ldots, X_n]$ is not generated by the elements $[x_1, \ldots, x_n]$ with $x_i \in X_i$ for $i = 1, \ldots, n$.

12.2 Proposition Let x, y and z be elements of G, let X and Y be subgroups of G and let N be a normal subgroup of G.

(a) One has $[y, x] = [x, y]^{-1}$ and [X, Y] = [Y, X].

(b) One has $[x, yz] = [x, y] \cdot {}^{y}[x, z]$.

(c) One has $[X, Y] \trianglelefteq \langle X, Y \rangle$.

(d) If $f: G \to H$ is a group homomorphism then f([x, y]) = [f(x), f(y)]and f([X, Y]) = [f(X), f(Y)].

(e) One has [xN, yN] = [x, y]N and [X, Y]N/N = [XN/N, YN/N] in G/N.

(f) One has $[X, Y] \leq Y$ if and only if $X \leq N_G(Y)$.

Proof (a) $[x, y][y, x] = xyx^{-1}y^{-1}yxy^{-1}x^{-1} = 1$. By definition, [X, Y] is generated by the elements [x, y] with $x \in X$ and $y \in Y$, and [Y, X] is generated by their inverses. Therefore, [X, Y] = [Y, X].

(b) We have $[x, y] \cdot {}^{y}\![x, z] = (xyx^{-1}y^{-1})(yxzx^{-1}z^{-1}y^{-1}) = xyzx^{-1}z^{-1}y^{-1} = [x, yz].$

(c) For $x \in X$ and $y, y' \in Y$, Part (a) yields $[x, yy'] = [x, y] \cdot {}^{y}[x, y']$, and therefore ${}^{y}[x, y'] = [x, y]^{-1} \cdot [x, yy'] \in [X, Y]$. This shows that Y normalizes [X, Y]. For the same reason, X normalizes [Y, X]. But [Y, X] = [X, Y], by Part (a). Therefore, the group $\langle X, Y \rangle$ normalizes [X, Y]. Obviously, $[X, Y] \leq \langle X, Y \rangle$. (d) We have $f([x, y]) = f(xyx^{-1}y^{-1}) = f(x)f(y)f(x)^{-1}f(y)^{-1} = [f(x), f(y)]$. Since [X, Y] is generated by the elements [x, y] with $x \in X$ and $y \in Y$, the group f([X, Y]) is generated by the elements f([x, y]) = [f(x), f(y)] with $x \in X$ and $y \in Y$. Thus, f([X, Y]) = [f(X), f(Y)].

(e) This follows immediately from part (e) applied to the natural epimorphism $f: G \to G/N, g \mapsto gN$.

(f) For $x \in X$ and $y \in Y$ one has $[x, y] = {}^{x}y \cdot y^{-1}$ and therefore ${}^{x}y = [x, y] \cdot y$. This shows that $[x, y] \in Y$ if and only if ${}^{x}y \in Y$ and the result follows.

12.3 Lemma Let A be an abelian normal subgroup of G and suppose that G/A is cyclic. Then $G' = [G, A] \leq A$ and

$$G' \cong A/(A \cap Z(G)).$$

In particular, if A is finite then G' is finite and $|A| = |G'| \cdot |A \cap Z(G)|$.

Proof Let $g \in G$ be such that $G/A = \langle gA \rangle$. Since A is normal in G, we have $[G, A] \leq A$ and we can define the function $\theta \colon A \to A, a \mapsto [g, a]$. By Proposition 12.2(b), and since A is abelian, we have [g, ab] = [g, a][g, b] for all $a, b \in A$. Thus, θ is a homomorphism. Moreover, $\ker(\theta) = C_A(g) = C_A(G) = A \cap Z(G)$, and $\theta(A) \leq [G, A] \leq G'$. We will show that $G' \leq \theta(A)$ and all statements in the lemma will follow. To that end it suffices to show that $\theta(A)$ is normal in G and that $G/\theta(A)$ is abelian. Since $\theta(A) \leq A$ and A is abelian, $\theta(A)$ is normalized by A. Moreover, for $a \in A$ we have ${}^g\!\theta(a) = {}^g\![g, a] = [{}^g\!g, {}^g\!a] = [g, {}^g\!a] = \theta({}^g\!a) \in \theta(A)$. Therefore, $\theta(A)$ is normal in G. Finally, set $\overline{G} \coloneqq G/\theta(A)$. Note that \overline{G} is generated by \overline{g} and the elements \overline{a} for $a \in A$. In order to show that \overline{G} is abelian it suffices to show that $[\overline{g}, \overline{a}] = \overline{1}$. But $[\overline{g}, \overline{a}] = \overline{[g, a]} = \overline{\theta(a)} = \overline{1}$.

12.4 Lemma For $x, y, z \in G$ one has the Hall-Witt identity

$${}^{y}[x, y^{-1}, z] \cdot {}^{z}[y, z^{-1}, x] \cdot {}^{x}[z, x^{-1}, y] = 1.$$

Proof Straightforward computation.

12.5 Lemma (3 subgroup lemma) Let X, Y and Z be subgroups of G. If [X, Y, Z] = 1 and [Y, Z, X] = 1 then [Z, X, Y] = 1.

Proof It suffices to show that $[X, Y] \in C_G(Z)$. Since $C_G(Z)$ is a subgroup of G, it suffices to show that $[x, y] \in C_G(Z)$ for all $x \in X$ and $y \in Y$. For this it suffices to show that [z, x, y] = 1 for all $x \in X, y \in Y$ and $z \in Z$. This follows now from the hypothesis and the Hall-Witt identity. \Box

12.6 Corollary (3 subgroup corollary) Let N be a normal subgroup of G and let X, Y, Z be subgroups of G. If $[X, Y, Z] \leq N$ and $[Y, Z, X] \in N$ then $[Z, X, Y] \in N$.

Proof This follows immediately from Proposition 12.2(e) and the 3 subgroup lemma applied to G/N.

12.7 Definition We recalibrate the lower central series of a group by setting $G^1 := G$, $G^2 := [G, G]$ and $G^n := [G, G, \ldots, G]$ with n entries G. Note that with the conventions in [P] we have $G^n = Z_{n-1}(G)$. Recall that G^n is characteristic in G for all $n \in \mathbb{N}$. We call any subgroup of n-fold commutators of copies of G a weight n commutator subgroup of G. For instance, [[[G,G],G],[[G,G],[[G,G],G]]] is a weight 8 commutator subgroup of G.

12.8 Theorem For any $i, j \in \mathbb{N}$ one has $[G^i, G^j] \leq G^{i+j}$.

Proof We proceed by induction on *i*. If i = 1 then $[G^i, G^j] = [G, G^j] = G^{j+1}$ by definition. Now assume that i > 1. Then we can write $G^i = [G, G^{i-1}]$ and have $[G^i, G^j] = [G^j, G^i] = [G^j, G, G^{i-1}]$. By the 3 subgroup corollary it suffices to show that $[G, G^{i-1}], G^j] \leq G^{i+j}$ and $[G^{i-1}, G^j, G] \leq G^{i+j}$. But, by induction, we have

$$[G, G^{i-1}, G^j] = [G, [G^{i-1}, G^j]] \leqslant [G, G^{i+j-1}]] = G^{i+j}$$

and

$$[G^{i-1}, G^j, G] = [G^{i-1}, [G^j, G]] = [G^{i-1}, [G, G^j]] = [G^{i-1}, G^{j+1}] \leqslant G^{i+j}$$

and the proof is complete.

