Finite Group Theory (Math 214)

UCSC, Fall 2009

Robert Boltje

Contents

1 The Alternating Group 1
2 The Frattini Subgroup 3
3 The Fitting Subgroup 5
4 -Groups 8
5 Group Cohomology 17
6 Group Extensions and Parameter Systems 20
7 Group Extensions with Abelian Kernel 34
8 Group Extensions with Non-Abelian Kernel 36
9 The Theorem of Schur-Zassenhaus 44
10 The π-Sylow Theorems 48
11 Coprime Action 55
12 Commutators 60
13 Thompson's $P \times Q$ Lemma 68
14 The Transfer Map 74
15 p-Nilpotent Groups 80

1 The Alternating Group

1.1 Lemma (a) For $n \geqslant 3$, the group $\operatorname{Alt}(n)$ is generated by the 3 -cycles of the form $(i, i+1, i+2), i=1, \ldots, n-2$.
(b) For $n \geqslant 5$, any two 3-cycles of Alt (n) are conjugate in $\operatorname{Alt}(n)$.

Proof (a) Each element in $\operatorname{Alt}(n)$ is a product of an even number of transpositions. Since

$$
(a, b)(c, d)=((a, b)(b, c))((b, c)(c, d)) \quad \text { and } \quad(a, b)(a, c)=(a, c, b)
$$

the group $\operatorname{Alt}(n)$ is generated by its 3-cycles. Each 3-cycle or its inverse is of the form (a, b, c) with $a<b<c$. We can reduce the difference $c-a$ by the formulas

$$
(a, b, d)=(a, b, c)(b, c, d)^{2} \quad \text { and } \quad(a, c, d)=(a, b, c)^{2}(b, c, d)
$$

whenever $a<b<c<d$. This proves the result.
(b) Let π_{1} and π_{2} be two 3 -cycles in $\operatorname{Alt}(n)$. Then there exists $\sigma \in \operatorname{Sym}(n)$ with $\pi_{2}=\sigma \pi_{1} \sigma^{-1}$. Since $n \geqslant 5$, there exists a transpositions $\tau \in \operatorname{Sym}(n)$ which is disjoint to π_{1}. Thus $\tau \pi_{1} \tau^{-1}=\pi_{1}$ so that also $(\sigma \tau) \pi_{1}(\sigma \tau)^{-1}=\pi_{2}$. but either σ or $\sigma \tau$ is an element of $\operatorname{Alt}(n)$.
1.2 Theorem For $n \geqslant 5$, the group $\operatorname{Alt}(n)$ is simple.

Proof Assume that $1<N \unlhd \operatorname{Alt}(n)$. We have to show that $N=\operatorname{Alt}(n)$. By Lemma 1.1, it suffices to show that N contains some 3-cycle. We choose $1 \neq \sigma \in N$ and write $\sigma=\gamma_{1} \cdots \gamma_{r}$ as product of disjoint cycles $\gamma_{1}, \ldots, \gamma_{r}$ in $\operatorname{Sym}(n)$ and distinguish the following 4 cases:

Case 1: One of the cycles γ_{i} has length at least 4. Then we can write $\gamma_{i}=\left(a, b, c, d, e_{1}, \ldots, e_{s}\right)$, with $s \geqslant 0$. With $\rho:=(a, b, c)$ we have

$$
\begin{aligned}
N \ni \rho \sigma \rho^{-1} \sigma^{-1} & =(a, b, c)\left(a, b, c, d, e_{1}, \ldots, e_{s}\right)(a, c, b)\left(e_{s}, \ldots, e_{1}, d, c, b, a\right) \\
& =(a, b, d)
\end{aligned}
$$

Case 2: All cycles γ_{i} have length at most 3 and one of them has length 3. We may assume that $\gamma_{1}=(a, b, c)$ and that $r \geqslant 2$. Then $\gamma_{2}=(d, e)$ or $\gamma_{2}=(d, e, f)$. With $\rho:=(a, b, d)$ we have

$$
N \ni \rho^{-1} \sigma \rho \sigma^{-1}=(a, d, b)(a, b, c)(d, e)(a, b, d)(a, c, b)(d, e)=(a, d, b, c, e)
$$

$$
N \ni \rho^{-1} \sigma \rho \sigma^{-1}=(a, d, b)(a, b, c)(d, e f)(a, b, d)(a, c, b)(d, f, e)=(a, d, b, c, e)
$$

and, by Case $1, N$ contains a 3 -cycle.
Case 3: All cycles γ_{i} are transpositions and $r \geqslant 3$. Then we can write $\sigma=$ $(a, b)(c, d)(e, f) \cdots$ with pairwise distinct a, b, c, d, e, f. With $\rho:=(a, c, e)$ we have

$$
\begin{aligned}
N \ni \rho \sigma \rho^{-1} \sigma^{-1} & =(a, c, e)(a, b)(c, d)(e, f)(a, e, c)(a, b)(c, d)(e, f) \\
& =(a, c, e)(b, f, d)
\end{aligned}
$$

and N contains a 3 -cycle by Case 2 .
Case 4: $\sigma=(a, b)(c, d)$ with pairwise distinct a, b, c, d. Set $\rho:=(a, c, e)$ with $e \notin\{a, b, c, d\}$. Then

$$
N \ni \rho \sigma \rho^{-1} \sigma^{-1}=(a, c, e)(a, b)(c, d)(a, e, c)(a, b)(c, d)=(a, c, e, d, b)
$$

and N contains a 3 -cycle by Case 1 .

2 The Frattini Subgroup

2.1 Definition For a finite group G the intersection of all its maximal subgroups is called the Frattini subgroup of G. It is denoted by $\Phi(G)$. For the trivial group $G=1$ one sets $\Phi(1)=1$. Note that $\Phi(G)$ is a characteristic subgroup of G.
2.2 Proposition (Frattini-Argument) Let G be a finite group, let N be a normal subgroup of G and let $P \in \operatorname{Syl}_{p}(N)$ for some prime p. Then $G=N \cdot N_{G}(P)$.

Proof Let $g \in G$. Then $P \leqslant N$ implies $g P g^{-1} \leqslant g N g^{-1}=N$ and $g P g^{-1} \in$ $\operatorname{Syl}_{p}(N)$. By Sylow's Theorem, there exists $n \in N$ such that $n g P g^{-1} n^{-1}=P$. This implies that $n g \in N_{G}(P)$ and $g \in n^{-1} N_{G}(P) \subseteq N \cdot N_{G}(P)$.
2.3 Lemma If G is a finite group and $H \leqslant G$ such that $H \Phi(G)=G$ then $H=G$.

Proof Assume that $H<G$. Then there exists a maximal subgroup U of G with $H \leqslant U$. This implies $G=H \Phi(G) \leqslant U \cdot U=U$, which is a contradiction.
2.4 Lemma Let G be a finite group and let H and N be normal subgroups of G such that $N \leqslant H \cap \Phi(G)$. If H / N is nilpotent then every Sylow subgroup of H is normal in G. In particular, H is nilpotent.

Proof Let $P \in \operatorname{Syl}_{p}(H)$ for some prime p. Then $P N / N \in \operatorname{Syl}_{p}(H / N)$. Since H / N is nilpotent, $P N / N$ is normal in H / N (cf. [P, 8.7]) and also characteristic in H / N. Since also H / N is normal in $G / N, P N / N$ is normal in G / N and further, $P N$ is normal in G. Since $P \in \operatorname{Syl}_{p}(P N)$ and $P N \unlhd G$, the Frattini Argument implies that $G=P N \cdot N_{G}(P)=N N_{G}(P) \leqslant \Phi(G) N_{G}(P)$ and therefore $G=N_{G}(P) \Phi(G)$. By Lemma 2.3, we have $N_{G}(P)=G$ and P is normal in G.
2.5 Corollary (Frattini 1885) For every finite group G, the Frattini subgroup $\Phi(G)$ is nilpotent.

Proof This follows from Lemma 2.4 with $H:=N:=\Phi(G)$.
2.6 Corollary Let G be a finite group. If $G / \Phi(G)$ is nilpotent then G is nilpotent.

Proof This follows from Lemma 2.4 with $H:=G$ and $N:=\Phi(G)$.
2.7 Theorem For every finite group G the following are equivalent:
(i) G is nilpotent.
(ii) $G / \Phi(G)$ is nilpotent.
(iii) $G^{\prime} \leqslant \Phi(G)$.
(iv) $G / \Phi(G)$ is abelian.

Proof (i) \Rightarrow (ii): This follows from $[\mathrm{P}, 8.8]$
(ii) \Rightarrow (i): This follows from Corollary 2.6.
(ii) \Rightarrow (iii): Let $U<G$ be a maximal subgroup. Then $U / \Phi(G)$ is a maximal subgroup of the nilpotent group $G / \Phi(G)$. By $[\mathrm{P}, 8.8], U / \Phi(G)$ is normal in $G / \Phi(G)$, and therefore U is normal in G. Since U is maximal in $G, G / U$ has no subgroup different from U / U and G / U. This implies that G / U is a cyclic group of prime order. In particular, G / U is abelian. This implies that $G^{\prime} \leqslant U$. Since this holds for every maximal subgroup U of G, we have $G^{\prime} \leqslant \Phi(G)$.
$($ iii $) \Rightarrow(\mathrm{iv})$: This follows from $[\mathrm{P}, 4.3(\mathrm{c})]$.
$(\mathrm{iv}) \Rightarrow(\mathrm{ii})$: This is clear.

3 The Fitting Subgroup

3.1 Remark Let p be a prime and let G be a finite group. If P and Q are normal p-subgroups of G then $P Q$ is again a normal p-subgroup of G, since $|Q P|=|P| \cdot|Q| /|P \cap Q|$. Therefore, the product of all normal p-subgroups of G is again a normal p-subgroup which we denote by $\mathrm{O}_{p}(G)$. By definition it is the largest normal p-subgroup of G. Clearly, O_{p} is also characteristic in G.
3.2 Definition Let G be a finite group. The Fitting subgroup $F(G)$ of G is defined as the product of the subgroups $\mathrm{O}_{p}(G)$, where p runs through the prime divisors of p. If $G=1$ we set $F(G):=1$.
3.3 Remark Let G be a finite group and let p_{1}, \ldots, p_{r} denote the prime divisors of the finite group G. Then $\mathrm{O}_{p_{i}}$ is a Sylow p_{i}-subgroup of $F(G)$ for every $i=1, \ldots, r$. Since $\mathrm{O}_{p_{i}}(G), i=1, \ldots, r$, is normal in G it is also normal in $F(G)$. It follows that $F(G)$ is nilpotent and that $F(G)$ is the direct product of the subgroups $\mathrm{O}_{p_{1}}, \ldots, \mathrm{O}_{p_{r}}(G)$. Moreover, since $\mathrm{O}_{p_{i}}$ is characteristic in G for all $i=1, \ldots, r$, also $F(G)$ is characteristic in G.
3.4 Proposition Let G be a finite group. Then $F(G)$ is the largest normal nilpotent subgroup of G; i.e., it is a normal nilpotent subgroup of G and contains every other normal nilpotent subgroup of G.

Proof We have already seen in the previous remark that $F(G)$ is a normal nilpotent subgroup of G. Let N be an arbitrary normal nilpotent subgroup of G and let p be a prime divisor of $|N|$. Then N has a normal Sylow p subgroup P. This implies that P is characteristic in N. Since N is normal G, we obtain that P is normal in G. Therefore, $P \leqslant \mathrm{O}_{p}(G) \leqslant F(G)$. Since N is the product of its Sylow p-subgroups, for the different prime divisors p of $|N|$, we obtain $N \leqslant F(G)$, as desired.
3.5 Corollary Let N_{1} and N_{2} be normal nilpotent subgroups of a finite group G. Then $N_{1} N_{2}$ is again a normal nilpotent subgroup of G.

Proof By Proposition 3.4, N_{1} and N_{2} are contained in $F(G)$. Therefore $N_{1} N_{2} \leqslant F(G)$. since $F(G)$ is nilpotent, also its subgroup $N_{1} N_{2}$ is nilpotent. Clearly $N_{1} N_{2}$ is normal in G.
3.6 Definition A minimal normal subgroup of a finite group G is a normal subgroup M of G such that $M \neq 1$ and every normal subgroup N of G with is contained in M is equal to 1 or to M.
3.7 Proposition Let G be a finite group.
(a) $C_{G}(F(G)) F(G) / F(G)$ does not contain any solvable normal subgroup of $G / F(G)$ different from the trivial one.
(b) $\Phi(G) \leqslant F(G)$ and if G is solvable and non-trivial then $\Phi(G)<F(G)$.
(c) $F(G / \Phi(G))=F(G) / \Phi(G)$ is abelian.
(d) If N is a minimal normal subgroup of G then $N \leqslant C_{G}(F(G))$. If moreover N is abelian then $N \leqslant Z(F(G))$.

Proof (a) It suffices to show that $C_{G}(F(G)) F(G) / F(G)$ contains no abelian normal subgroup of $G / F(G)$ different from 1. So let $N / F(G)$ be an abelian subgroup of $C_{G}(F(G)) F(G) / F(G)$ which is normal in $G / F(G)$. Then $F(G) / l e N$. We need to show that $F(G)=N$. Note that $N=F(G) C$ with $C=$ $N \cap C_{G}(F(G))$. Since $N / C \cong F(G) /(F(G) \cap C)$ is nilpotent, there exists $l \in \mathbb{N}$ such that $Z_{l}(N / C)=1$. Since $N \leqslant C(F(G)) F(G)$, it follows that

$$
Z_{l}(N) \leqslant C \cap N^{\prime} \leqslant C \cap F(G) \leqslant Z(F(G)) \leqslant Z(N)
$$

This implies that $Z_{l+1}(N)=\left[Z_{l}(N), N\right]=1$ and that N is nilpotent. Therefore, $N \leqslant F(G)$.
(b) Since $\Phi(G)$ is nilpotent (cf. Corollary 2.5) and normal in G, we have $\Phi(G) \leqslant F(G)$. Assume moreover that G is solvable and $G \neq 1$. Then $G / \Phi(G)$ is solvable and $\Phi(G)<G$. There exists an abelian normal subgroup $1 \neq M / \Phi(G) \unlhd G / \Phi(G)$. Since $M / \Phi(G)$ is abelian (and hence nilpotent), Lemma 2.4 (with $H=M$ and $N=\Phi(G)$) implies that M is nilpotent. But then $M \leqslant F(G)$. Therefore, $\Phi(G)<M \leqslant F(G)$.
(c) Since $F(G)$ is nilpotent also $F(G) / \Phi(G)$ is nilpotent. Moreover, $F(G) / \Phi(G)$ is normal in $G / \Phi(G)$. Therefore $F(G) / \Phi(G) \leqslant F(G / \Phi(G))$. Conversely, we can write $F(G / \Phi(G))=H / \Phi(G)$ with $\Phi(G) \leqslant H \unlhd G$. Since $H / \Phi(G)$ is nilpotent, Lemma 2.4 (with $N=\Phi(G)$) implies that H is nilpotent and therefore $H \leqslant F(G)$. Thus, $F(G / \Phi(G))=H / \Phi(G) \leqslant F(G) / \Phi(G)$. Since $F(G)$ is normal in G, we have $\Phi(F(G)) \leqslant \Phi(G) \leqslant F(G)$. Since $F(G)$ is nilpotent, Theorem 2.7 implies that $F(G) / \Phi(F(G))$ is abelian. But $F(G) / \Phi(G)$ is isomorphic to a factor group of $F(G) / \Phi(F(G))$ and therefore also abelian.
(d) Since N is a minimal normal subgroup, we either have $N \cap F(G)=1$ or $N \cap F(G)=N$. If N is abelian then, N is nilpotent and $N \leqslant F(G)$. It follows that $1 \neq N \cap Z(F(G)) \unlhd G$ (see homework problem), and the minimiality of N implies $N \leqslant Z(F(G))$. If N is not abelian then $N \cap F(G)=1$ (since otherwise $N \leqslant F(G)$ implies $1<N^{\prime}<N$ with $N^{\prime} \unlhd N \unlhd G$ and thus $N^{\prime} \unlhd$ G, a contradiction). But $N \cap F(G)=1$ implies $[N, F(G)] \leqslant N \cap F(G)=1$ and $N \leqslant C_{G}(F(G))$.

4 p-Groups

4.1 Lemma Let G be a group and assume there exists $H \leqslant Z(G)$ such that G / H is cyclic. Then G is abelian.

Proof Let $x \in G$ with $\langle x H\rangle=G / H$. Every element of G can be written in the form $x^{n} h$ with $n \in \mathbb{Z}$ and $h \in H$. For $n, n^{\prime} \in \mathbb{Z}$ and $h, h^{\prime} \in H$ we have:

$$
x^{n} h x^{n^{\prime}} h^{\prime}=x^{n} x^{n^{\prime}} h h^{\prime}=x^{n^{\prime}} x^{n} h^{\prime} h=x^{n^{\prime}} h^{\prime} x^{n} h,
$$

and the lemma is proved.
4.2 Corollary If p is a prime and if G is a group of order p^{2}, then G is abelian.