12.9 Corollary Let $n \in \mathbb{N}$. Any weight n commutator subgroup of G is contained in G^n .

Proof We proceed by induction on n. For n = 1 and n = 2 the statement is obviously true. For n > 2 every weight n commutator subgroup of G is of the form [X, Y] where X is a weight i commutator subgroup of G and Yis a weight j commutator subgroup of G for positive integers i and j with i + j = n. By induction and by Theorem 12.8, we obtain $[X, Y] \leq [G^i, G^j] \leq$ $G^{i+j} = G^n$ and the proof is complete. \Box

12.10 Corollary For any $n \in \mathbb{N}_0$ one has $G^{(n)} \leq G^{2^n}$.

Proof We proceed by induction on *n*. For n = 0 we have $G^{(0)} = G = G^1 = G^{2^0}$. For n > 0 we have $G^{(n)} = [G^{(n-1)}, G^{(n-1)}] \leq [G^{2^{n-1}}, G^{2^{n-1}}] \leq G^{2^{n-1}+2^{n-1}} = G^{2^n}$ by induction and Corollary 12.9.

For the rest of this section let A denote a group and assume that A acts on G via automorphisms. As before we view A and G as subgroups of the resulting semidirect product Γ and note that inside Γ the conjugation action of A on G coincides with the original action of A on G.

12.11 Remark (a) A subgroup H of G is A-invariant and normal in G if and only if it is normal in Γ . In this case $[A, H] \leq H$, since A normalizes H, and moreover, [A, H] is again normal in AH. In fact, for $a, b \in A$ and $h, k \in H$ we have ${}^{a}[b, h] = [{}^{a}b, {}^{a}h] \in [A, H]$ (showing that A normalizes [A, H]) and $[a, hk] = [a, h] \cdot {}^{h}[a, k]$ (showing that ${}^{h}[a, k] \in [A, H]$ and therefore that also Hnormalizes [A, H]). In particular, [A, G] is an A-invariant normal subgroup of G. Iterating this process, one obtains a sequence

$$G \supseteq [A,G] \supseteq [A,A,G] \supseteq [A,A,A,G] \supseteq \cdots$$

of A invariant subgroups of G. In general the subgroups in this sequence are not normal in G. The next lemma will show that the induced A-action on each of the factor groups is trivial.

(b) If H is an A-invariant subgroup of G then the action of A on G induces an action of A on the set of left cosets, G/H, and also on the set of right cosets, $H \setminus G$, as already explained in the paragraph preceding Theorem 11.5. Moreover, if H is an A-invariant and normal subgroup of G, then the action of A on G induces an action of A on the group G/H via automorphisms.

12.12 Lemma The subgroup [A, G] of G is A-invariant and normal in G and the induced action of A on G/[A, G] is trivial. Conversely, assume that

N is a normal A-invariant normal subgroup of G such that the induced action of A on G/N is trivial. Then $[A, G] \leq N$.

Proof By Remark 12.11(a), we already know that [A, G] is an A-invariant and normal subgroup of G. Moreover, if N is any A-invariant normal subgroup of G then one has:

A acts trivially on
$$G/N \iff {}^{a}(Ng) = Ng$$
 for all $g \in G$ and all $a \in A$
 $\iff N \cdot {}^{a}g = Ng$ for all $g \in G$ and all $a \in A$
 $\iff {}^{a}gg^{-1} \in N$ for all $g \in G$ and all $a \in A$
 $\iff [a,g] \in N$ for all $g \in G$ and all $a \in A$
 $\iff [A,G] \leq N$.

This completes the proof.

- **12.13 Corollary** For any subgroup $H \leq G$ the following are equivalent: (i) Every left coset of H in G is A-invariant.
 - (ii) Every right coset of H in G is A-invariant.
 - (iii) $[A, G] \leq H$.

Proof (i) \iff (ii): If X is an A-stable subset of G then also $X^{-1} := \{x^{-1} \mid x \in X\}$ is A-stable. But $(gH)^{-1} = Hg^{-1}$ for all $g \in G$.

(ii) \Rightarrow (iii): The hypothesis implies in particular that H is A-invariant. Further, for every $a \in A$ and $g \in G$, we have $Hg = {}^{a}(Hg) = {}^{a}H{}^{a}g = H{}^{a}g$. This implies $[a,g] = {}^{a}gg^{-1} \in H$. Since a and g were arbitrary, we obtain $[A,G] \leq H$.

(iii) \Rightarrow (i): Every left coset of H in G is a union of left cosets of [A, G] in G. By Lemma 12.12, each coset of [A, G] in G is A-invariant (since A acts trivially on G/[A, G]). Thus, every left coset of H is A-invariant.

For $n \in \mathbb{N}$ we set $[A, \ldots, A, G]_n := [A, \ldots, A, G]$ where the last expression contains n copies of A.

12.14 Theorem Let $n \in \mathbb{N}$ and assume that $[A, \ldots, A, G]_n = 1$. Then $A^{(n-1)} \leq C_A(G)$. In particular, if A acts faithfully on G and $[A, \ldots, A, G]_n = 1$ then $A^{(n-1)} = 1$ and A is solvable.

Proof It suffices to show the first statement. The second statement follows immediately, since $C_A(G) = 1$ if A acts faithfully on G. We show the first statement by induction on n. If n = 1 then [A, G] = 1 and A acts trivially on G. Thus $A^{(0)} = A = C_A(G)$. Next we assume that n > 1 and that the statement holds for values smaller than n. We want to show that $A^{(n-1)} \leq C_A(G)$, or equivalently that $[G, A^{(n-1)}] = 1$. First note that the hypothesis yields $1 = [A, \ldots, A, G]_n = [A, \ldots, A, N]_{n-1}$ for N := [A, G]. By induction we obtain $A^{(n-2)} \leq C_A(N)$, or equivalently $1 = [A^{(n-2)}, N] = [A^{(n-2)}, A, G]$. In particular, we have $[A^{(n-2)}, A^{(n-2)}, G] = 1$. But then also $[A^{(n-2)}, G, A^{(n-2)}] = [A^{(n-2)}, A^{(n-2)}, G] = 1$. Now the 3 subgroup lemma implies $[G, A^{(n-2)}, A^{(n-2)}] = 1$, and $[G, A^{(n-1)}] = 1$, as desired.

12.15 Corollary Assume that A acts faithfully on G and that [A, A, G] = 1. Then A is abelian.

Proof This is immediate from Theorem 12.14 with n = 2.

For any group A we set $A^{\infty} := \bigcap_{n \in \mathbb{N}} A^n$. If A is finite then the descending sequence A^n of subgroups of A terminates and A^{∞} is the final subgroup in this sequence, i.e., $A^{\infty} = A^k = A^{k+1} = \cdots$ for some $k \in \mathbb{N}$.

12.16 Theorem Assume that A and G are finite. If $[A, \ldots, A, G]_n = 1$ for some positive integer n then $A^{\infty} \leq C_A(G)$. In particular, if A acts faithfully on G and $[A, \ldots, A, G]_n = 1$ for some positive integer n then A is nilpotent.

Proof We proceed by induction on |G|. If |G| = 1 then $C_A(G) = A$ and $A^{\infty} \leq A = C_A(G)$. Now we assume that |G| > 1. Then N := [A, G] < G, since otherwise $1 = [A, \ldots, A, G]_n = G$. Since $1 = [A, \ldots, A, G]_n = [A, \ldots, A, G]_n = [A, \ldots, A, G]_{n-1}$, we obtain by induction that $C_A(N) \leq A^{\infty}$, or equivalently, $[A^{\infty}, A, G] = [A^{\infty}, N] = 1$. We need to show that $[G, A^{\infty}] = 1$, or equivalently that $[G, A^{\infty}, A] = 1$, since $A^{\infty} = A^k = A^{k+1} = [A, A^k] = [A, A^{\infty}] = [A^{\infty}, A]$ for some $k \in \mathbb{N}$. By the 3 subgroup lemma it suffices to show that $[A, G, A^{\infty}] = 1$.

We claim that it suffices to find a normal subgroup C of G with $1 < C \leq G^A$. In fact, then we know that A acts on $\overline{G} := G/C$ and $[A, \ldots, A, \overline{G}]_n = [A, \ldots, A, \overline{G}]_n = \overline{[A, \ldots, A, G]_n} = \overline{[1]}$ and by induction we obtain $1 = [A^{\infty}, \overline{G}] = [A^{\infty}, \overline{G}]$. This implies $[A^{\infty}, G] \leq C$, and since A acts trivially on C we obtain $1 = [A, A^{\infty}, G] = [A, G, A^{\infty}]$, and the claim is proved.

We may assume that $[A^{\infty}, G] > 1$, since otherwise $A^{\infty} \leq C_A(G)$ and we are done. We set $C := C_{[A^{\infty},G]}(A)$. Then clearly, $C \leq G^A$. To see that C > 1, note that $[A, \ldots, A, [A^{\infty}, G]]_n \leq [A, \ldots, A, G] = 1$ but $[A^{\infty}, G] > 1$. Let $m \in \mathbb{N}_0$ be maximal with $[A, \ldots, A, [A^{\infty}, G]]_m > 1$, then this subgroup is centralized by A and it is contained in $[A^{\infty}, G]$. Therefore it is contained in C and C > 1.

Finally, we show that C is normal in G. First we claim that $[A^{\infty}, G]$ centralizes [A, G]. From the first paragraph we have $[A^{\infty}, A, G] = 1$ and therefore $[G, A^{\infty}, [A, G]] = [G, 1] = 1$. Moreover, $[A, G] \leq G$ and therefore $[[A, G], G] = [G, [A, G]] \leq [A, G]$. This implies $[A^{\infty}, [A, G], G] \leq [A^{\infty}, [A, G]] = 1$. The 3 subgroup lemma now implies that $[[A, G], G, A^{\infty}] = 1$, proving our claim. In particular, since $C \leq [A^{\infty}, G]$, we have [C, A, G] = 1. Since A centralizes C, we also have [G, C, A] = 1. The 3 subgroup lemma implies [A, G, C] = 1 so that [G, C] is centralized by A. Recall that $C \leq [A^{\infty}, G] \leq G$ and therefore $[G, C] \leq [G, [A^{\infty}, G]] \leq [A^{\infty}, G]$. But we just saw that A centralizes [C, G]. Thus, $[C, G] \leq C_{[A^{\infty}, G]}(A) = C$. This implies that G normalizes C and the proof is complete.

12.17 Lemma If [A, A, G] = 1 then [A, G] is abelian.

Proof We have [G, A, [A, G]] = [G, 1] = 1. Moreover, $[A, G] \trianglelefteq G$ implies $[A, [A, G], G] = [A, G, [A, G]] \leqslant [A, [A, G]] = 1$. By the 3 subgroup lemma we obtain [[A, G], [A, G]] = [[A, G], G, A] = 1 and [A, G] is abelian.

12.18 Theorem Assume that A and G are finite and that A is a p-group. If $[A, \ldots, A, G]_n = 1$ for some positive integer n then [A, G] is a p-group.

Proof We set N := [A, G] and recall from Lemma 12.12 that N is an A-invariant normal subgroup of G and that A acts trivially on G/N. We prove the theorem by induction on |G|. If |G| = 1 then N = 1 and N is a p-group. Now we assume that |G| > 1. Since $[A, \ldots, A, G]_n = 1$, we have $N \triangleleft G$. Moreover, $[A, \ldots, A, N]_{n-1} = 1$ and, by induction, [A, N] is a p-group. Again by Lemma 12.12, [A, N] is a normal A-invariant subgroup of N and A acts trivially on N/[A, N]. Set $U := O_p(N)$. Then $U \trianglelefteq N \triangleleft G$ implies that U is A-invariant and normal in G. We have $[A, N] \leqslant U \leqslant N$ and set $\overline{G} := G/U$. Then A acts trivially on \overline{N} since it acts trivially on N/[A, N]. Moreover, A acts trivially on G/N and on $\overline{G}/\overline{N}$. We obtain $1 = [A, \overline{N}] =$

 $[A, \overline{[A, G]}] = [A, A, \overline{G}]$ and by Lemma 12.17, $\overline{N} = [A, \overline{G}]$ is abelian. Since $O_p(\overline{N}) = 1$, we can conclude that \overline{N} is a p'-group. Now the hypotheses of Corollary 11.6 are satisfied for the subgroup \overline{N} of \overline{G} . Thus, every coset of \overline{N} in \overline{G} contains an A-fixed point. But also \overline{N} consists of A-fixed points. This implies that A acts trivially on \overline{G} . This implies $1 = [A, \overline{G}] = [\overline{A}, \overline{G}] = \overline{N}$ and $N \leq U$. Thus, N is a p-group.

12.19 Theorem Assume that A and G are finite and that $[A, \ldots, A, G]_n = 1$ for some positive integer n. Then [A, G] is nilpotent.

Proof We prove the theorem by induction on |A|. If |A| = 1 then [A, G] = 1 is nilpotent. We assume from now on that |A| > 1. We claim that every proper subgroup B of A acts trivially on G/F(G), where F(G) is the Fitting subgroup of G. In fact, $[B, \ldots, B, G]_n \leq [A, \ldots, A, G]_n = 1$ and the induction hypothesis implies that [B, G] is nilpotent. Since $[B, G] \leq G$, we obtain $[B, G] \leq F(G)$. Since B acts trivially on G/[B, G], it also acts trivially on $\overline{G} := G/F(G)$.

If A is generated by all its proper subgroups then A acts trivially on \overline{G} . This implies that $1 = [A, \overline{G}] = \overline{[A, G]}$ and $[A, G] \leq F(G)$. But then [A, G] is nilpotent. Therefore we may assume that A is not generated by its proper subgroups. Since A is generated by its Sylow subgroups for all prime divisors of |A|, A must be equal to a Sylow subgroup of A. Thus, A is a p-group and Theorem 12.18 applies to show that [A, G] is a p-group. This completes the proof.

13 Thompson's $P \times Q$ Lemma

Throughout this section, G and A denote groups and we assume that A acts on G via automorphisms. We view G and A as subgroups in the semidirect product $\Gamma := G \rtimes A$.

13.1 Lemma Assume that A and G are finite, that gcd(|A|, [A, G]) = 1, and that A or [A, G] is solvable. Then $G = A^G \cdot [A, G]$.