Proof By [P, 5.10], we have $Z(G)>1$. Therefore, $|G / Z(G)|$ divides p so that $G / Z(G)$ is cyclic. Now Lemma 4.1 applies.
4.3 Definition Let p be a prime. An abelian p-group G is called elementary abelian, if $x^{p}=1$ for all $x \in G$. Equivalently, G is isomorphic to a direct product of cyclic groups of order p. If G is elementary abelian of order p^{n}, we call n the rank of G.
4.4 Remark Let p be a prime. If G is an elementary abelian p-group, then G is a finite dimensional vector space over the field $\mathbb{Z} / p \mathbb{Z}$ in a natural way, namely by defining the scalar multiplication $(k+p \mathbb{Z}) \cdot x:=x^{k}$ for $x \in G$ and $k \in \mathbb{Z}$. Conversely, each $\mathbb{Z} / p \mathbb{Z}$-vector space has an elementary abelian p group as underlying group. Therefore, elementary abelian p-groups and finite dimensional $\mathbb{Z} / p \mathbb{Z}$-vector spaces are the same thing. Moreover, every $\mathbb{Z} / p \mathbb{Z}$ linear map between $\mathbb{Z} / p \mathbb{Z}$-vector spaces is a group homomorphism and every group homomorphism between elementary abelian p-groups is also a $\mathbb{Z} / p \mathbb{Z}$ linear map. Therefore, $\operatorname{Aut}(G) \cong \mathrm{GL}_{n}(\mathbb{Z} / p \mathbb{Z})$ for any elementary abelian p-group G of rank n. Note also that a subgroup of an elementary abelian p group G is the same thing as a subspace and that for $X \subseteq G$ the $\mathbb{Z} / p \mathbb{Z}$-span of X is the same as the subgroup generated by X.
4.5 Theorem Let p be a prime and let G be a p-group. Then:
(a) $\Phi(G)=G^{\prime} \cdot G^{p}$, where $G^{p}:=\left\langle\left\{g^{p} \mid g \in G\right\}\right\rangle$. If $p=2$, one has $\Phi(G)=G^{2}$.
(b) $G / \Phi(G)$ is elementary abelian.
(c) For every $N \unlhd G$ on has: G / N is elementary abelian $\Longleftrightarrow \Phi(G) \leqslant N$.
(d) If $U \leqslant G$, then $\Phi(U) \leqslant \Phi(G)$.
(e) If $N \unlhd G$, then $\Phi(G / N)=\Phi(G) N / N$.

Proof (a)-(c): By Theorem 2.7 and since G is nilpotent, we have $G^{\prime} \leqslant \Phi(G)$. Each maximal subgroup U of G is normal and of index p in G. Therefore, $(g U)^{p}=U$ and $g^{p} \in U$ for each $g \in G$. This implies that $G^{p} \leqslant \Phi(G)$, and we have $G^{\prime} \cdot G^{p} \leqslant \Phi(G)$. This implies (b); in fact, $G / \Phi(G)$ is abelian, since $G^{\prime} \leqslant \Phi(G)$ and $(g \Phi(G))^{p}=g^{p} \Phi(G)=\Phi(G)$, since $G^{p} \leqslant \Phi(G)$. Next we show (c). If $\Phi(G) \leqslant N$, then $G / N \cong(G / \Phi(G)) /(N / \Phi(G))$ is elementary abelian by (b). Conversely, assume that G / N is elementary abelian and that $N \neq G$. Then N is the intersection of all maximal subgroups of G that contain N; in fact, the intersection of all hyperplanes of G / N is N / N. This implies that $N \leqslant \Phi(G)$ and (c) is proved. From (c) we now obtain $\Phi(G) \leqslant G^{\prime} \cdot G^{p}$, since $G /\left(G^{\prime} \cdot G^{p}\right)$ is elementary abelian. If $p=2$ each commutator

$$
x y x^{-1} y^{-1}=x y^{2} x^{-1} x^{2} x^{-1} y^{-1} x^{-1} y^{-1}=\left(x y x^{-1}\right)^{2} x^{2}\left(x^{-1} y^{-1}\right)^{2}
$$

is a product of squares, and therefore $G^{\prime} \leqslant G^{2}$. This implies $\Phi(G)=G^{2}$.
(d) This follows from (a), since $U^{\prime} \leqslant G^{\prime}$ and $U^{p} \leqslant G^{p}$.
(e) We have $(G / N)^{p}=\left\langle\left\{g^{p} N \mid g \in G\right\}\right\rangle=G^{P} N / N$ and $(G / N)^{\prime}=$ $G^{\prime} N / N$. Now (a) implies

$$
\begin{aligned}
\Phi(G / N) & =(G / N)^{p} \cdot(G / N)^{\prime}=\left(G^{p} N / N\right) \cdot\left(G^{\prime} N / N\right) \\
& =\left(G^{p} G^{\prime} N\right) / N=\Phi(G) N / N
\end{aligned}
$$

and the proof of the theorem is complete.
4.6 Theorem (Burnside's Basis Theorem) Let p be a prime and let G be a p-group with $|G / \Phi(G)|=p^{d}, d \in \mathbb{N}$. Then:
(a) Let $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in G$. Then

$$
\left\langle x_{1}, \ldots x_{n}\right\rangle=G \Longleftrightarrow\left\langle x_{1} \Phi(G), \ldots, x_{n} \Phi(G)\right\rangle=G / \Phi(G) .
$$

(b) Each minimal generating set of G has d elements.
(c) Each element $x \in G \backslash \Phi(G)$ occurs in some minimal generating set of G.

Proof (a) With Lemma 2.3 we obtain

$$
\begin{aligned}
\left\langle x_{1}, \ldots, x_{n}\right\rangle=G & \Longleftrightarrow\left\langle x_{1}, \ldots, x_{n}\right\rangle \Phi(G)=G \\
& \Longleftrightarrow\left\langle x_{1} \Phi(G), \ldots, x_{n} \Phi(G)\right\rangle=G / \Phi(G) .
\end{aligned}
$$

(b) Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a minimal generating set of G consisting of n elements. By (a) we have $\left\langle x_{1} \Phi(G), \ldots, x_{n} \Phi(G)\right\rangle=G / \Phi(G)$, and therefore $d \leqslant n$. Assume that $n>d$. Then there exists a proper subset of $\left\{x_{1} \Phi(G), \ldots, x_{n} \Phi(G)\right\}$ which still generates $G / \Phi(G)$. By (a) the corresponding proper subset of $\left\{x_{1}, \ldots, x_{n}\right\}$ then generates G. This contradicts the minimality of the set $\left\{x_{1}, \ldots, x_{n}\right\}$.
(c) If $x \in G \backslash \Phi(G)$, then $x \Phi(G)$ is nonzero in the vector space $G / \Phi(G)$ and can be extended to a basis $x \Phi(G), x_{2} \Phi(G), \ldots, x_{d} \Phi(G)$. Then, by (a) and (b), $\left\{x, x_{2}, \ldots, x_{d}\right\}$ is a minimal set of generators of G.
4.7 Remark (a) Burnside's Basis Theorem implies that every p-group G with $|G / \Phi(G)|=p$ is cyclic.
(b) Part (b) of Burnside's Basis Theorem does not hold for arbitrary finite groups. For example, the group $\mathbb{Z} / 6 \mathbb{Z}$ has the minimal generating sets $\{1+6 \mathbb{Z}\}$ and $\{3+6 \mathbb{Z}, 2+6 \mathbb{Z}\}$.
4.8 Examples (a) We already know two non-isomorphic groups of order 8, namely the dihedral group D_{8} and the quaternion group

$$
Q_{8}=\left\langle\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle
$$

(b) Let p be an odd prime. We will construct a non-abelian group of order p^{3} as a semidirect product $\mathbb{Z} / p^{2} \mathbb{Z} \rtimes \mathbb{Z} / p \mathbb{Z}$ with the following action. Recall that $\operatorname{Aut}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right) \cong\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$where $i+p^{2} \mathbb{Z} \in\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$corresponds to the automorphism σ_{i} of $\mathbb{Z} / p^{2} \mathbb{Z}$ which raises every element to its i-th power. We have $\left|\operatorname{Aut}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)\right|=p(p-1)$ and we observe that $1+p+p^{2} \mathbb{Z}$ is an element of order p in $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$, since $\left(1+p+p^{2} \mathbb{Z}\right)^{p}=(1+p)^{p}+p^{2} \mathbb{Z}=1+p^{2} \mathbb{Z}$. Therefore, if $Y=\langle y\rangle$ is a cyclic group of order p^{2} and $X=\langle x\rangle$ is a cyclic group of order p, there exists a non-trivial group homomorphism $\rho: X \rightarrow \operatorname{Aut}(Y)$ such that the corresponding action satisfies ${ }^{x} y=y^{p+1}$. This gives rise to a semidirect product $Y \rtimes X$ of order p^{3}. In Lemma 4.12 we will need the following property of $Y \rtimes X$ which is now easy to verify:

$$
\begin{equation*}
\left\{a \in Y \rtimes X \mid a^{p}=1\right\}=\left\langle x, y^{p}\right\rangle . \tag{4.8.a}
\end{equation*}
$$

(c) Let p be an odd prime and let $n \in \mathbb{N}$. Then

$$
E_{p^{2 n+1}}:=\left\{\left.\left(\begin{array}{ccccc}
1 & \beta_{1} & \cdots & \beta_{n} & \gamma \\
& 1 & & & \alpha_{1} \\
& & \ddots & & \vdots \\
& & & 1 & \alpha_{n} \\
& & & & 1
\end{array}\right) \right\rvert\, \alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}, \gamma \in \mathbb{Z} / p \mathbb{Z}\right\}
$$

(with zeros in the empty spots) is a subgroup of $\mathrm{GL}_{n+2}(\mathbb{Z} / p \mathbb{Z})$ of order $p^{2 n+1}$, since

$$
\begin{aligned}
& \\
& =\left(\begin{array}{ccccc}
1 & \beta_{1} & \cdots & \beta_{n} & \gamma \\
& 1 & & & \alpha_{1} \\
& & \ddots & & \vdots \\
& & & 1 & \alpha_{n} \\
& & & & 1
\end{array}\right)\left(\begin{array}{ccccc}
1 & \beta_{1}^{\prime} & \cdots & \beta_{n}^{\prime} & \gamma^{\prime} \\
& 1 & & & \alpha_{1}^{\prime} \\
& & \ddots & & \vdots \\
& & & 1 & \alpha_{n}^{\prime} \\
& 1 & & & \\
& & & \beta_{n}+\beta_{n}^{\prime} & \gamma+\gamma^{\prime}+\alpha_{1}^{\prime} \beta_{1}+\cdots+\alpha_{n}^{\prime} \beta_{n} \\
& & & & \alpha_{1}+\alpha_{1}^{\prime} \\
& & & 1 & \vdots \\
& & & & \alpha_{n}+\alpha_{n}^{\prime} \\
& & & & 1
\end{array}\right) .
\end{aligned}
$$

The group $E_{p^{2 n+1}}$ is called the extra-special group of order $p^{2 n+1}$ and exponent p. Let $z, x_{i}, y_{i} \in E_{p^{2 n+1}}, i=1, \ldots, n$, be defined as the elements with precisely one non-zero entry off the diagonal, namely the entry $\gamma=1$ for $z, \alpha_{i}=1$ for x_{i}, and $\beta_{i}=1$ for y_{i}. Then it is easy to see that the following assertions hold:
(i) For all $i, j \in\{1, \ldots, n\}$ one has

$$
\begin{aligned}
& z x_{i}=x_{i} z, z y_{i}=y_{i} z, x_{j} x_{i}=x_{i} x_{j}, y_{j} y_{i}=y_{i} y_{j}, \\
& y_{j} x_{i}= \begin{cases}x_{i} y_{j}, & \text { if } i \neq j, \\
x_{i} y_{j} z, & \text { if } i=j .\end{cases}
\end{aligned}
$$

(ii) Every element $g \in E_{p^{2 n+1}}$ can be written uniquely in the form

$$
g=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} y_{1}^{b_{1}} \cdots y_{n}^{b_{n}} z^{c}
$$

with $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c \in\{0,1, \ldots, p-1\}$.
(iii) $g^{p}=1$ for all $g \in E_{p^{2 n+1}}$.
(iv) The subgroups $\left\langle x_{1}, \ldots, x_{n}, z\right\rangle$ and $\left\langle y_{1}, \ldots, y_{n}, z\right\rangle$ are normal and elementary abelian.
(v) $Z\left(E_{p^{2 n+1}}\right)=E_{p^{2 n+1}}^{\prime}=\Phi\left(E_{p^{2 n+1}}\right)=\langle z\rangle$.
(vi) If we identify $Z:=\langle z\rangle$ with $\mathbb{Z} / p \mathbb{Z}$ via $z^{i} \leftrightarrow i+p \mathbb{Z}$ for $i \in \mathbb{Z}$, then the commutator defines a bilinear form on the $2 n$-dimensional vector space $V=E_{p^{2 n+1}} / Z$ by

$$
V \times V \longrightarrow \mathbb{Z} / p \mathbb{Z}, \quad(g Z, h Z) \mapsto[g, h],
$$

for $g, h \in E_{p^{2 n+1}}$. This bilinear form is skew-symmetric $([a, b]=-[b, a])$ and non-degenerate ($[a, b]=0$ for all a implies $b=0$).

For $n=1$ we obtain a non-abelian group G of order p^{3} and exponent p, which is generated by a central element z and two elements x, y such that $G=\langle x, z\rangle \rtimes\langle y\rangle$ under the action ${ }^{y} x=x z$.
4.9 Lemma Let G be a p-group and let $x, y \in G$.
(a) If $G / Z(G)$ is abelian, then

$$
[x, y]^{i}=\left[x^{i}, y\right] \quad \text { and } \quad(x y)^{i}=x^{i} y^{i}\left[y^{-1}, x^{-1}\right]_{\binom{i}{2}},
$$

for all $i \in \mathbb{N}_{0}$.
(b) If $G / Z(G)$ is elementary abelian, then $(x y)^{p}=x^{p} y^{p}$ for odd p and $(x y)^{4}=x^{4} y^{4}$ for $p=2$.
Proof (a) Note that $[x, y],\left[y^{-1}, x^{-1}\right] \in G^{\prime} \leqslant Z(G)$, since $G / Z(G)$ is abelian. We prove the two equations by induction on i. If $i=0$ this is trivial. Assume the equations hold for some $i \in \mathbb{N}_{0}$. Then

$$
\begin{aligned}
{[x, y]^{i+1} } & =[x, y][x, y]^{i}=[x, y]\left[x^{i}, y\right]=\underbrace{x y x^{-1} y^{-1}}_{\in Z(G)} x^{i} y x^{-i} y^{-1} \\
& =x^{i}\left(x y x^{-1} y^{-1}\right) y x^{-i} y^{-1}=x^{i+1} y x^{-i-1} y^{-1}=\left[x^{i+1}, y\right]
\end{aligned}
$$

and

$$
(x y)^{i+1}=(x y)^{i} x y=x^{i} y^{i} x y\left[y^{-1}, x^{-1}\right]\left[\begin{array}{c}
i \\
2
\end{array}\right)
$$

with

$$
y^{i} x=x y^{i} y^{-i} x^{-1} y^{i} x=x y^{i}\left[y^{-i}, x^{-1}\right]=x y^{i}\left[y^{-1}, x^{-1}\right]^{i},
$$

and we obtain

$$
(x y)^{i+1}=x^{i+1} y^{i+1}\left[y^{-1}, x^{-1}\right]\binom{i+1}{2} .
$$

(b) Note that since $G / Z(G)$ is elementary abelian, we have $G^{p} \leqslant \Phi(G) \leqslant$ $Z(G)$ by Theorem 4.5. By Part (a) we have for odd p :

$$
(x y)^{p}=x^{p} y^{p}\left[y^{-1}, x^{-1}\right]^{\binom{p}{2}} .
$$

Since $p \left\lvert\,\binom{ p}{2}\right.$, it suffices to show that $\left[y^{-1}, x^{-1}\right]^{p}=1$. But again by (a), we have $\left[y^{-1}, x^{-1}\right]^{p}=\left[y^{-p}, x^{-1}\right]=1$, since $y^{-p} \in G^{p} \leqslant Z(G)$.

Finally, for $p=2$, part (a) implies

$$
(x y)^{4}=x^{4} y^{4}\left[y^{-1}, x^{-1}\right]^{6}=x^{4} y^{4}\left[y^{-6}, x^{-1}\right]=x^{4} y^{4},
$$

since $y^{6} \in G^{2} \leqslant Z(G)$.
4.10 Theorem Let p be a prime and let G be a non-abelian group of order p^{3}.
(a) If $p=2$, then $G \cong D_{8}$ or $G \cong Q_{8}$.
(b) If p is odd, then G is isomorphic to $E_{p^{3}}$ or to the group constructed in Example 4.8(b).
(c) If G is isomorphic to the group in Example 4.8(b) then $f: G \mapsto G$, $a \mapsto a^{p}$, is a group homomorphism with image $Z(G)$ and elementary abelian kernel of rank 2 .