Proof This follows immediately from Lemma 12.12 and Corollary 11.6, since every coset of [A, G] in G is A-invariant and therefore contains an A-fixed point.

13.2 Lemma Assume that A and G are finite and that gcd(|A|, [A, G]) = 1. Then [A, A, G] = [A, G].

Proof Clearly $[A, A, G] \leq [A, G]$. To show the reverse inclusion it suffices to show that $[a, g] \in [A, A, G]$ for all $a \in A$ and $g \in G$. In a first step we assume that A is solvable. Then, by Lemma 13.1, we can write g = xc with $c \in G^A$ and $x \in [A, G]$. We obtain $[a, g] = [a, xc] = [a, x] \cdot {}^x[a, c] = [a, x] \in [A, A, G]$, since [a, c] = 1. In the general case (A not necessarily solvable), we work with $\langle a \rangle$ instead of A and obtain $[a, g] \in [\langle a \rangle, \langle a \rangle, G] \subseteq [A, A, G]$.

13.3 Corollary Assume that A and G are finite, that A acts faithfully on G and that $[A, \ldots, A, G]_n = 1$ for some $n \in \mathbb{N}$. Then every prime divisor of |A| also divides |G|.

Proof Let p be a prime divisor of |A| and assume that p does not divide |G|. For $P \in \operatorname{Syl}_p(A)$, repeated application of Lemma 13.2 yields $1 = [P, \ldots, P, G]_n = [P, G]$. This implies that P acts trivially on G, in contradiction to A acting faithfully on G.

13.4 Lemma Let p be a prime. Assume that A and G are p-groups and that G > 1. Then [A, G] < G and $G^A > 1$.

Proof Note that the semidirect product $\Gamma := G \rtimes A$ is again a *p*-group. Therefore, there exists $n \ge 2$ such that $\Gamma^n = 1$. This implies $[A, \ldots, A, G]_{n-1} \le \Gamma^n = 1$ with $n-1 \ge 1$. Since G > 1 and $[A, \ldots, A, G]_{n-1} = 1$, we have [A, G] < G and there exists an integer i > 0 such that $C := [A, \ldots, A, G]_{i-1} > 1$ but $[A, \ldots, A, G]_i = 1$. This implies $1 < C \leq G^A$.

13.5 Theorem (Thompson's $P \times Q$ Lemma) Let p be a prime. Assume that $A = P \times Q$, where P is a p-group and Q is a p'-group, and that G is a p-group. If $G^P \leq G^Q$ then $G^Q = G$.

Proof We prove the theorem by induction on |G|. If |G| = 1 then the clearly Q acts trivially on G. So assume that |G| > 1 and set $\Gamma := G \rtimes A$. By Lemma 13.4 we have [P,G] < G. Since A normalizes P and G, the subgroup [P,G] < G is A-invariant. Moreover, $[P,G]^P = G^P \cap [P,G] \leq G^Q \cap [P,G] = [P,G]^Q$. By induction we obtain that Q acts trivially on [P,G]. In other words, [Q,P,G] = 1. But also [G,Q,P] = 1, since [Q,P] = 1. By the 3 subgroup lemma we obtain [P,G,Q] = 1 and P acts trivially on [Q,G]. But then $[Q,G] = [Q,G]^P = [Q,G] \cap G^P \leq [Q,G] \cap G^Q = [Q,G]^Q$, which implies that Q centralizes [Q,G] and that [Q,Q,G] = 1. Now, Lemma 13.2 implies that [Q,Q,G] = [Q,G] = [Q,G] and the proof is complete.

13.6 Theorem Let p be a prime, let G be a p-solvable group, let P be a p-subgroup of G, and set $H := N_G(P)$. Then $O_{p'}(H) \leq O_{p'}(G)$.

Proof We set $Q := O_{p'}(H)$ and $N := O_{p'}(G)$. We first assume that N = 1and need to show that Q = 1. Note that both P and Q are normal subgroups of H and that $P \cap Q = 1$. Thus, $A := PQ = P \times Q$ is the internal direct product of P and Q. Moreover, A acts on the p-group $U := O_p(G) > 1$ by conjugation. We want to show that $C_U(P) \leq C_U(Q)$. Note that $C_U(P) =$ $U \cap C_G(P) \leq U \cap N_G(P) = U \cap H$ and that $U \cap H$ is a normal p-subgroup of H. Since Q is a normal p'-subgroup of H, $U \cap H$ and Q centralize each other. Therefore $C_U(P)$ and Q centralize each other. In other words, $C_U(P) \leq$ $C_G(Q) \cap U = C_U(Q)$, and we can apply Thompson's $P \times Q$ lemma. This yields [U,Q] = 1 or $Q \leq C_G(U)$. By the Higman-Hall 1.2.3 lemma, we have $C_G(U) \leq U$ and therefore $Q \leq U$. Since U is a p-group and Q is a p'-group, this implies Q = 1 as desired.

Now assume that $N = O_{p'}(\overline{G}) > 1$. Then $\overline{G} := G/N$ is *p*-solvable with $O_{p'}(\overline{G}) = 1$. We have $N_{\overline{G}}(\overline{P}) = \overline{N_G(P)} = \overline{H}$ (cf. Homework problem), since N is a normal p'-subgroup of G. By the first case applied to \overline{G} we have $O_{p'}(\overline{H}) = 1$. But $\overline{O_{p'}(H)} \leq O_{p'}(\overline{H})$ and therefore, $O_{p'}(H) \leq N = O_{p'}(G)$. This completes the proof.

13.7 Theorem Assume that A and G are finite, that gcd(|A|, |G|) = 1, and that G is abelian. Then $G = G^A \times [A, G]$.

Proof We already know that $G = G^A \cdot [A, G]$ by Lemma 13.1. Since G is abelian, it suffices to show that $G^A \cap [A, G] = 1$. Let $\theta \colon G \to G$ be defined as

$$\theta(g) := \prod_{a \in A} {}^{a}g.$$

Since G is abelian, this definition does not depend on the order of the product. Also, since G is abelian, θ is a group homomorphism. If $c \in G^A$ then $\theta(c) = c^{|}A|$. Moreover, for $a \in A$ and $g \in G$ we have $\theta({}^ag) = \prod b \in A {}^{ba}g = \theta(g)$ and therefore $\theta([a,g]) = \theta({}^ag)\theta(g^{-1} = \theta(g)\theta(g)^{-1} = 1$. This implies that $[A,G] \leq \ker(\theta)$. Now let $x \in G^A \cap [A,G]$. Then $1 = \theta(x) = x^{|A|}$. But since A and G have coprime orders, this implies x = 1 and the proof is complete. \Box

13.8 Corollary Let p be a prime. Assume that G is an abelian p-group and A is a p'-group. If A fixes every element of order p in G then A acts trivially on G.

Proof By Fitting's Theorem 13.7 we have $G = G^A \times [A, G]$ and every element of order p in G is already contained in G^A . Therefore, [A, G] is a p-group with no elements of order p. This implies [A, G] = 1 and $G^A = 1$. \Box

Our goal is to show that we can drop the assumption that G is abelian in the previous corollary. The following trick, due to Reinhold Baer, will come in handy.

13.9 Lemma (Baer trick) Let G be a finite nilpotent group of odd order with $G^3 = 1$ (i.e, $G' \leq Z(G)$). There exists a binary operation

$$G \times G \to G$$
, $(x, y) \mapsto x + y$,

with the following properties:

(i) (G, +) is an abelian group.

(ii) If $x, y \in G$ are commuting elements then x + y = xy.

(iii) The additive order of every element of G is equal to its multiplicative order.

(iv) $\operatorname{Aut}(G) \leq \operatorname{Aut}(G, +)$.

Proof Since G has odd order, there exists $n \in \mathbb{Z}$ with |G| + 1 = 2n. For $x, y \in G$, we define $x + y := [x, y]^n yx$.

We first show that x + y = y + x for $x, y \in G$. We need to show that $[x, y]^n xy = [y, x]^n xy$, or equivalently that $[x, y]^n = xyx^{-1}y^{-1}$. But this holds, since 2n = |G| + 1.

Next, assume that $x, y \in G$ are commuting elements. Then $x + y = [x, y]^n y x = xy$, since [x, y] = 1. This shows (ii).

Since 1 commutes with every x we have $x + 1 = x \cdot 1 = x$. Thus, 1 is an identity element with respect to +. Moreover, since x and x^{-1} commute, we have $x + x^{-1} = xx^{-1} = 1$. Next we show associativity of +. Note that, since $G' \leq Z(G)$, every commutator is central in G, and every triple commutator is trivial. Moreover, for every $x \in G$, the function $G \to G$, $y \mapsto [x, y]$, is a homomorphism. In fact, $[x, yz] = [x, y] \cdot {}^{y}[x, z] = [x, y][x, z]$ for $x, y, z \in G$. Similarly, [xy, z] = [x, z][y, z]. We have

$$\begin{aligned} x + (y + z) &= x + [y, z]^n zy = \left[x, [y, z]^n zy\right]^n \cdot [y, z]^n zyx \\ &= \left([x, [y, z]^n][x, z][x, y]\right)^n [y, z]^n zyx \\ &= \left([x, [y, z]]^n [x, z][x, y]\right)^n [y, z]^n zyx \\ &= [x, y]^n [x, z]^n [y, z]^n zyx \end{aligned}$$

and similarly

$$(x+y) + z = [x,y]^n yx + z = \left[[x,y]^n yx, z \right]^n \cdot z [x,y]^n yx$$

= $[x,y]^n [x,z]^n [y,z]^n zyx$

Thus, + is associative and (G, +) is an abelian group with identity element 1 and $-x = x^{-1}$. This shows (i).

To see (iii), note that (a) implies $n \cdot x = x^n$ for all positive integers n (by induction on n) and that additive and multiplicative identity coincide.

Finally, let $f \in Aut(G)$. Then

$$f(x+y) = f([x,y]^n yx) = f([x,y])^n f(y) f(x) = [f(x), f(y)]^n f(y) f(x)$$

= f(x) + f(y)

and (iv) follows. This completes the proof.

13.10 Theorem Let p be an odd prime. Assume that G is a p-group and that A is a p'-group. If A fixes every element of order p in G then A acts trivially on G.

Proof We prove the theorem by induction on |G|. If |G| = 1 then certainly A acts trivially on G. So assume from now on that |G| > 1. By induction, A acts trivially on every A-invariant proper subgroup H of G. In particular, if [A,G] < G then A acts trivially on [A,G] so that [A,A,G] = 1. But by Lemma 13.2 we have [A, G] = [A, A, G] = 1 and A acts trivially on G. Therefore, we can assume from now on that [A, G] = G. Since G is a nontrivial p-group we have G' < G. Moreover, since G' is characteristic in G, it is also A-invariant. We obtain, by induction, that [A, G'] = 1. In particular we have [G, A, G'] = 1. Moreover, since G' is normal in G, we have $[G, G'] \leq G'$, which implies $[A, G', G] = [A, G, G'] \leq [A, G'] = 1$. By the 3 subgroup lemma, we have [G', G, A] = 1. But since we assumed that [A, G] = G, we obtain [G', G] = 1. In other words, $G' \leq Z(G)$. By Lemma 13.9, G carries an abelian group structure (G, +) satisfying conditions (i)–(iv) in the Lemma. By (iv), the action of A on G is also an action on (G, +) via group automorphisms. By (iii), every element of (G, +) of order p is fixed by A. Thus, by Corollary 13.8, A acts trivially on (G, +) and on G.

13.11 Theorem Let p be an odd prime. Assume that A = PQ, where P is a p-subgroup of A and Q is a normal p'-subgroup of A, and assume that G is a p-group. If $G^P \leq G^Q$ then $G^Q = G$.

Proof First note that, since A normalizes G and Q, the subgroup [Q, G] of G is A invariant.

Our next goal is to prove the theorem in the case that G is abelian. In this case, by Fitting's Theorem, we have $G = G^Q \times [Q, G]$. Assume that [Q, G] > 1. Lemma 13.4 implies that $[Q, G]^P > 1$. But then the hypothesis of the theorem implies $[Q, G]^Q \ge [Q, G]^P > 1$. This implies $[Q, G] \cap G^Q = 1$, in contradiction to $G = G^Q \times [Q, G]$.

Now we prove the theorem for general G by induction on |G|. We can assume that |G| > 1. Note that if H is a proper A-invariant subgroup of G then H satisfies the hypothesis of the theorem and, by induction, Q acts trivially on H. We apply this to [Q, G]. So, if [Q, G] < G then [A, Q, G] =1. In particular, [Q, Q, G] = 1 and by Lemma 13.2 we obtain [Q, G] =[Q, Q, G] = 1 and we are done. So we can assume from now on that [Q, G] = G. Consider the proper A-invariant subgroup G' of G. By the above we obtain [Q, G'] = 1 and in particular [G, Q, G'] = 1 and $[Q, G', G] \leq [Q, G'] = 1$. The 3 subgroup lemma implies [G', Q, G] = 1 and since [Q, G] = G, we obtain [G', G] = 1. In other words, $G' \leq Z(G)$. Now we can again apply Baer's trick to see that Q acts trivially on G, since we have already proved the theorem in the case that G is abelian.

14 The Transfer Map

Throughout this section, G denotes a finite group.

14.1 Definition Let H and K be subgroups of G with $H' \leq K \leq H \leq G$ (in particular, H/K is abelian) and let $\mathcal{R} \subseteq G$ be a set of representatives for G/H. Then, for each $g \in G$ there exist unique elements $\rho(g) \in \mathcal{R}$ and $\eta(g) \in H$ such that $g = \rho(g)\eta(g)$. The function

$$V_{H/K}^G \colon G \to H/K \,, \quad g \mapsto \prod_{r \in \mathcal{R}} \eta(gr) K \,,$$

is called the *transfer map* from G to H/K (with respect to \mathcal{R}).

14.2 Proposition Using the notation of Definition 14.1, the function $V_{H/K}^G$ is a group homomorphism which does not depend on the choice of \mathcal{R} .