Proof From Lemma 4.1 we have $|G / Z(G)| \geqslant p^{2}$ and from [P, 5.10] we have $|Z(G)| \geqslant p$. This implies $|Z(G)|=p$. Lemma 4.1 also implies that $G / Z(G)$ is elementary abelian. With Theorem $4.5(\mathrm{a})$ and (c) we have $1<G^{\prime} \leqslant \Phi(G) \leqslant$ $Z(G)$, and therefore $G^{\prime}=\Phi(G)=Z(G)$.
(a) Assume that $p=2$. Then there exists an element of order 4 in G. In fact, if every element in G is of order $2, G$ is abelian, since then $[x, y]=x y x^{-1} y^{-1}=x y x y=(x y)^{2}=1$ for all $x, y \in G$. So let $y \in G$ be an element of order 4 and set $Y:=\langle y\rangle$. Since Y has index 2 in G, it is normal in G and $Y \cap Z(G)>1$ by Theorem 2.9. This implies that $Z(G)<Y$ and $Z(G)=\left\{1, y^{2}\right\}$.
(i) If there exists an element $x \in G \backslash Y$ of order 2 , then $G \cong Y \rtimes X$ with $X:=\{1, x\}$ and with the only possible non-trivial action $x y x^{-1}=y^{-1}$. Therefore $G \cong D_{8}$.
(ii) If there exists no element $x \in G \backslash Y$ of order 2 , then we pick an element $x \in G \backslash Y$ of order 4. Everything we proved about y also holds for x. Therefore, $Z(G)=\left\{1, x^{2}\right\}$ and $x^{2}=y^{2}$. Moreover $\langle x\rangle$ acts on Y via conjugation in the only non-trivial way: $x y x^{-1}=y^{-1}$. This implies $G=\left\{x^{i} y^{j} \mid 0 \leqslant i \leqslant 3,0 \leqslant j \leqslant 1\right\}$ with $x^{4}=1, y^{4}=1, x^{2}=y^{2}$, and $y x=x y^{3}=y x^{2} x^{-1}=x^{2} y x^{-1}=x^{2} x^{-1} y^{3}=x y^{3}=x^{3} y$, i.e. the multiplication in G coincides with the multiplication in Q_{8} when we identify x with $\left(\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right)$ and y with $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Therefore, $G \cong Q_{8}$.
(b) Now we assume that p is odd.
(i) We first consider the case that there exists an element $y \in G$ of order p^{2}. Then $Y:=\langle y\rangle$ is a maximal subgroup of G and therefore normal in G. Moreover, $Z(G) \cap Y>1$ so that $Z(G)=\left\langle y^{p}\right\rangle$. We claim that there exists an element $x \in G \backslash Y$ of order p such that $x y x^{-1}=y^{1+p}$ which then implies that G is isomorphic to the semidirect product of Example 4.8(b). We prove the claim. First choose any $x_{1} \in G \backslash Y$. Then there exists $i \in\{1, \ldots, p\}$ with $x_{1}^{p}=y^{p i}$, since $x_{1}^{p} \in G^{p} \leqslant \Phi(G)=Z(G)=\left\langle y^{p}\right\rangle$. By Lemma 4.9(b) we have $\left(x_{1} y^{-i}\right)^{p}=x_{1}^{p} y^{-i p}=1$ and therefore the element $x_{2}:=x_{1} y^{-i} \in G \backslash Y$ has order p. The conjugation of x_{2} on Y is non-trivial. Therefore, the resulting homomorphism $\rho: X:=\left\langle x_{2}\right\rangle \rightarrow \operatorname{Aut}(Y) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$has as image the Sylow p-subgroup $\left\langle 1+p+p^{2} \mathbb{Z}\right\rangle$ of $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$. In particular, $\rho\left(x_{2}^{j}\right)=1+p+p^{2} \mathbb{Z}$ for some $j \in\{1, \ldots, p-1\}$ and the element $x:=x_{2}^{j}$ satisfies our claim.
(ii) If there exists no element of order p^{2} in G we denote by z a generator of $Z(G)$ and choose an element $x \in G \backslash Z(G)$. Then $X:=\langle x, z\rangle$ is elementary abelian of order p^{2} and also maximal in G. Let $y_{1} \in G \backslash X$. Then $G \cong$ $X \rtimes Y$ with $Y:=\left\langle y_{1}\right\rangle$ and with the conjugation action of Y on X. Since z is central, we have $y_{1} z y_{1}^{-1}=z$. Moreover $y_{1} x y_{1}^{-1}=x^{i} z^{j}$ for some $i, j \in$ $\{0, \ldots, p-1\}$. Since the classes of y_{1} and x commute in $G / Z(G)$, we obtain $i=1$. Since G is not abelian we have $j \neq 0$, and therefore $y_{1} x y_{1}^{-1}=x z^{j}$ for some $j \in\{1, \ldots, p-1\}$. Let $k \in\{1, \ldots, p-1\}$ with $k j \equiv 1 \bmod p$ and set $y:=y_{1}^{k}$. Then $y z y^{-1}=1, y x y^{-1}=y_{1}^{k} x y_{1}^{-k}=x z^{k j}=x z$ and we obtain $G \cong X \rtimes Y \cong E_{p^{3}}$ as described at the end of Example 4.8(c).
(c) We may assume that $G=Y \rtimes X$ with the notation from Example 4.8(b). By Lemma 4.9(b), the map f is a homomorphism. Obviously, $\left\langle x, y^{p}\right\rangle \leqslant \operatorname{ker}(f)$ and $Z(G)=\left\langle y^{p}\right\rangle \leqslant \operatorname{im}(f) \leqslant G^{p}=Z(G)$. By the fundamental theorem of homomorphisms we even have equality everywhere.
4.11 Notation For a p-group G and $n \in \mathbb{N}_{0}$ we set

$$
\Omega_{n}(G):=\left\langle x \in G \mid x^{p^{n}}=1\right\rangle .
$$

Obviously, this is a characteristic subgroup of G.
4.12 Lemma Let G be a p-group for an odd prime p and let $N \unlhd G$. If N is not cyclic then N contains an elementary abelian subgroup of rank 2 which is normal in G.

Proof Induction on $|G|$. The base case is $|G|=p^{2}$. The hypothesis implies that $N=G$ and that N is elementary abelian. Therefore, we can choose N as the desired subgroup.

Now let $|G| \geqslant p^{3}$. Since $N \neq 1$ it follows from a homework problem that N has a subgroup M of order p with is normal in G. By [$\mathrm{P}, 5.10$] applied to M and $N, M \leqslant Z(N)$. We first consider the case that N / M is cyclic. Then N is abelian. Since N is not cyclic, it is a direct product of two non-trivial cyclic subgroups. This implies that the characteristic subgroup $\Omega_{1}(N)$ of N is elementary abelian of rank 2 . Thus, $\Omega_{1}(N)$ is a subgroup as desired. From now on we can assume that N / M is not cyclic. By induction, applied to $N / M \unlhd G / M$ there exists $N<U \leqslant M$ with $U \unlhd G$ and U / N elementary abelian of rank 2 . Since U is not cyclic, U can be elementary abelian, the direct product of two non-trivial cyclic subgroups, isomorphic to $E_{p^{3}}$ or isomorphic to the group in Example 4.8(b). In the first and third case, choose any subgroup of U of order p^{2} which is normal in G (see homework problem for the existence). This subgroup has the desired property. In the second and fourth case consider $\Omega_{1}(U)$. This group again has the desired property, cf. Theorem 4.10.
4.13 Corollary Let G be a p-group for an odd prime p and assume that G has precisely one subgroup of order p. Then G is cyclic.

Proof Assume that G is not cyclic. Then Lemma 4.12 with $N=G$ implies that G has a normal subgroup which is elementary abelian of rank 2. But then G has at least $p+1$ subgroups of order p. This is a contradiction.
4.14 Definition (a) For every integer $n \geqslant 3$ we define the generalized quaternion group $Q_{2^{n}}$ of order 2^{n} as

$$
Q_{2^{n}}:=\left\langle x, y \mid x^{2^{n-1}}=1, x^{2^{n-2}}=y^{2}, y x y^{-1}=x^{-1}\right\rangle
$$

(b) For every integer $n \geqslant 4$ we define the semidihedral group $S D_{2^{n}}$ by

$$
S D_{2^{n}}:=\left\langle x, y \mid x^{2^{n-1}}=1, y^{2}=1, y x y^{-1}=x^{2^{n-2}-1}\right\rangle
$$

4.15 Remark (a) The group $Q_{2^{n}}$ has actually order $2^{n},\langle x\rangle$ is a subgroup of index 2 in $Q_{2^{n}}, Q_{2^{n}}$ has only one element of order 2 namely $z:=y^{2}=x^{2^{n-2}}$ and $\langle z\rangle=Z\left(Q_{2^{n}}\right)$, cf. homework.
(b) It follows from (a) and Theorem 4.10 that the generalized quaternion group of order 8 is equal to the quaternion group of order 8 .
(c) The group $S D_{2^{n}}$ has order 2^{n}, the subgroup $\langle x\rangle$ has index 2 . It is the semidirect product of the cyclic group $\langle x\rangle$ with the group $\langle y\rangle$ of order 2.
(d) Without proof we state: If G is a 2 -group with precisely one subgroup of order 2 then G is cyclic or isomorphic to a generalized quaternion group.
(e) Again without proof we state the following result: Let G be a nonabelian 2-group of order 2^{n}, and assume that G has a cyclic subgroup of order 2^{n-1}. Then $n \geqslant 3$ and exactly one of the four statements holds:
(i) G is isomorphic to the dihedral group $D_{2^{n}}$.
(ii) G is isomorphic to the generalized quaternion group $Q_{2^{n}}$.
(iii) $n \geqslant 4$ and G is isomorphic to the semidihedral group $S D_{2^{n}}$.
(iv) $n \geqslant 4$ and G is isomorphic to the group $\langle x, y| x^{2^{n-1}}=1, y^{2}=$ $\left.1, y x y^{-1}=x^{2^{n-2}+1}\right\rangle$.

The groups in (i),(iii),(iv) are semidirect products of the cyclic subgroup of order 2^{n-1} with a subgroup of order 2 . The group in (ii) is not a semidirect product. They are pairwise non-isomorphic, because the numbers of elements of order 2 they contain are different.

5 Group Cohomology

Throughout this section we fix two groups A and G and we assume that A is abelian.
5.1 Definition Let $\alpha: G \rightarrow \operatorname{Aut}(K), x \mapsto \alpha_{x}$ be a homomorphism. We write the corresponding left action exponentially: $\alpha_{x}(a)={ }^{x} a$ for $x \in G$ and $a \in A$. For $n \in \mathbb{N}_{0}$, we denote by $F\left(G^{n}, A\right)$ the abelian group of functions $f: G^{n} \rightarrow A$ under the multiplication $(f g)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right) g\left(x_{1}, \ldots, x_{n}\right)$, for $f, g \in F\left(G^{n}, A\right)$ and $x_{1}, \ldots, x_{n} \in G$. If $n=0$ we set $G^{n}:=\{1\}$. For each $n \in \mathbb{N}_{0}$ there is a group homomorphism

$$
d^{n}:=d_{\alpha}^{n}: F\left(G^{n}, A\right) \rightarrow F\left(G^{n+1}, A\right)
$$

given by

$$
\begin{aligned}
\left(d_{\alpha}^{n}(f)\right)\left(\left(x_{0}, \ldots, x_{n}\right):=\right. & x_{0} f\left(x_{1}, \ldots, x_{n}\right) . \\
& \cdot\left(\prod_{i=1}^{n} f\left(x_{0}, \ldots, x_{i-1} x_{i}, \ldots, x_{n}\right)^{(-1)^{i}}\right) . \\
& \cdot f\left(x_{0}, \ldots, x_{n-1}\right)^{(-1)^{n+1}},
\end{aligned}
$$

for $f \in F\left(G^{n}, A\right)$ and $\left(x_{0}, \ldots, x_{n}\right) \in G^{n+1}$. For $n=0$ we interpret this as $\left(d^{0}(f)\right)(x):={ }^{x} f(1) \cdot f(1)^{-1}$. It is not difficult to see that $d^{n+1} \circ d^{n}=1$ for $n \in \mathbb{N}_{0}$. This implies that $\operatorname{im}\left(d^{n}\right) \leqslant \operatorname{ker}\left(d^{n+1}\right) \leqslant F\left(G^{n+1}, A\right)$, for all $n \in \mathbb{N}_{0}$. We write

$$
B^{n}(G, A):=B_{\alpha}^{n}(G, A):=\operatorname{im}\left(d_{\alpha}^{n-1}\right)
$$

and

$$
Z^{n}(G, A):=Z_{\alpha}^{n}(G, A):=\operatorname{ker}\left(d_{\alpha}^{n}\right),
$$

for $n \in \mathbb{N}_{0}$, where we set $B^{0}(G, A):=B_{\alpha}^{0}(G, A):=1$. The elements of $B_{\alpha}^{n}(G, A)$ are called n-coboundaries and the elements of $Z_{\alpha}^{n}(G, A)$ are called n-cocycles of G with coefficients in A (under the action α). Finally, we set

$$
H^{n}(G, A):=H^{n}(G, A):=Z_{\alpha}^{n}(G, A) / B_{\alpha}^{n}(G, A)
$$

The group $H_{\alpha}^{n}(G, A)$ is called the n-th cohomology group of G with coefficients in A (under the action α) and its elements are called cohomology classes. If $f \in Z^{n}(G, A)$, we denote its cohomology class by $[f] \in H^{n}(G, A)$.
5.2 Remark Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be a homomorphism.
(a) We can identify $F\left(G^{0}, A\right)$ with A under the map $f \mapsto f(1)$. With this identification, we obtain

$$
Z^{0}(G, A)=A^{G}:=\left\{\left.a \in A\right|^{x} a=a \text { for all } x \in G\right\}
$$

the subgroup of G-fixed points of A. Since $B^{0}(G, A)=1$, we obtain $H^{0}(G, A) \cong$ A^{G}.
(b) A function $f: G \rightarrow A$ is in $Z^{1}(G, A)$, if and only if

$$
f(x y)={ }^{x} f(y) \cdot f(x)
$$

for all $x, y \in G$. The 1-cocycles of G with coefficients in A are also called the crossed homomorphisms from G to A. If the action of G on A is trivial, then the crossed homomorphisms are exactly the homomorphisms. A function $f: G \rightarrow A$ is a 1-boundary, if and only if there exists an element $a \in A$ such that

$$
f(x)={ }^{x} a \cdot a^{-1}
$$

for all $x \in G$. These functions are called the principal crossed homomorphisms. If G acts trivially on A, then they are all trivial and $H^{0}(G, A) \cong$ $\operatorname{Hom}(G, A)$.
(c) A function $f: G^{2} \rightarrow A$ is a 2-cocycle, if and only if

$$
{ }^{x} f(y, z) f(x, y z)=f(x y, z) f(x, y)
$$

for all $x, y, z \in G$, and it is a 2 -coboundary, if and only if there exists a function $g: G \rightarrow A$ such that

$$
f(x, y)={ }^{x} g(y) g(x) g(x y)^{-1}
$$

for all $x, y \in G$. We will see later that $H^{2}(G, A)$ describes the extensions $1 \rightarrow A \rightarrow X \rightarrow G \rightarrow 1$ of G by A, up to a suitable equivalence.
(d) If A has finite exponent e then $f^{e}=1$ for all $f \in F\left(G^{n}, A\right)$ and all $n \in \mathbb{N}_{0}$. In particular, each cocycle and each cohomology class has an order which divides e.
5.3 Proposition Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be a homomorphism and assume that G is finite. Then $[f]^{|G|}=1$ for all n-cocycles $f \in Z_{\alpha}^{n}(G, A)$ and all $n \in \mathbb{N}$.

Proof Let $n \in \mathbb{N}$, let $f \in Z_{\alpha}^{n}(G, A)$, and let $x_{0}, \ldots, x_{n} \in G$. Then

$$
\begin{aligned}
& f\left(x_{0}, \ldots, x_{n-1}\right)^{(-1)^{n}} \\
& ={ }^{x_{0}} f\left(x_{1}, \ldots, x_{n}\right) \cdot\left(\prod_{i=1}^{n} f\left(x_{0}, \ldots, x_{i-1} x_{i}, \ldots, x_{n}\right)^{(-1)^{i}}\right) .
\end{aligned}
$$

If we fix $x_{0}, \ldots, x_{n-1} \in G$ and multiply the above equations for the different elements $x_{n} \in G$, we obtain

$$
\begin{aligned}
& f\left(x_{0}, \ldots, x_{n-1}\right)^{(-1)^{n}|G|} \\
& ={ }^{x_{0}}\left(\prod_{x_{n} \in G} f\left(x_{1}, \ldots, x_{n}\right)\right) \cdot \prod_{i=1}^{n}\left(\prod_{x_{n} \in G} f\left(x_{0}, \ldots, x_{i-1} x_{i}, \ldots, x_{n}\right)\right)^{(-1)^{i}} .
\end{aligned}
$$

If we define $g: G^{n-1} \rightarrow A$ by $g\left(x_{1}, \ldots, x_{n-1}\right):=\prod_{x \in G} f\left(x_{1}, \ldots, x_{n-1}, x\right)$, then the above equation shows that

$$
f^{|G|}=d^{n-1}\left(g^{(-1)^{n}}\right),
$$

and $[f]^{|G|}=1$ in $H^{n}(G, A)$.
5.4 Corollary Let G and A be finite groups of coprime orders. Then $H_{\alpha}^{n}(G, A)=1$ for all $\alpha \in \operatorname{Hom}(G, \operatorname{Aut}(A))$ and all $n \in \mathbb{N}$.

Proof Let $k:=|G|$ and $l:=|A|$. Then there exist elements $r, s \in \mathbb{Z}$ such that $1=r k+s l$. From Remark $5.2(\mathrm{~d})$ and Proposition 5.3 we know that $[f]^{k}=1$ and $[f]^{l}=1$ for all $f \in Z_{\alpha}^{n}(G, A)$ and all $n \in \mathbb{N}$. Therefore also $[f]=[f]^{1}=[f]^{r k+s l}=\left([f]^{k}\right)^{r}\left([f]^{l}\right)^{s}=1$.