Proof Let \mathcal{R}' be another set of representatives of G/H and let $\rho': G \to \mathcal{R}'$ and $\eta': G \to H$ be such that $g = \rho'(g)\eta'(g)$ for all $g \in G$. Then there exists for each $r \in \mathcal{R}$ a unique $r' \in \mathcal{R}'$ such that rH = r'H and also a unique $h_r \in H$ such that $r' = rh_r$. For any $x \in G$ we therefore have $\rho'(x) = \rho(x)h_{\rho(x)}$. This implies

$$\eta'(gr') = \rho'(gr')^{-1}gr' = \rho'(gr')^{-1}grh_r = h_{\rho(gr)}^{-1}\rho(gr)^{-1}grh_r = h_{\rho(gr)}^{-1}\eta(gr)h_r ,$$

for all $g \in G$ and $r' \in \mathcal{R}'$. Therefore,

$$\prod_{r'\in\mathcal{R}'} \eta'(gr')K = \prod_{r\in\mathcal{R}} h_{\rho(gr)}^{-1} \eta(gr)h_r K$$
$$= \left(\prod_{r\in\mathcal{R}} \eta(gr)K\right) \left(\prod_{r\in\mathcal{R}} h_{\rho(gr)}K\right)^{-1} \left(\prod_{r\in\mathcal{R}} h_r K\right)$$
$$= \prod_{r\in\mathcal{R}} \eta(gr)K,$$

for all $g \in G$, since with r also $\rho(gr)$ runs through \mathcal{R} . This shows that $V_{H/K}^G$ does not depend on the choice of \mathcal{R} .

Next we show that $V_{H/K}^G$ is a homomorphism. Let $g_1, g_2 \in G$. Then, for every $r \in \mathcal{R}$ we have

$$\rho(g_1g_2r)H = g_1g_2rH = g_1\rho(g_2r)H = \rho(g_1\rho(g_2r))H$$

and therefore, $\rho(g_1g_2r) = \rho(g_1\rho(g_2r))$. This implies

$$\begin{split} V_{H/K}^{G}(g_{1}g_{2}) &= \prod_{r \in \mathcal{R}} \rho(g_{1}g_{2}r)^{-1}g_{1}g_{2}rK = \prod_{r \in \mathcal{R}} \rho(g_{1}\rho(g_{2}r))^{-1}g_{1}g_{2}rK \\ &= \prod_{r \in \mathcal{R}} \rho(g_{1}\rho(g_{2}r))^{-1}g_{1}\rho(g_{2}r)\rho(g_{2}r)^{-1}g_{2}rK = \prod_{r \in \mathcal{R}} \eta(g_{1}\rho(g_{2}r))\eta(g_{2}r)K \\ &= \left(\prod_{r \in \mathcal{R}} \eta(g_{1}\rho(g_{2}r))K\right) \left(\prod_{r \in \mathcal{R}} \eta(g_{2}r)K\right) = \left(\prod_{r \in \mathcal{R}} \eta(g_{1}r)K\right) \left(\prod_{r \in \mathcal{R}} \eta(g_{2}r)K\right) \\ &= V_{H/K}^{G}(g_{1})V_{H/K}^{G}(g_{2}) \,, \end{split}$$

and the proposition is proved.

14.3 Remark Let $H' \leq K \leq H \leq G$ be as in Definition 14.1. In order to calculate $V_{H/K}^G(g)$ for given $g \in G$, we can choose a set \mathcal{R} of representatives which depends on g and makes the computation easier. Note that $\langle g \rangle$ acts on G/H by left translations. Let r_1H, \ldots, r_sH be a set of representatives of the $\langle g \rangle$ -orbits and let d_i be the length of the orbit of r_iH , for $i = 1, \ldots, s$. Then

$$\mathcal{R} := \{r_1, gr_1, \dots, g^{d_1 - 1}r_1, r_2, gr_2, \dots, r_s, gr_s, \dots, g^{d_s - 1}r_s\} \subseteq G$$

is a set of representatives of G/H, $g^{d_i}r_i \in r_iH$, $r_i^{-1}g^{d_i}r_i \in H$ for all $i = 1, \ldots, s$, and

$$V_{H/K}^G(g) = \prod_{i=1}^s r_i^{-1} g^{d_i} r_i K$$

Note that $d_1 + \cdots + d_s = [G : H]$. If moreover, $r_i^{-1}g^{d_i}r_iK = g^{d_i}K$ for all $i = 1, \ldots, s$ (which holds for example if $g \in Z(G)$ or if $H \leq Z(G)$), then we obtain

$$V_{H/K}^G(g) = g^{[G:H]}K.$$

This implies that $G \to Z(G), g \mapsto g^{[G:Z(G)]}$, is a homomorphism.

14.4 Definition For $H \leq G$ we call the group

$$\operatorname{Foc}_{G}(H) := \langle [g,h] \mid g \in G, h \in H \text{ such that } [g,h] \in H \rangle$$

the *focal subgroup* of H with respect of G.

14.5 Remark Let $H \leq G$ and set $F := \operatorname{Foc}_G(H)$. Then it is clear that

$$H' \leqslant F \leqslant H \cap G' \leqslant H$$
.

Therefore, $F \trianglelefteq H$ and H/F is abelian. For $r \in G$ and $h \in H$ with $[r, h] \in H$ we have

$$rhr^{-1}F = rhr^{-1}h^{-1}Fh = [r, h]Fh = Fh = hF.$$

With Remark 14.3 we therefore have

$$V_{H/F}^G(h) = h^{[G:H]}F$$

for all $h \in H$.

14.6 Proposition Let $H \leq G$ and $F := Foc_G(H)$. If [G : H] and [H : F] are coprime, then the following assertions hold:

- (a) $H \cap \ker(V_{H/F}^G) = H \cap G' = \operatorname{Foc}_G(H).$
- (b) $H \ker(V_{H/F}^G) = G.$
- (c) $G/G' \cong HG'/G' \times \ker(V_{H/F}^G)/G'.$
- (d) $G/\ker(V_{H/F}^G) \cong H/F$.

Proof (a) Since H/F is abelian, also $G/\ker(V_{H/F}^G)$ is abelian by the Homomorphism Theorem. This implies $G' \leq \ker(V_{H/F}^G) =: N$ and $F \leq H \cap G' \leq$ $H \cap N$. On the other hand, if $h \in H \cap N$, then $1 = V_{H/F}^G(h) = h^{[G:H]}F$ by Remark 10.5. Since also $h^{[H:F]}F = 1$ and [G:H] and [H:F] are coprime, we obtain hF = F and $h \in F$.

(b) By (a) we have

$$|G/N| \ge |HN/N| = |H/H \cap N| = |H/F| \ge |G/N|.$$

Therefore, we have equality everywhere and HN = G.

(c) By (b) we have G/G' = (HG'/G')(N/G') and by (a) we have $N \cap HG' = (N \cap H)G' = FG' = G'$.

(d) From the proof of (b) we see that $V_{H/F}^G$ is surjective.

14.7 Definition Let $H \leq G$. We set $H_0 := H$ and $H_i := \operatorname{Foc}_G(H_{i-1})$ for $i \in \mathbb{N}$. If $H_n = 1$ for some $n \in \mathbb{N}_0$, then we say that H is hyperfocal in G.

14.8 Remark (a) If $H \leq G$ is hyperfocal in G and $K \leq H$, then also K is hyperfocal in G. In fact, this follows immediately from $\operatorname{Foc}_G(U) \leq \operatorname{Foc}_G(V)$, whenever $U \leq V \leq G$. Moreover, if $H \leq U \leq G$ and H is hyperfocal in G, then H is also hyperfocal in U. This follows immediately from $\operatorname{Foc}_U(V) \leq \operatorname{Foc}_G(V)$, whenever $V \leq U \leq G$.

(b) Assume the notation from Definition 14.7. Then $H^{i+1} \leq H_i$ for all $i \in \mathbb{N}_0$, where $H^{i+1} = [H, H, \dots, H]$ with i + 1 entries equal to H. In fact, $H^1 = H = H_0$ and if i > 0, then by induction and Part (a) we have

$$H^{i+1} = [H, H^i] = \langle \{ [h, x] \mid h \in H, x \in H^i \} \rangle$$

$$\leq \langle \{ [g, x] \mid g \in G, x \in H^i \text{ such that } [g, x] \in H^i \} \rangle$$

$$= \operatorname{Foc}_G(H^i) \leq \operatorname{Foc}_G(H_{i-1}) = H_i.$$

In particular, if H is hyperfocal in G then H is nilpotent.

14.9 Theorem If $H \leq G$ is a hyperfocal Hall subgroup of G, then H has a normal complement in G.

Proof We proof the assertion by induction on G. If G = 1, this is obvious. Therefore, we assume that G > 1. We may assume that H > 1. Since H is hyperfocal in G, $F := \operatorname{Foc}_G(H) < H$. Using Proposition 14.6, this implies $G/N \cong H/F > 1$ with $N := \ker(V_{H/F}^G)$ and therefore, N < G. The subgroup $H \cap N$ is again a Hall subgroup of N (by Remark 10.2(g)) and hyperfocal in N (by Remark 14.8). By induction, there exists a normal complement K of $H \cap N$ in N. As a normal Hall subgroup of N, K is characteristic in N and therefore normal in G. Moreover, $H \cap K = H \cap N \cap K = 1$, and finally, by Proposition 14.6, $HK = H(H \cap N)K = HN = G$.

14.10 Theorem Let H be a nilpotent Hall subgroup of G. Assume that any two elements of H which are conjugate in G are also conjugate in H. Then H has a normal complement in G.

Proof We set $H_0 := H$ and $H_i := \operatorname{Foc}_G(H_{i-1})$ for $i \in \mathbb{N}$. By Theorem 14.9, it suffices to show that $H_i = H^{i+1}$ for all $i \in \mathbb{N}_0$. We prove this by induction on *i*. For i = 0, this is clear. So let i > 0. By Remark 14.8(b), we have $H^{i+1} \leq H_i$. Conversely, if $g \in G$ and $h \in H_{i-1}$ such that $[g, h] \in H_{i-1}$, then $ghg^{-1} \in H_{i-1} \leq H$. By the hypothesis in the theorem there exists $k \in H$ such that $ghg^{-1} = khk^{-1}$. From this we obtain

$$[g,h] = ghg^{-1}h^{-1} = khk^{-1}h^{-1} = [k,h] \in [H,H_{i-1}] = [H,Z_{i-1}(H)] = Z_i(H),$$

and the result follows.

14.11 Lemma Let P be a Sylow p-subgroup of G and let $A, B \subseteq P$ be subsets such that $xAx^{-1} = A$ and $xBx^{-1} = B$ for all $x \in P$. If there exists $g \in G$ such that $gAg^{-1} = B$, then there also exists $n \in N_G(P)$ such that $nAn^{-1} = B$.

Proof Let $g \in G$ with $gAg^{-1} = B$. Then $P \leq N_G(A) = \{x \in G \mid xAx^{-1} = A\} \leq G$ and $P \leq N_G(B) = N_G(gAg^{-1}) = gN_G(A)g^{-1} \leq G$. Therefore, P and $g^{-1}Pg$ are Sylow p-subgroups of $N_G(A)$ and there exists $y \in N_G(A)$ with $yg^{-1}Pgy^{-1} = P$. Therefore, $n := gy^{-1} \in N_G(P)$ and $nAn^{-1} = gy^{-1}Ayg^{-1} = gAg^{-1} = B$.

14.12 Theorem (Burnside) Let P be a Sylow p-subgroup of G such that $N_G(P) = C_G(P)$ (in other words that $P \leq Z(N_G(P))$). Then P has a normal complement in G. In particular, G is not simple, unless P = 1 or |G| = p.

Proof Since $P \leq N_G(P) = C_G(P)$, *P* is abelian. By Lemma 14.11, any two elements $x, y \in P$ which are conjugate in *G* are also conjugate in $N_G(P) = C_G(P)$ and therefore equal. Now Theorem 14.10 implies the assertion.

14.13 Theorem If p is the smallest prime divisor of |G| and if a Sylow p-subgroup P of G is cyclic, then P has a normal complement in G.

Proof If P is cyclic of order p^n , then $|\operatorname{Aut}(P)| = p^{n-1}(p-1)$. The homomorphism $N_G(P) \to \operatorname{Aut}(P)$, mapping $n \in N_G(P)$ to the conjugation with n, induces a monomorphism $N_G(P)/C_G(P) \to \operatorname{Aut}(P)$. Since p is the smallest prime divisor of G, this implies that $N_G(P)/C_G(P)$ is a p-group. On the other hand, $P \leq C_G(P)$, since P is abelian, and $N_G(P)/C_G(P)$ is a p'-group. This implies $N_G(P) = C_G(P)$ and Theorem 14.12 completes the proof. \Box

14.14 Remark (a) If G has a cyclic Sylow 2-subgroup P > 1, then P has a normal complement K in G. In particular, G is not simple, unless |G| = 2. Since K has odd order, it is solvable by the Odd-Order-Theorem. Therefore, with $G/K \cong P$ also G is solvable. Using representation theory, one can also show that a finite group with a generalized quaternion Sylow 2-subgroup is not simple.

(b) Theorem 14.13 implies that every group of order 2n, with n odd, has a normal subgroup of order n.

14.15 Theorem If all Sylow subgroups of G are cyclic, then G is solvable.

Proof We prove the theorem by induction on |G|. The case |G| = 1 is trivial and we may assume that |G| > 1. Let p be the smallest prime divisor of |G|and let P be a Sylow p-subgroup of G. Then P has a normal complement K by Theorem 14.13. Again, every Sylow subgroup of K is cyclic, and by induction K is solvable. Therefore, with $G/K \cong P$, also G is solvable. \Box

14.16 Corollary If G is a group of square free order (i.e., $|G| = p_1 \cdots p_r$ with pairwise distinct primes p_1, \ldots, p_r), then G is solvable.

Proof This is immediate with Theorem 14.15.

14.17 Theorem If G is a non-abelian simple group and p is the smallest prime divisor of |G|. Then |G| is divisible by 12 or by p^3 .

Proof Let P be a Sylow p-subgroup of G. By Theorem 10.13, P is not cyclic. Therefore, $|P| \ge p^2$. If $|P| \ge p^3$ we are done. Therefore we assume from now on that $|P| = p^2$. Since P is not cyclic, P is elementary abelian. Therefore, $\operatorname{Aut}(P) \cong \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ and $|N_G(P)/C_G(P)|$ divides $|\operatorname{Aut}(P)| = p(p-1)^2(p+1)$. From Theorem 14.12 we know that $|N_G(P)/C_G(P)| > 1$. Since p is the smallest prime dividing |G| and since $P \le C_G(P)$, we obtain that $|N_G(P)/C_G(P)|$ divides p+1. Since p is the smallest prime dividing |G|, also p+1 has to be prime and we obtain p = 2 and $|N_G(P)/C_G(P)| = 3$. This implies that |G| is divisible by 12.