6 Group Extensions and Parameter Systems

In this section we will try to find a way to describe for given groups K and G all possible groups H which have a normal subgroup N which is isomorphic to K and whose factor group H / N is isomorphic to G. We fix K and G throughout this section. We do not require G or K to be finite.
6.1 Definition A group extension of G by K is a short exact sequence

$$
1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1,
$$

i.e., H is a group, and at each of the three groups K, H, G, the image of the incoming map is equal to the kernel of the outgoing map. Equivalently, ε is injective, $\operatorname{im}(\varepsilon)=\operatorname{ker}(\nu)$, and ν is surjective. We say that the above group extensions is equivalent to the group extension

$$
1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1
$$

if and only if there exists an isomorphism $\varphi: H \rightarrow \tilde{H}$ such that the diagram

commutes. Obviously, this defines an equivalence relation on the set ext (G, K) of extensions of G by K. The set of equivalence classes of $\operatorname{ext}(G, K)$ is denoted by $\operatorname{Ext}(G, K)$.
6.2 Remark (a) If $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ is a group extension of G by K, then H has the normal subgroup $\varepsilon(K)$ with factor group $H / \varepsilon(K)=$ $H / \operatorname{ker}(\nu) \cong G$. Conversely, whenever H is a group having a normal subgroup N such that $N \cong K$ and $H / N \cong G$, then there is a group extension
$1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$, where ε is the composition of the isomorphism $K \cong N$ and the inclusion $N \leqslant H$, and ν is the composition of the natural epimorphism $H \rightarrow H / N$ and the isomorphism $H / N \cong G$. Moreover, if $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \xrightarrow[\sim]{\longrightarrow} 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ are equivalent extensions then H and \tilde{H} are isomorphic by definition. Warning: the converse is not true. There are examples of group extensions of K by G which are not equivalent but involve isomorphic groups H and \tilde{H}.
(b) Two group extensions
$1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ are already equivalent if there exists a homomorphism $\gamma: H \rightarrow \tilde{H}$ which makes Diagram (6.1.a) commutative. In fact, it is easy to see that in this case it follows that γ is an isomorphism.
6.3 Proposition Let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension of G by K. For each $x \in G$, let $h_{x} \in H$ be such that $\nu\left(h_{x}\right)=x$. Then the following hold:
(a) For every $h \in H$ there exist unique elements $x \in G$ and $a \in K$ such that $h=h_{x} \varepsilon(a)$.
(b) For every $x \in G$ and $a \in K$ there exists a unique element $\alpha_{x}(a) \in K$ such that $\varepsilon\left(\alpha_{x}(a)\right)=h_{x} \varepsilon(a) h_{x}^{-1}$. Moreover, $\alpha_{x} \in \operatorname{Aut}(K)$.
(c) For every $x, y \in G$ there exists a unique element $\kappa(x, y) \in K$ such that $h_{x} h_{y}=\varepsilon(\kappa(x, y)) h_{x y}$. In particular, $h_{1}=\varepsilon(\kappa(1,1))$. Moreover, $\alpha_{x} \circ$ $\alpha_{y}=c_{\kappa(x, y)} \alpha_{x y}$, where $c_{a} \in \operatorname{Aut}(K)$ denotes the conjugation automorphism $k \mapsto a k a^{-1}$ for $a \in K$.
(d) For every $x, y, z \in G$ on has $\kappa(x, y) \kappa(x y, z)=\alpha_{x}(\kappa(y, z)) \kappa(x, y z)$.
(e) Let also $h_{x}^{\prime} \in H$ be such that $\nu\left(h_{x}^{\prime}\right)=x$ for all $x \in G$. Then there exists a unique function $g: G \rightarrow K$ such that $h_{x}^{\prime}=h_{x} \cdot \varepsilon(g(x))$ for all $x \in G$. If $\alpha^{\prime}: G \rightarrow \operatorname{Aut}(K)$ and $\kappa^{\prime}: G \times G \rightarrow K$ are constructed from $h_{x}^{\prime}, x \in G$, then

$$
\alpha_{x}^{\prime}=c_{f(x)} \circ \alpha_{x} \quad \text { and } \quad \kappa^{\prime}(x, y)=f(x) \cdot \alpha_{x}(f(y)) \cdot \kappa(x, y) \cdot f(x y)^{-1}
$$

for all $x, y \in G$, where $f: G \rightarrow K$ is defined by $f(x):=\alpha_{x}(g(x))$ for all $x \in G$.

Proof (a) Let $h \in H$ and set $x:=\nu(h)$. Then $\nu\left(h_{x}^{-1} h\right)=\nu\left(h_{x}\right)^{-1} \nu(h)=$ $x^{-1} x=1$ and there exists $a \in K$ such that $\varepsilon(a)=h_{x}^{-1} h$. Assume that also
$h=h_{y} \varepsilon(b)$ for $y \in G$ and $b \in K$. Then $x=\nu(h)=\nu\left(h_{y}\right) \nu(\varepsilon(b))=y \cdot 1=y$ and therefore $\varepsilon(a)=\varepsilon(b)$. Since ε is injective, also $a=b$.
(b) For $x \in G$ and $a \in K$, we have $h_{x} \varepsilon(a) h_{x}^{-1} \in \operatorname{ker}(\nu)=\operatorname{im}(\varepsilon)$. Therefore, there exists $b \in K$ with $\varepsilon(b)=h_{x} \varepsilon(a) h_{x}^{-1}$. Since ε is injective, $b \in K$ is unique. We set $\alpha_{x}(a):=b$.

Let $a, b \in K$ and $x \in G$. Then $\alpha_{x}(a) \alpha_{x}(b) \in K$ and

$$
\begin{aligned}
\varepsilon\left(\alpha_{x}(a) \alpha_{x}(b)\right) & =\varepsilon\left(\alpha_{x}(a)\right) \varepsilon\left(\alpha_{x}(b)\right)=h_{x} \varepsilon(a) h_{x}^{-1} h_{x} \varepsilon(b) h_{x}^{-1} \\
& =h_{x} \varepsilon(a b) h_{x}^{-1}=\varepsilon\left(\alpha_{x}(a b)\right) .
\end{aligned}
$$

Since ε is injective, we have $\alpha_{x}(a) \alpha_{x}(b)=\alpha_{x}(a b)$ and α_{x} is a group homomorphism from K to K. If $\alpha_{x}(a)=1$, then $1=\varepsilon\left(\alpha_{x}(a)\right)=h_{x} \varepsilon(a) h_{x}^{-1}$ and therefore, $\varepsilon(a)=1$. Since ε is injective, also $a=1$. This shows that α_{x} is injective. Finally, let $b \in K$ be arbitrary. Then $h_{x}^{-1} \varepsilon(b) h_{x} \in \operatorname{ker}(\nu)=\operatorname{im}(\varepsilon)$ and there exists $a \in K$ such that $h_{x}^{-1} \varepsilon(b) h_{x}=\varepsilon(a)$. This implies $b=\alpha_{x}(a)$ and α_{x} is surjective.
(c) Let $x, y \in G$. Then $\left.\nu\left(h_{x} h_{y} h_{x y}^{-1}\right)\right)=x y(x y)^{-1}=1$ and there exists a unique element $a \in K$ such that $\varepsilon(a)=h_{x} h_{y} h_{x y}^{-1}$. We set $\kappa(x, y):=a$. For $x, y \in G$ and $a \in K$ we then have

$$
\begin{aligned}
\varepsilon\left(\alpha_{x}\left(\alpha_{y}(a)\right)\right) & =h_{x} \varepsilon\left(\alpha_{y}(a)\right) h_{x}^{-1}=h_{x} h_{y} \varepsilon(a) h_{y}^{-1} h_{x}^{-1} \\
& =h_{x} h_{y} h_{x y}^{-1} h_{x y} \varepsilon(a) h_{x y}^{-1} h_{x y} h_{y}^{-1} h_{x}^{-1} \\
& =\varepsilon(\kappa(x, y)) h_{x y} \varepsilon(a) h_{x y}^{-1} \varepsilon(\kappa(x, y))^{-1} \\
& =\varepsilon(\kappa(x, y)) \varepsilon\left(\alpha_{x y}(a)\right) \varepsilon(\kappa(x, y))^{-1} \\
& =\varepsilon\left(\kappa(x, y) \alpha_{x y}(a) \kappa(x, y)^{-1}\right),
\end{aligned}
$$

and the injectivity of ε implies $\left(\alpha_{x} \circ \alpha_{y}\right)(a)=\left(c_{\kappa(x, y)} \circ \alpha_{x y}\right)(a)$.
(d) Let $x, y, z \in G$. Then

$$
\begin{aligned}
\varepsilon(\kappa(x, y) \kappa(x y, z)) h_{x y z} & =\varepsilon(\kappa(x, y)) \varepsilon(\kappa(x y, z)) h_{(x y) z}=\varepsilon(\kappa(x, y)) h_{x y} h_{z} \\
& =\left(h_{x} h_{y}\right) h_{z}
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon\left(\alpha_{x}(\kappa(y, z)) \kappa(x, y z)\right) h_{x y z} & =\varepsilon\left(\alpha_{x}(\kappa(y, z))\right) \varepsilon(\kappa(x, y z)) h_{x(y z)} \\
& =h_{x} \varepsilon(\kappa(y, z)) h_{x}^{-1} h_{x} h_{y z}=h_{x} \varepsilon(\kappa(y, z)) h_{y z} \\
& =h_{x}\left(h_{y} h_{z}\right) .
\end{aligned}
$$

Now the injectivity of ε implies the desired equation.
(e) Let $x \in G$. Since $\nu\left(h_{x}^{-1} h_{x}^{\prime}\right)=x^{-1} x=1$, there exists a unique element $g(x) \in K$ such that $\varepsilon(g(x))=h_{x}^{-1} h_{x}^{\prime}$. Moreover, for each $a \in K$ and $x \in G$ we have

$$
\varepsilon\left(\alpha_{x}^{\prime}(a)\right)=h_{x}^{\prime} \varepsilon(a) h_{x}^{\prime-1}=h_{x} \varepsilon\left(g(x) a g(x)^{-1}\right) h_{x}^{-1}
$$

which implies $\alpha_{x}^{\prime}(a)=\alpha_{x}\left(g(x) a g(x)^{-1}\right)$ and $\alpha_{x}^{\prime}=c_{\alpha_{x}(g(x))} \circ \alpha_{x}=c_{f(x)} \circ \alpha_{x}$. Moreover, for all $x, y \in G$ we have

$$
\begin{aligned}
\varepsilon\left(\kappa^{\prime}(x, y)\right) & =h_{x}^{\prime} \cdot h_{y}^{\prime} \cdot h_{x y}^{\prime-1} \\
& =h_{x} \cdot \varepsilon(g(x)) \cdot h_{y} \cdot \varepsilon(g(y)) \cdot \varepsilon(g(x y))^{-1} \cdot h_{x y}^{-1} \\
& =h_{x} \cdot \varepsilon(g(x)) \cdot h_{x}^{-1} \cdot h_{x} \cdot h_{y} \cdot h_{x y}^{-1} \cdot h_{x y} \cdot \varepsilon\left(g(y) g(x y)^{-1}\right) \cdot h_{x y}^{-1} \\
& =\varepsilon\left(\alpha_{x}(g(x))\right) \cdot \varepsilon(\kappa(x, y)) \cdot \varepsilon\left(\alpha_{x y}\left(g(y) g(x y)^{-1}\right)\right) \\
& =\varepsilon\left[\alpha_{x}(g(x)) \cdot \kappa(x, y) \cdot \alpha_{x y}(g(y)) \cdot \alpha_{x y}(g(x y))^{-1}\right] \\
& =\varepsilon\left[f(x) \cdot \kappa(x, y) \cdot \alpha_{x y}(g(y)) \cdot \kappa(x, y)^{-1} \cdot \kappa(x, y) \cdot f(x y)^{-1}\right] \\
& =\varepsilon\left[f(x) \cdot \alpha_{x}\left(\alpha_{y}(g(y))\right) \cdot \kappa(x, y) \cdot f(x y)^{-1}\right] \\
& =\varepsilon\left[f(x) \cdot \alpha_{x}(f(y)) \cdot \kappa(x, y) \cdot f(x y)^{-1}\right] .
\end{aligned}
$$

Since ε is injective, this implies the desired equation.
6.4 Definition (a) A parameter system of G in K is a pair (α, κ) of maps $\alpha: G \rightarrow \operatorname{Aut}(K), x \mapsto \alpha_{x}$, and $\kappa: G \times G \rightarrow K$ with the following properties:
(i) For every $x, y \in G$ one has $\alpha_{x} \circ \alpha_{y}=c_{\kappa(x, y)} \circ \alpha_{x y}$.
(ii) For every $x, y, z \in G$ one has $\kappa(x, y) \kappa(x y, z)=\alpha_{x}(\kappa(y, z)) \kappa(x, y z)$.

We call α the automorphism system and κ the factor system of (α, κ), and we denote the set of parameter systems of G in K by $\operatorname{par}(G, K)$.
(b) The set $F(G, K)$ of functions from G to K is a group under the multiplication $(f g)(x):=f(x) g(x)$ for $f, g: G \rightarrow K$ and $x \in G$. If $(\alpha, \kappa) \in$ par and $f: G \rightarrow K$ we set ${ }^{f}(\alpha, \kappa):=\left(\alpha^{\prime}, \kappa^{\prime}\right)$ with

$$
\alpha_{x}^{\prime}:=c_{f(x)} \circ \alpha_{x}, \quad \text { and } \quad \kappa^{\prime}(x, y):=f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1}
$$

for $x, y \in G$. As the next lemma shows, this defines a group action of $F(G, K)$ on the set $\operatorname{par}(G, K)$. We call two parameter systems of G in K equivalent if they belong to the same $F(G, K)$-orbit and we denote the set of equivalence classes by $\operatorname{Par}(G, K)$.
6.5 Remark Every extension of G by K and every choice of elements h_{x} as in Proposition 6.3 leads to a parameter system (α, κ) of G and K. If h_{x}^{\prime} is another choice of elements then, by Proposition 6.3(e), one obtains an equivalent parameter system $\left(\alpha^{\prime}, \kappa^{\prime}\right)$. Thus, Proposition 6.3 defines a function

$$
\varphi: \operatorname{ext}(G, K) \rightarrow \operatorname{Par}(G, K)
$$

6.6 Lemma (a) Let $(\alpha, \kappa) \in \operatorname{par}(G, K)$. Then $\alpha_{1}=c_{\kappa(1,1)}, \kappa(1,1)=\kappa(1, z)$, and $\kappa(x, 1)=\alpha_{x}(\kappa(1,1))$ for all $x, z \in G$.
(b) The definition of ${ }^{f}(\alpha, \kappa)$ in Definition 6.4(b) defines a group action of $F(G, K)$ on $\operatorname{par}(G, K)$.

Proof (a) By Axiom (i) in Definition 6.4(a), we have $\alpha_{1} \circ \alpha_{1}=c_{\kappa(1,1)} \circ \alpha_{1}$ which implies $\alpha_{1}=c_{\kappa(1,1)}$. For $z \in G$, this and Axiom (ii) in Definition 6.4(a) imply

$$
\kappa(1,1) \kappa(1 \cdot 1, z)=\alpha_{1}(\kappa(1, z)) \kappa(1,1 \cdot z)=\kappa(1,1) \kappa(1, z) \kappa(1,1)^{-1} \kappa(1, z) .
$$

Therefore, $\kappa(1, z)=\kappa(1,1)$. For $x \in G$, Axiom (ii) in Definition 6.4(a) implies $\kappa(x, 1 \cdot 1) \kappa(x \cdot 1,1)=\alpha_{x}(\kappa(1,1)) \kappa(x, 1 \cdot 1)$. Thus, $\kappa(x, 1)=\alpha_{x}(\kappa(1,1))$.
(b) Let $f, g \in F(G, K)$ and $\kappa \in \operatorname{par}(G, K)$. We set $\left(\alpha^{\prime}, \kappa^{\prime}\right):={ }^{f}(\alpha, \kappa)$ and $\left(\alpha^{\prime \prime}, \kappa^{\prime \prime}\right):={ }^{g}\left(\alpha^{\prime}, \kappa^{\prime}\right)$. For all $x, y \in G$, we then have

$$
\alpha_{x}^{\prime \prime}=c_{g(x)} \circ \alpha_{x}^{\prime}=c_{g(x)} \circ c_{f(x)} \circ \alpha_{x}=c_{g(x) f(x)} \circ \alpha_{x}=c_{(f g)(x)} \circ \alpha_{x}
$$

and

$$
\begin{aligned}
\kappa^{\prime \prime}(x, y) & =g(x) \alpha_{x}^{\prime}(g(y)) \kappa^{\prime}(x, y) g(x y)^{-1} \\
& =g(x) f(x) \alpha_{x}(g(y)) f(x)^{-1} f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1} g(x y)^{-1} \\
& =(g f)(x) \cdot \alpha_{x}((g f)(y)) \cdot \kappa(x, y) \cdot(g f)(x y)^{-1}
\end{aligned}
$$