15 *p*-Nilpotent Groups

15.1 Definition Let p be a prime. A finite group G is called *p*-nilpotent, if a Sylow *p*-subgroup of G has a normal complement.

15.2 Remark Let G be a finite group and let p be a prime.

(a) We have

G is nilpotent	\Rightarrow	G p-nilpotent
\Downarrow		\Downarrow
G is solvable	\Rightarrow	G p-solvable

(b) Obviously the following statements are equivalent:

(i) G is p-nilpotent.

(ii) Each Sylow p-subgroup of G has a normal complement.

(iii) G has a normal Hall p'-subgroup.

(iv) $G/O_{p'}(G)$ is a p-group.

(v) G has a normal p'-subgroup K such that G/K is a p-group.

(c) If G is p-nilpotent, then $O_{p'}(G)$ is a normal complement of every Sylow p-subgroup of G.

(d) If G is p-nilpotent for every prime p dividing |G|, then G is nilpotent. In fact, the homomorphism

$$G \to \prod_{p||G|} G/O_{p'}(G), \quad g \mapsto \left(gO_{p'}(G)\right)_{p||G|},$$

has kernel $\bigcap_{p||G|} O_{p'}(G) = 1$, and since both groups have the same order, it is an isomorphism.

(e) If G is p-nilpotent, then every subgroup and every factor group of G is p-nilpotent (Homework).

15.3 Theorem (Frobenius) Let p be a prime, let G be a finite group, and let P be a Sylow p-subgroup of G. Then the following statements are equivalent:

(i) G is p-nilpotent.

(ii) For each p-subgroup Q > 1 of G, the normalizer $N_G(Q)$ is p-nilpotent.

(iii) For each p-subgroup Q > 1 of G, the quotient $N_G(Q)/C_G(Q)$ is a p-group.

(iv) For each p-subgroup Q > 1 of G and each Sylow p-subgroup R of $N_G(Q)$, one has $N_G(Q) = C_G(Q)R$.

(v) For each subgroup Q of P and each $g \in G$ with $gQg^{-1} \leq P$, there exist $c \in C_G(Q)$ and $x \in P$ such that g = xc.

(vi) For any two elements $x, y \in P$ and each element $g \in G$ with $y = gxg^{-1}$, there exists an element $u \in P$ such that $y = uxu^{-1}$.

Proof We may assume that $p \mid |G|$.

(i) \Rightarrow (ii): This follows from Remark 15.2(e).

(ii) \Rightarrow (iii): Let Q > 1 be a *p*-subgroup of G and set $K := O_{p'}(N_G(Q))$. Then, by (ii), $N_G(Q)/K$ is a *p*-group. In order to prove (iii), it suffices to show that $K \leq C_G(Q)$. But for $k \in K$ and $x \in Q$ one has $[k, x] = kxk^{-1}x^{-1} \in K \cap Q = 1$ and therefore, $K \leq C_G(Q)$.

(iii) \Rightarrow (iv): Let Q > 1 be a *p*-subgroup of G and let R be a Sylow *p*-subgroup of $N_G(Q)$. Then $R \cdot C_G(Q)/C_G(Q)$ is a Sylow *p*-subgroup of $N_G(Q)/C_G(Q)$ by Remark 10.2(g). This implies $N_G(Q)/C_G(Q) = R \cdot C_G(Q)/C_G(Q)$, since $N_G(Q)/C_G(Q)$ is a *p*-group.

(iv) \Rightarrow (v): Let $Q \leq P$ and let $g \in G$ such that $gQg^{-1} \leq P$. We may assume that Q > 1. By induction on [P:Q] we will show that there exist $c \in C_G(Q)$ and $x \in P$ such that g = xc. If [P:Q] = 1, then P = Q and $gQg^{-1} \leq P$ implies $gQg^{-1} = P$ so that $g \in N_G(P)$. But $N_G(P) = P \cdot C_G(P)$ by (iv) and we can write g in the desired way. From now on we assume that Q < P. Then also $gQg^{-1} < P$. For $R_1 := N_P(Q)$ and $R_2 := N_{g^{-1}Pg}(Q)$ we then have $Q < R_1 \leq P$ and $Q < R_2 \leq g^{-1}Pg$. Let R be a Sylow psubgroup of $N_G(Q)$ with $R_1 \leq R$. Since $N_G(Q) = C_G(Q)R = RC_G(Q)$ (by (iv)), there exists $c \in C_G(Q)$ such that $cR_2c^{-1} \leq R$. Let $y \in G$ such that $yRy^{-1} \leq P$. Then, by induction applied to $R_1 \leq P$ and $yR_1y^{-1} \leq P$, there exist $c_1 \in C_G(R_1)$ and $x_1 \in P$ such that $y = x_1c_1$. Similarly, for $gR_2g^{-1} \leq P$ and $ycR_2c^{-1}y^{-1} \leq yRy^{-1} \leq P$, there exist elements $c_2 \in C_G(gR_2g^{-1})$ and $x_2 \in P$ such that $ycg^{-1} = x_2c_2$. Since $C_G(gR_2g^{-1}) = gC_G(R_2)g^{-1}$, there exists $c_3 \in C_G(R_2)$ with $c_2 = gc_3g^{-1}$. This implies $ycg^{-1} = x_2gc_3g^{-1}$, thus $yc = x_2gc_3$, and finally $g = x_2^{-1}ycc_3^{-1} = x_2^{-1}x_1c_1cc_3^{-1}$ with $x_2^{-1}x_1 \in P$ and $c_1cc_3 \in C_G(Q)$.

(v) \Rightarrow (vi): Let $x, y \in P$ and let $g \in G$ such that $y = gxg^{-1}$. If we set $Q := \langle x \rangle$, then $Q \leq P$ and $gQg^{-1} = \langle y \rangle \leq P$. By (v), there exist $c \in C_G(Q) = C_G(x)$ and $u \in P$ such that g = uc, and we have $uxu^{-1} = ucxc^{-1}u^{-1} = gxg^{-1} = y$.

(vi) \Rightarrow (i): This follows from Theorem 14.10.

15.4 Remark Let G be a finite group and let p be a prime.

(a) One says that a subgroup H of G controls the fusion of p-subgroups of G, if there exists a Sylow p-subgroup P of G such that

- $P \leqslant H$ and
- for each $Q \leq P$ and each $g \in G$ with $gQg^{-1} \leq P$ there exist $h \in H$ and $c \in C_G(Q)$ such that g = hc.

In view of Frobenius' Theorem, the *p*-nilpotent groups are exactly those, for which already the Sylow *p*-subgroups control the fusion of *p*-subgroups.

(b) If G has an abelian Sylow p-subgroup P then $N_G(P)$ controls the fusion of p-subgroups of G. (Homework)

(c) The rank of an abelian p-group is defined as the minimal number of generators. For an arbitrary p-group P one defines the *Thompson sub*group J(P) as the subgroup of P generated by all abelian subgroups of P of maximal rank.

Let p be odd and let P be a Sylow p-subgroup of G. J. Thompson showed that G is p-nilpotent if and only if $C_G(Z(P))$ and $N_G(J(P))$ are p-nilpotent.

References

[P] R. BOLTJE: Preliminaries; Class Notes Algebra I (Math200), Fall 2008, UCSC.