This implies that $\left(\alpha^{\prime \prime}, \kappa^{\prime \prime}\right)={ }^{g f}(\alpha, \kappa)$. If $f=1$, then $\alpha_{x}^{\prime}=\alpha_{x}$ by definition and $\kappa^{\prime}(x, y)=\alpha_{x}(1) \kappa(x, y)=\kappa(x, y)$ for all $x, y \in G$. Therefore, ${ }^{1}(\alpha, \kappa)=$ (α, κ). We still have to show that $\left(\alpha^{\prime}, \kappa^{\prime}\right)$ is again a parameter system. For $x, y, z \in G$, we have

$$
\begin{aligned}
\alpha_{x}^{\prime} \circ \alpha_{y}^{\prime} & =c_{f(x)} \circ \alpha_{x} \circ c_{f(y)} \circ \alpha_{y}=c_{f(x)} \circ \alpha_{x} \circ c_{f(y)} \circ \alpha_{x}^{-1} \circ \alpha_{x} \circ \alpha_{y} \\
& =c_{f(x)} \circ c_{\alpha_{x}(f(y))} \circ c_{\kappa(x, y)} \circ \alpha_{x y}=c_{f(x) \alpha_{x}(f(y)) \kappa(x, y)} \circ c_{f(x y)}^{-1} \circ \alpha_{x y}^{\prime} \\
& =c_{\kappa^{\prime}(x, y)} \circ \alpha_{x y}^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
& \kappa^{\prime}(x, y) \kappa^{\prime}(x y, z) \\
& =f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1} f(x y) \alpha_{x y}(f(z)) \kappa(x y, z) f(x y z)^{-1} \\
& =f(x) \alpha_{x}(f(y)) \kappa(x, y) \alpha_{x y}(f(z)) \kappa(x, y)^{-1} \kappa(x, y) \kappa(x y, z) f(x y z)^{-1} \\
& =f(x) \alpha_{x}(f(y)) \alpha_{x}\left(\alpha_{y}(f(z))\right) \alpha_{x}(\kappa(y, z)) \kappa(x, y z) f(x y z)^{-1} \\
& =f(x) \alpha_{x}\left(f(y) \alpha_{y}(f(z)) \kappa(y, z) f(y z)^{-1}\right) \alpha_{x}(f(y z)) \kappa(x, y z) f(x y z)^{-1} \\
& =\alpha_{x}^{\prime}\left(\kappa^{\prime}(y, z)\right) f(x) \alpha_{x}(f(y z)) \kappa(x, y z) f(x y z)^{-1} \\
& =\alpha_{x}^{\prime}\left(\kappa^{\prime}(y, z)\right) \kappa^{\prime}(x, y z) .
\end{aligned}
$$

This implies that $\left(\alpha^{\prime}, \kappa^{\prime}\right) \in \operatorname{par}(G, K)$.
6.7 Proposition Let $(\alpha, \kappa) \in \operatorname{par}(G, K)$. Then the set $K \times G$ together with the multiplication

$$
(a, x)(b, y):=\left(a \cdot \alpha_{x}(b) \cdot \kappa(x, y), x y\right), \quad \text { for } a, b \in K, x, y \in G,
$$

is a group with identity element $\left(\kappa(1,1)^{-1}, 1\right)$ and inverse element $(a, x)^{-1}=$ $\left(\kappa(1,1)^{-1} \kappa\left(x^{-1}, x\right)^{-1} \alpha_{x^{-1}}(a)^{-1}, x^{-1}\right)$. Moreover, the functions $\varepsilon: K \rightarrow K \times G$, $a \mapsto\left(\kappa(1,1)^{-1} a, 1\right)$, and $\nu: K \times G \rightarrow G,(a, x) \mapsto x$, are group homomorphisms such that $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ is a group extension of G by K.

Proof First we prove associativity. Let $a, b, c \in K$ and $x, y, z \in G$. Then

$$
\begin{aligned}
{[(a, x)(b, y)](c, z) } & =\left(a \alpha_{x}(b) \kappa(x, y), x y\right)(c, z) \\
& =\left(a \alpha_{x}(b) \kappa(x, y) \alpha_{x y}(c) \kappa(x y, z), x y z\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(a, x)[(b, y)(c, z)] & =(a, x)\left(b \alpha_{y}(c) \kappa(y, z), y z\right) \\
& =\left(a \alpha_{x}\left(b \alpha_{y}(c) \kappa(y, z)\right) \kappa(x, y z), x y z\right) \\
& =\left(a \alpha_{x}(b) \alpha_{x}\left(\alpha_{y}(c)\right) \alpha_{x}(\kappa(y, z)) \kappa(x, y z), x y z\right) \\
& =\left(a \alpha_{x}(b) \kappa(x, y) \alpha_{x y}(c) \kappa(x, y)^{-1} \kappa(x, y) \kappa(x y, z), x y z\right) \\
& =\left(a \alpha_{x}(b) \kappa(x, y) \alpha_{x y}(c) \kappa(x y, z), x y z\right) .
\end{aligned}
$$

Next we show that $\left(\kappa(1,1)^{-1}, 1\right)$ is a left identity element. In fact, for $b \in K$ and $y \in G$ we have

$$
\begin{aligned}
\left(\kappa(1,1)^{-1}, 1\right)(b, y) & =\left(\kappa(1,1)^{-1} \alpha_{1}(b) \kappa(1, y), 1 \cdot y\right) \\
& =\left(\kappa(1,1)^{-1} \kappa(1,1) b \kappa(1,1)^{-1} \kappa(1, y), y\right)=(b, y)
\end{aligned}
$$

Moreover, for $b \in K$ and $y \in G$ we have

$$
\begin{aligned}
& \left(\kappa(1,1)^{-1} \kappa\left(y^{-1}, y\right)^{-1} \alpha_{y^{-1}}(b)^{-1}, y^{-1}\right)(b, y) \\
& =\left(\kappa(1,1)^{-1} \kappa\left(y^{-1}, y\right)^{-1} \alpha_{y^{-1}}(b)^{-1} \alpha_{y^{-1}}(b) \kappa\left(y^{-1}, y\right), y^{-1} y\right) \\
& =\left(\kappa(1,1)^{-1}, 1\right) .
\end{aligned}
$$

This shows that H is a group.
For $a, b \in K$ we have

$$
\begin{aligned}
\varepsilon(a) \varepsilon(b) & =\left(\kappa(1,1)^{-1} a, 1\right)\left(\kappa(1,1)^{-1} b, 1\right) \\
& =\left(\kappa(1,1)^{-1} a \alpha_{1}\left(\kappa(1,1)^{-1} b\right) \kappa(1,1), 1 \cdot 1\right) \\
& =\left(\kappa(1,1)^{-1} a \kappa(1,1) \kappa(1,1)^{-1} b \kappa(1,1)^{-1} \kappa(1,1), 1\right) \\
& =\left(\kappa(1,1)^{-1} a b, 1\right)=\varepsilon(a b),
\end{aligned}
$$

which shows that ε is a homomorphism. Obviously, ε is injective. For all $a, b \in K$ and $x, y \in G$, we have

$$
\nu((a, x)(b, y))=\nu\left(a \alpha_{x}(b) \kappa(x, y), x y\right)=x y=\nu(a, x) \nu(b, y),
$$

which shows that ν is a homomorphism. Obviously, ν is surjective. Finally, for $a \in K$ and $x \in G$ we have

$$
(a, x) \in \operatorname{ker}(\nu) \Longleftrightarrow x=1 \Longleftrightarrow(a, x) \in \varepsilon(K),
$$

and the proof is complete.
6.8 Theorem (Schreier) The constructions in Proposition 6.3 and Proposition 6.7 induce mutually inverse bijections between $\operatorname{Ext}(G, K)$ and $\operatorname{Par}(G, K)$.

Proof First assume that
$1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ are equivalent group extensions of G by K. Then there exists an isomorphism $\gamma: H \rightarrow \tilde{H}$ such that the diagram

is commutative. For each $x \in G$ let $h_{x} \in H$ such that $\nu\left(h_{x}\right)=x$ and assume that $\alpha: G \rightarrow \operatorname{Aut}(K)$ and $\kappa: G \times G \rightarrow K$ is constructed as in Proposition 6.3, i.e.,

$$
\varepsilon\left(\alpha_{x}(a)\right)=h_{x} \varepsilon(a) h_{x}^{-1} \quad \text { and } \quad h_{x} h_{y}=\varepsilon(\kappa(x, y)) h_{x y}
$$

for all $x, y \in G$ and $a \in K$. We set $\tilde{h}_{x}:=\gamma\left(h_{x}\right)$ for each $x \in G$. Then, $\tilde{\nu}\left(\tilde{h}_{x}\right)=$ $\tilde{\nu}\left(\gamma\left(h_{x}\right)\right)=\nu\left(h_{x}\right)=x$ for each x and we can use the elements \tilde{h}_{x} in order to construct a parameter system ($\tilde{\alpha}, \tilde{\kappa})$ associated to the group extension $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$. But applying γ to the two above equations we obtain

$$
\tilde{\varepsilon}\left(\alpha_{x}(a)\right)=\tilde{h}_{x} \tilde{\varepsilon}(a) \tilde{h}_{x}^{-1} \quad \text { and } \quad \tilde{h}_{x} \tilde{h}_{y}=\tilde{\varepsilon}(\kappa(x, y)) \tilde{h}_{x y}^{-1} .
$$

This implies that $\tilde{\alpha}=\alpha$ and $\tilde{\kappa}=\kappa$. Therefore, the construction in Proposition 6.3 induces a map

$$
\Phi: \operatorname{Ext}(G, K) \rightarrow \operatorname{Par}(G, K)
$$

Next let $(\alpha, \kappa) \in \operatorname{par}(G, K), f \in F(G, K)$, and set $(\tilde{\alpha}, \tilde{\kappa}):={ }^{f}(\alpha, \kappa)$. Moreover, let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ be the group extensions associated to (α, κ) and ($\tilde{\alpha}, \tilde{\kappa})$ by the construction in Proposition 6.7. We want to show that they are equivalent. We define $\gamma: H \rightarrow \tilde{H}$ by

$$
\gamma(a, x):=\left(e a \alpha_{x}(e)^{-1} f(x)^{-1}, x\right) \quad \text { with } \quad e:=\kappa(1,1)^{-1} f(1)^{-1} \kappa(1,1)
$$

For all $a, b \in K$ and $x, y \in G$ we have

$$
\begin{aligned}
& \gamma(a, x) \varphi(b, y)=\left(e a \alpha_{x}(e)^{-1} f(x)^{-1}, x\right) \cdot\left(e b \alpha_{y}(e)^{-1} f(y)^{-1}, y\right) \\
& =\left(e a \alpha_{x}(e)^{-1} f(x)^{-1} \tilde{\alpha}_{x}\left(e b \alpha_{y}(e)^{-1} f(y)^{-1}\right) \tilde{\kappa}(x, y), x y\right) \\
& =\left(e a \alpha_{x}(e)^{-1} f(x)^{-1} f(x) \alpha_{x}\left(e b \alpha_{y}(e)^{-1} f(y)^{-1}\right) f(x)^{-1}\right. \\
& \left.\cdot f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1}, x y\right) \\
& =\left(e a \alpha_{x}(b) \alpha_{x}\left(\alpha_{y}(e)\right)^{-1} \kappa(x, y) f(x y)^{-1}, x y\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma((a, x)(b, y)) & =\varphi\left(a \alpha_{x}(b) \kappa(x, y), x y\right) \\
& =\left(e a \alpha_{x}(b) \kappa(x, y) \alpha_{x y}(e)^{-1} f(x y)^{-1}, x y\right) \\
& =\left(e a \alpha_{x}(b) \kappa(x, y) \alpha_{x y}(e)^{-1} \kappa(x, y)^{-1} \kappa(x, y) f(x y)^{-1}, x y\right) \\
& =\left(e a \alpha_{x}(b) \alpha_{x}\left(\alpha_{y}(e)\right)^{-1} \kappa(x, y) f(x y)^{-1}, x y\right) .
\end{aligned}
$$

This implies that γ is a homomorphism. Moreover, for $a \in K$ and $x \in G$, we have

$$
\begin{aligned}
\gamma(\varepsilon(a))=\gamma\left(\kappa(1,1)^{-1} a, 1\right) & =\left(e \kappa(1,1)^{-1} a \alpha_{1}(e)^{-1} f(1)^{-1}, 1\right) \\
& =\left(\kappa(1,1)^{-1} f(1)^{-1} a \kappa(1,1) d^{-1} \kappa(1,1)^{-1} f(1)^{-1}, 1\right) \\
& \left.=\left(\kappa(1,1)^{-1} f(1)^{-1} a, 1\right)\right)=\left(\tilde{\kappa}(1,1)^{-1} a, 1\right)=\tilde{\varepsilon}(a)
\end{aligned}
$$

and

$$
\tilde{\nu}(\gamma(a, x))=\tilde{\nu}\left(e a \alpha_{x}(e)^{-1} f(x)^{-1}, x\right)=x=\nu(a, x) .
$$

Together with Remark 6.2(b), this implies that the two group extensions $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ are equivalent. Therefore, the construction in Proposition 6.7 induces a map

$$
\Psi: \operatorname{Par}(G, K) \longrightarrow \operatorname{Ext}(G, K)
$$

Finally, we show that Φ and Ψ are mutually inverse bijections. Let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension and, for each $x \in G$, let $h_{x} \in H$ be such that $\nu\left(h_{x}\right)=x$. Moreover, let (α, κ) be the parameter system defined in Proposition 6.3 from $h_{x}, x \in G$, and let $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ be the group extension constructed from (α, κ) according to Proposition 6.7. We show that the two group extensions
$1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$ are equivalent. In fact, let $\gamma: \tilde{H} \rightarrow H$ be defined by

$$
\gamma(a, x):=\varepsilon\left(\kappa(1,1) a \kappa(x, 1)^{-1}\right) h_{x}
$$

for all $a, b \in K$ and $x, y \in G$. Then

$$
\begin{aligned}
\gamma((a, x)(b, y)) & =\gamma\left(a \alpha_{x}(b) \kappa(x, y), x y\right) \\
& =\varepsilon\left(\kappa(1,1) a \alpha_{x}(b) \kappa(x, y) \kappa(x y, 1)^{-1}\right) h_{x y} \\
& =\varepsilon\left(\kappa(1,1) a \alpha_{x}(b) \alpha_{x}(\kappa(y, 1))^{-1} \kappa(x, y)\right) h_{x y} \\
& =\varepsilon\left(\kappa(1,1) a \alpha_{x}(b) \alpha_{x}(\kappa(y, 1))^{-1}\right) h_{x} h_{y}
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma(a, x) \gamma(b, y) & =\varepsilon\left(\kappa(1,1) a \kappa(x, 1)^{-1}\right) h_{x} \varepsilon\left(\kappa(1,1) b \kappa(y, 1)^{-1}\right) h_{y} \\
& =\varepsilon\left(\kappa(1,1) a \kappa(x, 1)^{-1}\right) \varepsilon\left(\alpha_{x}\left(\kappa(1,1) b \kappa(y, 1)^{-1}\right)\right) h_{x} h_{y} \\
& =\varepsilon\left(\kappa(1,1) a \kappa(x, 1)^{-1} \alpha_{x}(\kappa(1,1)) \alpha_{x}(b) \alpha_{x}(\kappa(y, 1))^{-1}\right) h_{x} h_{y} \\
& =\varepsilon\left(\kappa(1,1) a \alpha_{x}(b) \alpha_{x}(\kappa(y, 1))^{-1}\right) h_{x} h_{y} .
\end{aligned}
$$

This shows that γ is a homomorphism. Moreover, for $a \in K$ and $x \in G$ we have

$$
\begin{aligned}
\gamma(\tilde{\epsilon}(a)) & =\gamma\left(\kappa(1,1)^{-1} a, 1\right)=\varepsilon\left(\kappa(1,1) \kappa(1,1)^{-1} a \kappa(1,1)^{-1}\right) h_{1} \\
& =\varepsilon(a) \varepsilon(\kappa(1,1))^{-1} h_{1}=\varepsilon(a),
\end{aligned}
$$

by Proposition 6.3(c), and

$$
\nu(\gamma(a, x))=\nu\left(\varepsilon\left(\kappa(1,1) a \kappa(x, 1)^{-1}\right) h_{x}\right)=\nu\left(h_{x}\right)=x=\tilde{\nu}(a, x) .
$$

Therefore, the two group extensions
$1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ and $1 \longrightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1$
are equivalent, and $\Psi \circ \Phi=\mathrm{id}$.
Now let $(\alpha, \kappa) \in \operatorname{par}(G, K)$ and let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be the group extension constructed in Proposition 6.7. We set

$$
h_{x}:=\left(\kappa(1,1)^{-1} \kappa(x, 1), x\right) \in H,
$$

for $x \in G$ and observe that $\nu\left(h_{x}\right)=x$. Let $x \in G$ and $a \in K$, then

$$
\begin{aligned}
h_{x} \varepsilon(a) & =\left(\kappa(1,1)^{-1} \kappa(x, 1), x\right) \cdot\left(\kappa(1,1)^{-1} a, 1\right) \\
& =\left(\kappa(1,1)^{-1} \kappa(x, 1) \alpha_{x}(\kappa(1,1))^{-1} \alpha_{x}(a) \kappa(x, 1), x\right) \\
& =\left(\kappa(1,1)^{-1} \alpha_{x}(a) \kappa(x, 1), x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon\left(\alpha_{x}(a)\right) h_{x} & =\left(\kappa(1,1)^{-1} \alpha_{x}(a), 1\right) \cdot\left(\kappa(1,1)^{-1} \kappa(x, 1), x\right) \\
& =\left(\kappa(1,1)^{-1} \alpha_{x}(a) \alpha_{1}\left(\kappa(1,1)^{-1} \kappa(x, 1)\right) \kappa(1, x), x\right) \\
& =\left(\kappa(1,1)^{-1} \alpha_{x}(a) \kappa(x, 1) \kappa(1,1)^{-1} \kappa(1, x), x\right) \\
& =\left(\kappa(1,1)^{-1} \alpha_{x}(a) \kappa(x, 1), x\right) .
\end{aligned}
$$

Moreover, for all $x, y \in G$ we have

$$
\begin{aligned}
h_{x} h_{y} & =\left(\kappa(1,1)^{-1} \kappa(x, 1), x\right) \cdot\left(\kappa(1,1)^{-1} \kappa(y, 1), y\right) \\
& =\left(\kappa(1,1)^{-1} \kappa(x, 1) \alpha_{x}(\kappa(1,1))^{-1} \alpha_{x}(\kappa(y, 1)) \kappa(x, y), x y\right) \\
& =\left(\kappa(1,1)^{-1} \alpha_{x}(\kappa(y, 1)) \kappa(x, y), x y\right) \\
& =\left(\kappa(1,1)^{-1} \kappa(x, y) \kappa(x y, 1), x y\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon(\kappa(x, y)) h_{x y} & =\left(\kappa(1,1)^{-1} \kappa(x, y), 1\right) \cdot\left(\kappa(1,1)^{-1} \kappa(x y, 1), x y\right) \\
& =\left(\kappa(1,1)^{-1} \kappa(x, y) \alpha_{1}\left(\kappa(1,1)^{-1} \kappa(x y, 1)\right) \kappa(1, x y), x y\right) \\
& =\left(\kappa(1,1)^{-1} \kappa(x, y) \kappa(x y, 1) \kappa(1,1)^{-1} \kappa(1, x y), x y\right) \\
& =\left(\kappa(1,1)^{-1} \kappa(x, y) \kappa(x y, 1), x y\right)
\end{aligned}
$$

This shows that the parameter system constructed from the group extension $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ equals (α, κ). Therefore $\Phi \circ \Psi=\mathrm{id}$, and the proof is complete.
6.9 Proposition Let $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension of G by K. Then the following are equivalent:
(i) There exists a homomorphism $\sigma: G \rightarrow H$ such that $\nu \circ \sigma=\mathrm{id}_{G}$.
(ii) $\varepsilon(K)$ has a complement in H.

Proof (i) \Rightarrow (ii): Let $\sigma: G \rightarrow H$ be a homomorphism satisfying $\nu \circ \sigma=\mathrm{id}_{G}$. We show that $\sigma(G)$ is a complement of $\varepsilon(K)=\operatorname{ker}(\nu)$ in H. Let $h \in \operatorname{ker}(\nu) \cap$ $\sigma(G)$. Then $h=\sigma(x)$ for some $x \in G$ and we obtain $x=\nu \sigma(x)=\nu(h)=1$ and $h=\sigma(x)=1$. Now let $h \in H$ be arbitrary. Then $h=h \sigma(\nu(h))^{-1} \sigma(\nu(h))$ with $h \sigma(\nu(h))^{-1} \in \operatorname{ker}(\nu)$ and $\sigma(\nu(h)) \in \sigma(G)$.
(ii) \Rightarrow (i): Let C be a complement of $\varepsilon(K)=\operatorname{ker}(\nu)$ in H. Then the $\operatorname{map} \delta: C \rightarrow H / \varepsilon(K), c \mapsto c \varepsilon(K)$ is an isomorphism. By the homomorphism theorem, also the map $\bar{\nu}: H / \varepsilon(K) \rightarrow G, h \varepsilon(K) \mapsto \nu(h)$, is an isomorphism. Now the map

$$
\sigma: G \xrightarrow{\bar{\nu}^{-1}} H / \varepsilon(K) \xrightarrow{\delta^{-1}} C \succ \stackrel{\iota}{\longrightarrow} H
$$

satisfies $\nu(\sigma(x))=\left(\nu \circ \iota \circ \delta^{-1} \circ \bar{\nu}^{-1}\right)(x)=x$. In fact, we can write $x=\bar{\nu}(\delta(c))$ for a unique $c \in C$. Then it suffices to show that $\nu(\iota(c)=\bar{\nu}(\delta(c))$. But $\bar{\nu}(\delta(c))=\bar{\nu}(c \operatorname{ker}(\nu))=\nu(c)=\nu(\iota(c))$.
6.10 Remark (a) If the conditions in Proposition 6.9 is satisfied, then we say that the group extension $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ splits and that σ is a splitting map.
(b) If $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ splits and $\sigma: G \rightarrow H$ satisfies $\nu \circ \sigma=\mathrm{id}_{G}$, then we may use the elements $h_{x}:=\sigma(x), x \in G$, in order to construct a corresponding parameter system. Since $h_{x} h_{y}=h_{x y}$ for all $x, y \in G$, one has $\kappa(x, y)=1$ for all $x, y \in G$. Moreover, this implies that $\alpha: G \rightarrow \operatorname{Aut}(K)$ is a homomorphism.

Conversely, if $\alpha: G \rightarrow \operatorname{Aut}(K)$ is a homomorphism and $\kappa(x, y)=1$ for all $x, y \in G$, then (α, κ) is a parameter system of G in K and the corresponding group extension splits and is represented by the semidirect product of G with K under the action defined by α.
6.11 Definition Even if K is not abelian, one can still define the so-called non-commutative cohomology $H^{0}(G, K)$ and $H^{1}(G, K)$ of G with values in K as follows:
(a) $H^{0}(G, K):=K^{G}$, the set of G-fixed points of K. This is a subgroup of K.
(b) $Z^{1}(G, K)$ is defined as the set of all functions $\mu: G \rightarrow K$ satisfying

$$
\mu(x y)={ }^{x} \mu(y) \mu(x) .
$$

It's elements are called 1-cocycles or crossed homomorphisms from G to K. Two functions $\lambda, \mu \in Z^{1}(G, K)$ are called equivalent if there exists $a \in K$ such that

$$
\lambda={ }^{x} a \cdot \mu(x) \cdot a^{-1}
$$

for all $x \in G$. This defines an equivalence relation (see Homework problem). The equivalence class of $\mu \in Z^{1}(G, K)$ is denoted by $[\mu]$. The set of equivalence classes of $Z^{1}(G, K)$ is denoted by $H^{1}(G, K)$. It is not a group, but it has the structure of a pointed set, a set with a distinguished element, namely the class [1] of the constant function 1: $G \rightarrow K$.
6.12 Remark (a) There are no non-commutative versions of $H^{n}(G, K)$ for $n \geqslant 2$.
(b) If $K=A$ is abelian then the definitions in 6.11 coincide with the usual cohomology groups.
(c) If G acts on K and $\mu \in Z^{1}(G, K)$ then the equation $\mu(x y)={ }^{x} \mu(y) \mu(x)$ implies that $\mu(1)=1$ by setting $x=y=1$. Moreover, by setting $y=x^{-1}$ we obtain ${ }^{x} \mu\left(x^{-1}\right)=\mu(x)^{-1}$ and $x^{-1} \mu(x)=\mu\left(x^{-1}\right)^{-1} x^{-1}$.
6.13 Theorem Let $\alpha: G \rightarrow \operatorname{Aut}(K)$ be a group homomorphism and let $H:=K \rtimes G$ be the corresponding semidirect product. To simplify notation we assume that $K \unlhd H$ and $G \leqslant H$ with $K \cap G=1$ and $K G=H$. Let \mathcal{C} denote the set of all complements of K in H, i.e., subgroups $C \leqslant H$, satisfying $K \cap C=1$ and $K C=H$.
(a) H acts by conjugation on \mathcal{C} and the H-orbits of \mathcal{C} are equal to the K-orbits of \mathcal{C}. The K-conjugacy classes of \mathcal{C} will be denoted by $\overline{\mathcal{C}}$.
(b) For each $C \in \mathcal{C}$ there exists a unique function $\mu_{C}: G \rightarrow K$ such that

$$
\mu_{C}(x) \in x C \quad \text { for all } x \in G
$$

Moreover, $\mu_{C} \in Z^{1}(G, K)$. Conversely, for every $\mu \in Z^{1}(G, K)$, the set

$$
C_{\mu}:=\left\{\mu(x)^{-1} x \mid x \in G\right\}
$$

is a subgroup and a complement of K in H. These two constructions define mutual inverse bijections

$$
\mathcal{C} \leftrightarrow Z^{1}(G, K) .
$$

Moreover, these bijections induce mutually inverse bijections

$$
\overline{\mathrm{C}} \leftrightarrow H^{1}(G, K) .
$$

Proof Both statements of (a) are easy to verify.
(b) Let $C \in \mathcal{C}$. For every $x \in G$ there exist unique elements $\mu(x) \in K$ and $c \in C$ such that

$$
x=\mu(x) c .
$$

This implies the first statement. Next we show that the function $\mu: G \rightarrow K$ is a 1-cocycle. Let $x, y \in G$ and let $c, d \in C$ with $x=\mu(x) c$ and $y=\mu(y) d$. Then

$$
x y=x \mu(y) d={ }^{x} \mu(y) x d={ }^{x} \mu(y) \mu(x) c d
$$

with ${ }^{x} \mu(y) \mu(x) \in K$ and $c d \in C$.
Next let $\mu \in Z^{1}(G, K)$ and let C_{μ} be defined as in the theorem. First we show that C_{μ} is a subgroup: For $x, y \in G$ we have

$$
\mu(x)^{-1} x \mu(y)^{-1} y=\mu(x)^{-1 x} \mu(y)^{-1} x y=\mu(x y)^{-1} x y
$$

which shows that the product of two elements in C_{μ} is again in C_{μ}. Moreover, if for $x \in G$ we have

$$
x^{-1} \mu(x)=\mu\left(x^{-1}\right)^{-1} x^{-1}
$$

by Remark 6.12(c). If x is an element in G such that $\mu(x)^{-1} x \in K$, then also x is in K and therefore, $x=1$ and $\mu(x)^{-1} x=1$. Therefore, $K \cap C_{\mu}=1$. Finally, every element in H can be written as $a x$ with $a \in K$ and $x \in G$ and $a x=a \mu(x) \mu(x)^{-1} x \in K C_{\mu}$. This completes the proof that $C_{\mu} \in \mathcal{C}$.

It is easy to see that the two constructions are inverse to each other so that we obtain a bijection $\mathcal{C} \leftrightarrow Z^{1}(G, K)$.

Next assume that $C, D \in \mathcal{C}$ and that $D={ }^{a} C$ with $a \in K$. Let $x \in G$ and let $c \in C$ such that $x=\mu_{C}(x) c$. Then,

$$
x=\mu_{C}(x) c=\mu(x) \cdot{ }^{c} a \cdot a^{-1} \cdot{ }^{a} c
$$

with $\mu_{C}(x) \cdot{ }^{c} a \cdot a^{-1} \in K$ and ${ }^{a} c \in D$. Therefore,

$$
\mu_{D}=\mu(x) \cdot{ }^{c} a \cdot a^{-1}=\mu_{C}(x) \cdot{ }^{\mu_{C}(x)^{-1} x} a \cdot a^{-1}={ }^{x} a \cdot \mu(x) \cdot a^{-1} .
$$

Therefore, $\left[\mu_{C}\right]=\left[\mu_{D}\right] \in H^{1}(G, K)$. Conversely, let $\lambda, \mu \in Z^{1}(G, K)$ and let $a \in K$ such that $\lambda(x)={ }^{x} a \cdot \mu(x) \cdot a^{-1}$ for all $x \in G$. Then C_{λ} consists of all elements of the form $\lambda(x)^{-1} x=a \cdot \mu(x)^{-1} \cdot{ }^{x} a^{-1} \cdot x=a \mu(x)^{-1} x a^{-1}$ with $x \in G$. But this is just $a C_{\mu} a^{-1}$. This completes the proof of the Theorem.

7 Group Extensions with Abelian Kernel

Throughout this section let A be an abelian group and let G be an arbitrary group.
7.1 Remark Let $1 \longrightarrow A \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension, let $h_{x} \in$ H with $\nu\left(h_{x}\right)=x$ for all $x \in G$, and let $(\alpha, \kappa) \in \operatorname{par}(G, A)$ be the parameter system as defined in Proposition 6.3. Then

$$
\begin{gathered}
\varepsilon\left(\alpha_{x}(a)\right)=h_{x} \varepsilon(a) h_{x}^{-1}, \quad h_{x} h_{y}=\varepsilon(\kappa(x, y)) h_{x y}, \\
\alpha_{x} \circ \alpha_{x}=c_{\kappa(x, y)} \circ \alpha_{x y}, \quad \text { and } \quad \alpha_{x}(\kappa(y, z)) \kappa(x, y z)=\kappa(x y, z) \kappa(x, y),
\end{gathered}
$$

for all $a \in A$ and $x, y, z \in G$. Since A is abelian, $c_{\kappa(x, y)}=\operatorname{id}_{K}$ and the map $\alpha: G \rightarrow \operatorname{Aut}(A)$ is a homomorphism. Moreover, κ is a 2-cocycle of G with coefficients in A under the action defined by α. If $\left(\alpha^{\prime}, \kappa^{\prime}\right) \in \operatorname{par}(G, A)$ is equivalent to (α, κ), then there exists a function $f: G \rightarrow A$ such that

$$
\alpha_{x}^{\prime}=c_{\alpha_{x}(f(x))} \circ \alpha_{x} \quad \text { and } \quad \kappa^{\prime}(x, y)=f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1}
$$

for all $x, y \in G$. Again, since A is abelian, this implies $\alpha^{\prime}=\alpha$. Moreover, we can see that κ and κ^{\prime} belong to the same cohomology class. Altogether we see that two parameter systems (α, κ) and $\left(\alpha^{\prime}, \kappa^{\prime}\right)$ are equivalent, if and only if $\alpha=\alpha^{\prime}$ and $[\kappa]=\left[\kappa^{\prime}\right] \in H_{\alpha}^{2}(G, A)$.

Therefore we can partition $\operatorname{Ext}(G, A)$ and $\operatorname{Par}(G, A)$ into disjoint unions indexed by $\alpha \in \operatorname{Hom}(G, \operatorname{Aut}(A))$, i.e., by the possible actions of G on A :

$$
\operatorname{Par}(G, A)=\bigcup_{\alpha}^{\bullet} H_{\alpha}^{2}(G, A)
$$

and

$$
\operatorname{Ext}(G, A)=\bigcup_{\alpha}^{\bullet} \operatorname{Ext}_{\alpha}(G, A)
$$

where $\operatorname{Ext}_{\alpha}(G, A)$ denotes those extensions which induce the automorphism system α. For given action $\alpha: G \rightarrow \operatorname{Aut}(A)$, we have the bijections from Schreier's Theorem 6.8:

$$
\operatorname{Ext}_{\alpha}(G, A) \leftrightarrow H_{\alpha}^{2}(G, A) .
$$

Recall that $H_{\alpha}^{2}(G, A)$ is an abelian group. Its identity element [1] corresponds to the semidirect product extension of G by A under the action α. The multiplication in the group $H_{\alpha}^{2}(G, A)$ corresponds to the so-called Baer product which can be defined purely in terms of extensions.

Finally, if the above extension splits then the A-conjugacy classes (recall that they are the same as the H-conjugacy classes) of complements of A in H are parametrized by $H^{1}(G, A)$, by Theorem 6.13
7.2 Corollary Assume that $\operatorname{gcd}(|G|,|A|)=1$.
(a) Every extensions of G by A splits. In particular, for every action $\alpha \in \operatorname{Hom}(G, \operatorname{Aut}(A))$, there exist precisely one extension of G by A (up to equivalence) with automorphism system α, namely the semidirect product $A \rtimes_{\alpha} G$.
(b) Let $\alpha \in \operatorname{Hom}(G, \operatorname{Aut}(A))$ and let $H:=A \rtimes_{\alpha} G$ be the corresponding semidirect product. Then any two complements of A in H are conjugate under A.

Proof (a) We have $\operatorname{Ext}_{\alpha}(G, A) \cong H_{\alpha}^{2}(G, A)$ by the above remark. But the latter group is trivial by Corollary 5.4. Thus, the only extension of G by A, up to equivalence, that has automorphism system α, is the semidirect product.
(b) This follows immediately from Theorem 6.13.

8 Group Extensions with Non-Abelian Kernel

Throughout this section let K and G be arbitrary groups.
8.1 Remark An automorphism $f \in \operatorname{Aut}(K)$ is called an inner automorphism, if $f=c_{a}$ for some $a \in K$. The set $\operatorname{Inn}(K)$ of inner automorphisms is the image of the homomorphism $c: K \rightarrow \operatorname{Aut}(K), a \mapsto c_{a}$. Therefore, $\operatorname{Inn}(K)$ is a subgroup of $\operatorname{Aut}(K)$. It is even a normal subgroup, since $f \circ c_{a} \circ f^{-1}=c_{f(a)}$ for all $f \in \operatorname{Aut}(K)$ and all $a \in K$. We call the quotient $\operatorname{Out}(K):=\operatorname{Aut}(K) / \operatorname{Inn}(K)$ the group of outer automorphisms of K.

For each $(\alpha, \kappa) \in \operatorname{par}(G, K)$ one has $\alpha_{x} \circ \alpha_{y}=c_{\kappa(x, y)} \circ \alpha_{x y}$ for all $x, y \in G$. This shows that the function $\omega: G \rightarrow \operatorname{Out}(K), x \mapsto \alpha_{x} \operatorname{Inn}(K)$, is a group homomorphism. We call ω the pairing induced by the automorphism system α. If $\left(\alpha^{\prime}, \kappa^{\prime}\right)$ is an equivalent parameter system, then $\alpha_{x}^{\prime}=c_{f(x)} \circ \alpha_{x}$ for some function $f: G \rightarrow K$, which shows that the pairing ω^{\prime} induced by α^{\prime} is equal to ω. Therefore, each element in $\operatorname{Par}(G, K)$ defines a pairing $\omega: G \rightarrow$ Out (K). By Schreier's Theorem also every element in $\operatorname{Ext}(G, K)$ defines a pairing. If K is abelian, then $\operatorname{Inn}(K)=1$ and $\operatorname{Out}(K)=\operatorname{Aut}(K) / \operatorname{Inn}(K) \cong$ $\operatorname{Aut}(K)$, and we do not have to distinguish between automorphism systems and pairings.

For each $\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))$ we denote by $\operatorname{ext}_{\omega}(G, K)\left(\operatorname{resp} . \operatorname{par}_{\omega}(G, K)\right)$ the set of extensions of G by K (resp. parameter systems of G in K) which induce the pairing ω, and by $\operatorname{Ext}_{\omega}(G, K)\left(\operatorname{resp} . \operatorname{Par}_{\omega}(G, K)\right)$ the set of equivalence classes of extensions of G by K (resp. parameter systems of G in K) which induce the pairing ω. Then we have

$$
\operatorname{Ext}(G, K)=\bigcup_{\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))}^{\bullet} \operatorname{Ext}_{\omega}(G, K)
$$

and

$$
\operatorname{Par}(G, K)=\bigcup_{\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))}^{\bullet} \operatorname{Par}_{\omega}(G, K)
$$

and Schreier's Theorem gives an isomorphism between $\operatorname{Ext}_{\omega}(G, K)$ and $\operatorname{Par}_{\omega}(G, K)$ for each $\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))$. It may happen that $\operatorname{Ext}_{\omega}(G, K)$ is empty. In the sequel we will find out, exactly when this happens, and we will also give a description of $\operatorname{Ext}_{\omega}(G, K)$ in the case, where it is non-empty. Both results will use group cohomology of G with coefficients in $Z(K)$.

For each automorphism $f \in \operatorname{Aut}(K)$, the restriction $\left.f\right|_{Z(K)}$ defines an automorphism of $Z(K)$, since $Z(K)$ is characteristic in K. This defines a group homomorphism $\operatorname{res}_{Z(K)}^{K}: \operatorname{Aut}(K) \rightarrow \operatorname{Aut}(Z(K))$ whose kernel contains $\operatorname{Inn}(K)$. By the fundamental theorem of homomorsphisms, we obtain a homomorphism $\operatorname{Out}(K) \rightarrow \operatorname{Aut}(Z(K)),\left.f \operatorname{Inn}(K) \mapsto f\right|_{Z(K)}$, which we denote again by $\operatorname{res}_{Z(K)}^{K}$.

If $\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))$, then its composition with $\operatorname{res}_{Z(K)}^{K}$ gives a homomorphism $\zeta:=\operatorname{res}_{Z(K)}^{K} \circ \omega: G \rightarrow \operatorname{Aut}(Z(K))$. The next theorem will show that, if $\operatorname{Par}_{\omega}(G, K)$ is non-empty then it is in bijection with $H_{\zeta}^{2}(G, Z(K))$.

In the sequel we will write $[\alpha, \kappa]$ for the equivalence class of any element $(\alpha, \kappa) \in \operatorname{par}(G, K)$.
8.2 Theorem Let $\omega \in \operatorname{Hom}(G, \operatorname{Out}(K))$ with $\operatorname{Par}_{\omega}(G, K) \neq \emptyset$ and let $\zeta:=$ $\operatorname{res}_{Z(K)}^{K} \circ \omega \in \operatorname{Hom}(G, \operatorname{Aut}(Z(K)))$. Then the function

$$
Z_{\zeta}^{2}(G, Z(K)) \times \operatorname{par}_{\omega}(G, K) \rightarrow \operatorname{par}_{\omega}(G, K), \quad(\gamma,(\alpha, \kappa)) \mapsto(\alpha, \gamma \kappa)
$$

with

$$
(\gamma \kappa)(x, y):=\gamma(x, y) \kappa(x, y),
$$

for $x, y \in G$, defines an action of the group $Z_{\zeta}^{2}(G, Z(K))$ on the set $\operatorname{par}_{\omega}(G, K)$. Moreover, this action induces an action of $H_{\zeta}^{2}(G, Z(K))$ on $\operatorname{Par}_{\omega}(G, K)$ which is transitive and free. In particular, for any element $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$, the map

$$
H_{\zeta}^{2}(G, Z(K)) \rightarrow \operatorname{Par}_{\omega}(G, K), \quad[\gamma] \longmapsto{ }^{[\gamma]}[\alpha, \kappa]=[\alpha, \gamma \kappa]
$$

is a bijection.
Proof We first show that for $\gamma \in Z_{\zeta}^{2}(G, Z(K))$ and $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$ also $(\alpha, \gamma \kappa) \in \operatorname{par}_{\omega}(G, K)$. In fact, for all $x, y, z \in G$ we have

$$
\begin{aligned}
(\gamma \kappa)(x, y) \cdot(\gamma \kappa)(x y, z) & =\gamma(x, y) \kappa(x, y) \gamma(x y, z) \kappa(x y, z) \\
& =\gamma(x, y) \gamma(x y, z) \kappa(x, y) \kappa(x y, z) \\
& =\zeta_{x}(\gamma(y, z)) \gamma(x, y z) \alpha_{x}(\kappa(y, z)) \kappa(x, y z) \\
& =\alpha_{x}(\gamma(y, z) \kappa(y, z)) \gamma(x, y z) \kappa(x, y z) \\
& =\alpha_{x}((\gamma \kappa)(y, z))(\gamma \kappa)(x, y z),
\end{aligned}
$$

since $\alpha(z)=\zeta(z)$ for each $z \in Z(K)$, and

$$
\begin{aligned}
c_{(\gamma \kappa)(x, y)} \circ \alpha_{x y} & =c_{\gamma(x, y) \kappa(x, y)} \circ \alpha_{x y} \\
& =c_{\gamma(x, y)} \circ c_{\kappa(x, y)} \circ \alpha_{x y} \\
& =c_{\kappa(x, y)} \circ \alpha_{x y}=\alpha_{x} \circ \alpha_{y},
\end{aligned}
$$

since $\gamma(x, y) \in Z(K)$. Moreover, for all $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$ and $\gamma, \delta \in$ $Z_{\zeta}^{2}(G, Z(K))$ we have

$$
{ }^{\delta}\left({ }^{\gamma}(\alpha, \kappa)\right)={ }^{\delta}(\alpha, \gamma \kappa)=(\alpha, \delta \gamma \kappa)={ }^{\delta \gamma}(\alpha, \kappa)
$$

and ${ }^{1}(\alpha, \kappa)=(\alpha, \kappa)$ so that we have established an action of $Z_{\zeta}^{2}(G, Z(K))$ on $\operatorname{par}_{\omega}(G, K)$.

Next, let $(\alpha, \kappa),\left(\alpha^{\prime}, \kappa^{\prime}\right) \in \operatorname{par}_{\omega}(G, K)$ be equivalent and let $\gamma \in Z_{\zeta}^{2}(G, Z(K))$. Then there exists a function $f: G \rightarrow K$ such that

$$
\alpha_{x}^{\prime}=c_{f(x)} \circ \alpha_{x} \quad \text { and } \quad \kappa^{\prime}(x, y)=f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1}
$$

for all $x, y \in G$. Multiplication of the last equation with $\gamma(x, y)$ yields

$$
\gamma(x, y) \kappa^{\prime}(x, y)=f(x) \alpha_{x}(f(y)) \gamma(x, y) \kappa(x, y) f(x y)^{-1}
$$

which shows that also ${ }^{\gamma}(\alpha, \kappa)=(\alpha, \gamma \kappa)$ and ${ }^{\gamma}\left(\alpha^{\prime}, \kappa^{\prime}\right)=\left(\alpha^{\prime}, \gamma \kappa^{\prime}\right)$ are equivalent. Therefore, we obtain an action of $Z_{\zeta}^{2}(G, Z(K))$ on $\operatorname{Par}_{\omega}(G, K)$.

Now let $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$ and let $\gamma \in B_{\zeta}^{2}(G, Z(K))$. We will show that ${ }^{\gamma}(\alpha, \kappa)$ is equivalent to (α, κ). In fact, there exists a function $f: G \rightarrow$ $Z(K)$ such that $\gamma(x, y)=\zeta_{x}(f(y)) f(x y)^{-1} f(x)=\alpha_{x}(f(y)) f(x y)^{-1} f(x)$ for all $x, y \in G$. With this function we have

$$
\alpha_{x}=c_{f(x)} \circ \alpha_{x}
$$

and

$$
(\gamma \kappa)(x, y)=\gamma(x, y) \kappa(x, y)=f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1}
$$

for all $x, y \in G$ and the claim is proven. Therefore, we have an action of $H_{\zeta}^{2}(G, Z(K))$ on $\operatorname{Par}_{\omega}(G, K)$.

Now we show that this action is free. Let $\gamma_{1}, \gamma_{2} \in Z_{\zeta}^{2}(G, Z(K))$ and $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$ such that ${ }^{\gamma_{1}}(\alpha, \kappa)$ and ${ }^{\gamma_{2}}(\alpha, \kappa)$ are equivalent. Set $\gamma:=\gamma_{1}^{-1} \gamma_{2}$. Then ${ }^{\gamma}(\alpha, \kappa)=(\alpha, \kappa)$ is equivalent to (α, κ). Therefore, there exists a function $f: G \rightarrow K$ such that $\alpha_{x}=c_{f(x)} \circ \alpha_{x}$ and $\gamma(x, y) \kappa(x, y)=$
$f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1}$ for all $x, y \in G$. This implies that $c_{f(x)}=\operatorname{id}_{K}$ for all $x \in K$ so that $f(x) \in Z(K)$ for all $x \in K$. Using this we also obtain $\gamma(x, y)=f(x) \alpha_{x}(f(y)) f(x y)^{-1}=f(x) \zeta_{x}(f(y)) f(x y)^{-1}$. Therefore, $\gamma \in B_{\zeta}^{2}(G, Z(K))$ and $\left[\gamma_{1}\right]=\left[\gamma_{2}\right] \in H_{\zeta}^{2}(G, Z(K))$.

Finally, we show that the action of $H_{\zeta}^{2}(G, Z(K))$ on $\operatorname{Par}_{\omega}(G, K)$ is transitive. Let $(\alpha, \kappa),(\beta, \lambda) \in \operatorname{par}_{\omega}(G, K)$. We will show that there exists $\gamma \in$ $Z_{\zeta}^{2}(G, Z(K))$ such that (α, κ) and ${ }^{\gamma}(\beta, \lambda)$ are equivalent. For each $x \in G$ we have $\alpha_{x} \operatorname{Inn}(K)=\omega(x)=\beta_{x} \operatorname{Inn}(K)$. Thus, there exists an element $f(x) \in K$ such that $c_{f(x)} \circ \alpha_{x}=\beta_{x}$. We set $\kappa^{\prime}(x, y):=f(x) \alpha_{x}(f(y)) \kappa(x, y) f(x y)^{-1}$ for all $x, y \in G$. Then $\left(\beta, \kappa^{\prime}\right) \in \operatorname{par}_{\omega}(G, K)$ and (α, κ) is equivalent to $\left(\beta, \kappa^{\prime}\right)$. Since also $(\beta, \lambda) \in \operatorname{par}_{\omega}(G, K)$, we obtain $c_{\kappa^{\prime}(x, y)} \circ \beta_{x y}=\beta_{x} \circ \beta_{y}=$ $c_{\lambda(x, y)} \circ \beta_{x y}$ and $c_{\kappa^{\prime}(x, y)}=c_{\lambda(x, y)}$ for all $x, y \in K$. This implies that $\gamma(x, y):=$ $\kappa^{\prime}(x, y) \lambda(x, y)^{-1} \in Z(K)$ for all $x, y \in G$. We show that $\gamma \in Z_{\zeta}^{2}(G, Z(K))$. In fact, for $x, y, z \in G$ we have

$$
\begin{aligned}
\gamma(x, y) \gamma(x y, z) & =\kappa^{\prime}(x, y) \lambda(x, y)^{-1} \gamma(x y, z) \\
& =\kappa^{\prime}(x, y) \gamma(x y, z) \lambda(x, y)^{-1} \\
& =\kappa^{\prime}(x, y) \kappa^{\prime}(x y, z) \lambda(x y, z)^{-1} \lambda(x, y)^{-1} \\
& =\beta_{x}\left(\kappa^{\prime}(y, z)\right) \kappa^{\prime}(x, y z) \lambda(x, y z)^{-1} \beta_{x}(\lambda(y, z))^{-1} \\
& =\beta_{x}\left(\kappa^{\prime}(y, z)\right) \gamma(x, y z) \beta_{x}(\lambda(y, z))^{-1} \\
& =\beta_{x}\left(\kappa^{\prime}(y, z) \lambda(y, z)^{-1}\right) \gamma(x, y z) \\
& =\zeta_{x}(\gamma(y, z)) \gamma(x, y z) .
\end{aligned}
$$

This implies that $\left(\beta, \kappa^{\prime}\right)={ }^{\gamma}(\beta, \lambda)$ and that (α, κ) is equivalent to $\left(\beta, \kappa^{\prime}\right)=$ ${ }^{\gamma}(\beta, \lambda)$. This completes the proof of the Theorem.
8.3 Theorem Assume that $Z(K)=1$. Then $\left|\operatorname{Par}_{\omega}(G, K)\right|=1$ for every $\omega: G \rightarrow \operatorname{Out}(K)$.

Proof For each $x \in G$ we choose $\alpha_{x} \in \operatorname{Aut}(K)$ such that $\omega(x)=\alpha_{x} \operatorname{Inn}(K)$. For all $x, y \in G$ we have $\alpha_{x} \alpha_{y} \operatorname{Inn}(K)=\omega(x) \omega(y)=\omega(x y)=\alpha_{x y} \operatorname{Inn}(K)$. Therefore, there exist elements $\kappa(x, y) \in K$, such that $\alpha_{x} \circ \alpha_{y}=c_{\kappa(x, y)} \circ \alpha_{x y}$
for all $x, y \in G$. For all $x, y, z \in G$ we obtain

$$
\begin{aligned}
c_{\kappa(x, y) \kappa(x y, z)} \circ \alpha_{x y z} & =c_{\kappa(x, y)} \circ c_{\kappa(x y, z)} \circ \alpha_{x y z} \\
& =c_{\kappa(x, y)} \circ \alpha_{x y} \circ \alpha_{z} \\
& =\alpha_{x} \circ \alpha_{y} \circ \alpha_{z} \\
& =\alpha_{x} \circ c_{\kappa(y, z)} \circ \alpha_{y z} \\
& =\alpha_{x} \circ c_{\kappa(y, z)} \circ \alpha_{x}^{-1} \circ \alpha_{x} \circ \alpha_{y z} \\
& =c_{\alpha_{x}(\kappa(y, z))} \circ c_{\kappa(x, y z)} \circ \alpha_{x(y z)} \\
& =c_{\alpha_{x}(\kappa(y, z)) \kappa(x, y z)} \circ \alpha_{x y z}
\end{aligned}
$$

and therefore, $c_{\kappa(x, y) \kappa(x y, z)}=c_{\alpha_{x}(\kappa(y, z)) \kappa(x, y z)}$. Since $Z(K)=1$, this implies $\kappa(x, y) \kappa(x y, z)=\alpha_{x}(\kappa(y, z)) \kappa(x, y z)$ for all $x, y, z \in G$. Therefore, $(\alpha, \kappa) \in$ $\operatorname{par}_{\omega}(G, K)$, and $\operatorname{Par}_{\omega}(G, K)$ is not empty. On the other hand, by Theorem 8.2, $\operatorname{Par}_{\omega}(G, K)$ is in bijection to $H_{\zeta}^{2}(G, Z(K))$, where $\zeta:=\operatorname{res}_{Z(K)}^{K} \circ \omega$. Again since $Z(K)=1$, we have $F\left(G^{2}, Z(K)\right)=1$ and also $H_{\zeta}^{2}(G, Z(K))=1$.
8.4 Theorem Let $\omega: G \rightarrow \operatorname{Out}(K)$ be a group homomorphism and let $\zeta:=$ $\operatorname{res}_{Z(K)}^{K} \circ \omega \in \operatorname{Hom}(G, \operatorname{Aut}(Z(K)))$. Moreover, for each $x \in G$, let $\alpha_{x} \in$ $\operatorname{Aut}(K)$ be an automorphism with $\omega(x)=\alpha_{x} \operatorname{Inn}(K)$. Then the following assertions hold:
(a) For all $x, y \in G$ there exists an element $\chi(x, y) \in K$ such that $\alpha_{x} \circ \alpha_{y}=$ $c_{\chi(x, y)} \circ \alpha_{x y}$.
(b) Let $\chi(x, y) \in K$ be chosen as in (a). Then, for all $x, y, z \in G$ the element $\vartheta(x, y, z):=\alpha_{x}(\chi(y, z)) \chi(x, y z) \chi(x y, z)^{-1} \chi(x, y)^{-1}$ lies in $Z(K)$, and the function $\vartheta: G^{3} \rightarrow Z(K)$ is an element of $Z_{\zeta}^{3}(G, Z(K))$.
(c) The cohomology class $[\vartheta] \in H_{\zeta}^{3}(G, Z(K))$ of the element $\vartheta \in Z_{\zeta}^{3}(G, Z(K))$ defined in (b) does not depend on the choices of $\alpha_{x} \in \operatorname{Aut}(K)$ and $\chi(x, y) \in K$ for $x, y \in G$.

Proof (a) For all $x, y \in G$ we have

$$
\alpha_{x} \alpha_{y} \operatorname{Inn}(K)=\omega(x) \omega(y)=\omega(x y)=\alpha_{x y} \operatorname{Inn}(K)
$$

which implies that $\alpha_{x} \alpha_{y} \alpha_{x y}^{-1} \in \operatorname{Inn}(K)$.
(b) For all $x, y, z \in G$ we have

$$
\begin{aligned}
& c_{\vartheta(x, y, z)} \\
= & c_{\alpha_{x}(\chi(y, z))} \circ c_{\chi(x, y z)} \circ c_{\chi(x y, z)}^{-1} \circ c_{\chi(x, y)}^{-1} \\
= & \alpha_{x} \circ c_{\chi(y, z)} \circ \alpha_{x}^{-1} \circ \alpha_{x} \circ \alpha_{y z} \circ \alpha_{x y z}^{-1} \circ \alpha_{x y z} \circ \alpha_{z}^{-1} \circ \alpha_{x y}^{-1} \circ \alpha_{x y} \circ \alpha_{y}^{-1} \circ \alpha_{x}^{-1} \\
= & \alpha_{x} \circ \alpha_{y} \circ \alpha_{z} \circ \alpha_{y z}^{-1} \circ \alpha_{y z} \circ \alpha_{z}^{-1} \circ \alpha_{y}^{-1} \circ \alpha_{x}^{-1} \\
= & \operatorname{id}_{K},
\end{aligned}
$$

which implies that $\vartheta(x, y, z) \in Z(K)$.
Next we show that $\vartheta \in Z_{\zeta}^{3}(G, Z(K))$. Let $x, y, z, w \in G$. Then

$$
\begin{aligned}
& \zeta_{x}(\vartheta(y, z, w)) \vartheta(x, y z, w) \vartheta(x, y, z) \\
& =\alpha_{x}\left(\alpha_{y}(\chi(z, w))\right) \alpha_{x}(\chi(y, z w)) \alpha_{x}(\chi(y z, w))^{-1} \alpha_{x}(\chi(y, z))^{-1} \vartheta(x, y z, w) . \\
& \quad \cdot \vartheta(x, y, z) \\
& =\alpha_{x}\left(\alpha_{y}(\chi(z, w))\right) \alpha_{x}(\chi(y, z w)) \alpha_{x}(\chi(y z, w))^{-1} \vartheta(x, y z, w) \alpha_{x}(\chi(y, z))^{-1} . \\
& \quad \cdot \vartheta(x, y, z) \\
& =\alpha_{x}\left(\alpha_{y}(\chi(z, w))\right) \alpha_{x}(\chi(y, z w)) \alpha_{x}(\chi(y z, w))^{-1} . \\
& \quad \cdot \alpha_{x}(\chi(y z, w)) \chi(x, y z w) \chi(x y z, w)^{-1} \chi(x, y z)^{-1} \alpha_{x}(\chi(y, z))^{-1} . \\
& \quad \cdot \alpha_{x}(\chi(y, z)) \chi(x, y z) \chi(x y, z)^{-1} \chi(x, y)^{-1} \\
& =\alpha_{x}\left(\alpha_{y}(\chi(z, w))\right) \alpha_{x}(\chi(y, z w)) \chi(x, y z w) \chi(x y z, w)^{-1} \chi(x y, z)^{-1} \chi(x, y)^{-1} \\
& =\alpha_{x}\left(\alpha_{y}(\chi(y, w))\right) \alpha_{x}(\chi(y, z w)) \chi(x, y z w) \chi(x y, z w)^{-1} \chi(x, y)^{-1} . \\
& \quad \cdot \chi(x, y) \chi(x y, z w) \chi(x y z, w)^{-1} \chi(x y, z)^{-1} \chi(x, y)^{-1} \\
& =\alpha_{x}\left(\alpha_{y}(\chi(z, w))\right) \vartheta(x, y, z w) \chi(x, y) \chi(x y, z w) \chi(x y z, w)^{-1} \chi(x y, z)^{-1} \chi(x, y)^{-1} \\
& =\chi(x, y) \alpha_{x y}(\chi(z, w)) \chi(x y, z w) \chi(x y z, w)^{-1} . \\
& \quad \cdot \chi(x y, z)^{-1} \chi(x, y)^{-1} \vartheta(x, y, z w) \\
& =\chi(x, y) \vartheta(x y, z, w) \chi(x, y)^{-1} \vartheta(x, y, z w) \\
& =\vartheta(x y, z, w) \vartheta(x, y, z w) .
\end{aligned}
$$

(c) If, for each $x \in G$, also $\alpha_{x}^{\prime} \in \operatorname{Aut}(K)$ is chosen such that $\alpha_{x}^{\prime} \operatorname{Inn}(K)=$ $\omega(x)$, and if, for each $x, y \in G$, an element $\chi^{\prime}(x, y) \in K$ is chosen such that $\alpha_{x}^{\prime} \circ \alpha_{y}^{\prime}=c_{\chi^{\prime}(x, y)} \circ \alpha_{x y}^{\prime}$, then there exists a function $f: G \rightarrow K$ such that
$\alpha_{x}^{\prime}=c_{f(x)} \circ \alpha_{x}$. This implies

$$
\begin{aligned}
\alpha_{x}^{\prime} \circ \alpha_{y}^{\prime} & =c_{f(x)} \circ \alpha_{x} \circ c_{f(y)} \circ \alpha_{y} \\
& =c_{f(x)} \circ \alpha_{x} \circ c_{f(y)} \circ \alpha_{x}^{-1} \circ \alpha_{x} \circ \alpha_{y} \\
& =c_{f(x)} \circ c_{\alpha_{x}(f(y))} \circ c_{\chi(x, y)} \circ \alpha_{x y} \\
& =c_{f(x) \alpha_{x}(f(y)) \chi(x, y)} \circ c_{f(x y)}^{-1} \circ \alpha_{x y}^{\prime} \\
& =c_{f(x) \alpha_{x}(f(y)) \chi(x, y) f(x y)^{-1} \circ \alpha_{x y}^{\prime}},
\end{aligned}
$$

and we obtain

$$
\chi^{\prime}(x, y)=f(x) \alpha_{x}(f(y)) \chi(x, y) f(x y)^{-1} g(x, y)
$$

for all $x, y \in G$ with a function $g: G \times G \rightarrow Z(K)$. For all $x, y, z \in G$, the corresponding function

$$
\vartheta^{\prime}(x, y, z):=\alpha_{x}^{\prime}\left(\chi^{\prime}(y, z)\right) \chi^{\prime}(x, y z) \chi^{\prime}(x y, z)^{-1} \chi^{\prime}(x, y)^{-1}
$$

then satisfies

$$
\begin{aligned}
& \vartheta^{\prime}(x, y, z) \\
& \begin{aligned}
&=f(x) \alpha_{x}\left(f(y) \alpha_{y}(f(z)) \chi(y, z) f(y z)^{-1} g(y, z)\right) f(x)^{-1} \\
& \cdot f(x) \alpha_{x}(f(y z)) \chi(x, y z) f(x y z)^{-1} g(x, y z) \\
& \cdot g(x y, z)^{-1} f(x y z) \chi(x y, z)^{-1} \alpha_{x y}(f(z))^{-1} f(x y)^{-1} \\
& \cdot g(x, y)^{-1} f(x y) \chi(x, y)^{-1} \alpha_{x}(f(y))^{-1} f(x)^{-1} \\
&=f(x) \alpha_{x}(f(y)) \alpha_{x}\left(\alpha_{y}(f(z))\right) \alpha_{x}(\chi(y, z)) \\
& \cdot \chi(x, y z) \chi(x y, z)^{-1} \alpha_{x y}\left(f(z)^{-1}\right) \chi(x, y)^{-1} \alpha_{x}\left(f(y)^{-1}\right) f(x)^{-1} . \\
& \cdot \alpha_{x}(g(y, z)) g(x, y z) g(x y, z)^{-1} g(x, y)^{-1} \\
&=f(x) \alpha_{x}(f(y)) \alpha_{x}\left(\alpha_{y}(f(z))\right) \vartheta(x, y, z) \chi(x, y) \alpha_{x y}\left(f(z)^{-1}\right) . \\
& \cdot \chi(x, y)^{-1} \alpha_{x}\left(f(y)^{-1}\right) f(x)^{-1}\left(\partial_{\zeta}^{2}(g)\right)(x, y, z) \\
&=f(x) \alpha_{x}(f(y)) \alpha_{x}\left(\alpha_{y}(f(z))\right) \alpha_{x}\left(\alpha_{y}\left(f(z)^{-1}\right)\right) \\
& \cdot \alpha_{x}\left(f(y)^{-1}\right) f(x)^{-1} \vartheta(x, y, z)\left(\partial_{\zeta}^{2}(g)\right)(x, y, z) \\
&=\vartheta(x, y, z)\left(\partial_{\zeta}^{2}(g)\right)(x, y, z),
\end{aligned}
\end{aligned}
$$

which shows that the cohomology classes $[\vartheta]$ and $\left[\vartheta^{\prime}\right]$ coincide.
8.5 Definition Let $\omega: G \rightarrow \operatorname{Out}(K)$ be a homomorphism and let $\zeta:=$ $\operatorname{res}_{Z(K)}^{K} \circ \omega \in \operatorname{Hom}(G, \operatorname{Aut}(Z(K)))$. The element $[\vartheta] \in H_{\zeta}^{3}(G, Z(K))$ defined in Theorem 8.4 is called the obstruction of ω.
8.6 Theorem Let $\omega: G \rightarrow \operatorname{Out}(K)$ be a group homomorphism and let $\zeta:=$ $\operatorname{res}_{Z(K)}^{K} \circ \omega \in \operatorname{Hom}(G, \operatorname{Aut}(Z(K)))$. Then, $\operatorname{Par}_{\omega}(G, K) \neq \emptyset$ if and only if the obstruction $[\vartheta] \in H_{\zeta}^{3}(G, Z(K))$ of ω is trivial.

Proof First assume that $\operatorname{Par}_{\omega}(G, K) \neq \emptyset$ and let $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$. Then we have

$$
\begin{gathered}
\omega(x)=\alpha_{x} \operatorname{Inn}(K), \alpha_{x} \circ \alpha_{y}=c_{\kappa(x, y)} \circ \alpha_{x y} \text { and } \\
\alpha_{x}(\kappa(y, z)) \kappa(x, y z) \kappa(x y, z)^{-1} \kappa(x, y)^{-1}=1
\end{gathered}
$$

for all $x, y, z \in G$. This implies that we may define the obstruction [ϑ] of ω using the elements $\alpha_{x} \in \operatorname{Aut}(K)$ and $\kappa(x, y) \in K$ for $x, y \in G$, and that $[\vartheta]=1$.

Conversely, if we choose elements $\alpha_{x} \in \operatorname{Aut}(K)$ such that $\omega(x)=\alpha_{x} \operatorname{Inn}(K)$ for all $x \in G$, and elements $\chi(x, y) \in K$ such that $\alpha_{x} \circ \alpha_{y}=c_{\chi(x, y)} \circ \alpha_{x y}$ for all $x, y \in G$, then we obtain the obstruction $[\vartheta] \in H_{\zeta}^{3}(G, Z(K))$ of ω from the 3-cocycle $\vartheta(x, y, z):=\alpha_{x}(\chi(y, z)) \chi(x, y z) \chi(x y, z)^{-1} \chi(x, y)^{-1} \in Z(K)$, for $x, y, z \in G$. Since $[\vartheta]=1$, there exists an element $\varphi: G \times G \rightarrow Z(K)$ such that $\vartheta=d_{\zeta}^{2}(\varphi)$. We set $\kappa(x, y):=\varphi(x, y)^{-1} \chi(x, y)$ for $x, y \in G$ and show that $(\alpha, \kappa) \in \operatorname{par}_{\omega}(G, K)$. In fact, for all x, y, z in G we have

$$
\alpha_{x} \circ \alpha_{y}=c_{\kappa(x, y)} \circ \alpha_{x y}
$$

and

$$
\begin{aligned}
\kappa(x, y) \kappa(x y, z) & =\varphi(x, y)^{-1} \chi(x, y) \varphi(x y, z)^{-1} \chi(x y, z) \\
& =\varphi(x, y)^{-1} \varphi(x y, z)^{-1} \chi(x, y) \chi(x y, z) \\
& =\varphi(x, y z)^{-1} \alpha_{x}(\varphi(y, z))^{-1}\left(\partial_{\zeta}^{2}(\varphi)\right)(x, y, z) \chi(x, y) \chi(x y, z) \\
& =\varphi(x, y z)^{-1} \alpha_{x}(\varphi(y, z))^{-1} \vartheta(x, y, z) \chi(x, y) \chi(x y, z) \\
& =\varphi(x, y z)^{-1} \alpha_{x}(\varphi(y, z))^{-1} \alpha_{x}(\chi(y, z)) \chi(x, y z) \\
& =\alpha_{x}(\kappa(y, z)) \kappa(x, y z),
\end{aligned}
$$

which completes the proof.

9 The Theorem of Schur-Zassenhaus

9.1 Definition Let π be a set of primes. We denote by π^{\prime} the set of primes not contained in π.
(a) Let $n \in \mathbb{N}$. If $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ is the prime factorization of n then the π-part n_{π} of n is defined as $\prod_{p_{i} \in \pi} p_{i}^{\alpha_{i}}$. One has $n=n_{\pi} n_{\pi^{\prime}}$.
(b) A finite group G is called a π-group, if $|G|_{\pi}=|G|$. For an arbitrary finite group G we call a subgroup $H \leqslant G$ a π-subgroup, if H is a π-group. A subgroup $H \leqslant G$ is called a Hall π-subgroup of G if $|H|_{\pi}=|G|_{\pi}$. A subgroup $H \leqslant G$ is called a Hall subgroup of G if it is a Hall π-subgroup for some π. This is obviously equivalent to $\operatorname{gcd}(|H|,[G: H])=1$.
(c) For every element g of a finite group G there exist unique elements g_{π} and $g_{\pi^{\prime}}$ of G such that $\left\langle g_{\pi}\right\rangle$ is a π-subgroup, $\left\langle g_{\pi^{\prime}}\right\rangle$ is a π^{\prime}-subgroup, and $g_{\pi} g_{\pi^{\prime}}=g=g_{\pi^{\prime}} g_{\pi}$. These elements are called the π-part and the π^{\prime}-part of g. One has $g_{\pi}, g_{\pi^{\prime}} \in\langle g\rangle$.
(d) For every finite group G there exists a largest normal π-subgroup of G. It will be denoted by $O_{\pi}(G)$.
9.2 Remark Let G be a finite group and let π be a set of primes. It is easy to see that $O_{\pi}(G)$ is characteristic in G. Considering the group Alt(5) and $\pi=\{2,5\}$ or $\pi=\{3,5\}$ one sees that in general Hall π-subgroups do not exist.
9.3 Theorem Let G be a finite group. Then the following are equivalent:
(i) G is solvable.
(ii) For every $N \triangleleft G$ there exists a prime p such that $O_{p}(G / N)>1$.

Proof $($ i $) \Rightarrow($ ii): We may assume that $N=1$ and $G>1$. Since G is solvable, there exists $n \in \mathbb{N}$ such that $G^{(n)}=1$ and $G^{(n-1)}>1$. Then $G^{(n-1)}$ is abelian. Let p be a prime divisor of $\left|G^{(n-1)}\right|$, then the set $U:=\left\{x \in G^{(n-1)} \mid x^{p}=1\right.$ is a non-trivial characteristic p-subgroup of $G^{(n-1)}$ and therefore normal in G. This implies $O_{p}(G) \geqslant U>1$.
(ii) \Rightarrow (i): By (ii) there exist primes p_{1}, \ldots, p_{r} and normal subgroups $N_{0}, N_{1}, \ldots, N_{r}$ of G such that $1=N_{0}<N_{1}<\cdots<N_{r}=G$ and $N_{i} / N_{i-1}=$ $O_{p_{i}}\left(G / N_{i-1}\right)$ for each $i=1, \ldots, r$. Since N_{i} / N_{i-1} is solvable for $i=1, \ldots, r$, also G is solvable.
9.4 Remark Let G be a finite group. If U is a Hall π-subgroup of G for some π, then $H \leqslant G$ is a complement of U in G if and only if H is a Hall π^{\prime}-subgroup of G.
9.5 Theorem (Schur-Zassenhaus) Let G be a finite group and assume that $H \leqslant G$ is a normal Hall π-subgroup of G. Then:
(a) There exists a complement of H in G.
(b) If H or G / H is solvable, any two complements of H in G are conjugate in G.

Proof In the case that H is abelian, Parts (a) and (b) are immediate from Corollary 7.2.

From now on we assume that H is not abelian. We will show (a) and (b) by induction on $|G|$. If $G=1$, the assertions are trivial. Therefore, we assume $|G|>1$ and we also assume that (a) and (b) hold for every group of order smaller than $|G|$. Finally we may assume that $|H|>1$. This will be done in 7 steps.

Claim 1: If $U<G$, then $U \cap H$ has a complement in U. Proof: $U \cap H$ is normal in U and a π-subgroup of U. Moreover, $U / U \cap H \cong U H / H$ implies $[U: U \cap H] \mid[G: H]$. Therefore, $U \cap H$ is a normal Hall π-subgroup of U and, by induction, has a complement in U.

Claim 2: If $1<N \triangleleft G$, then $H N / N$ has a complement in G / N. Proof: $H N / N$ is normal in G / N and $H N / N \cong H / H \cap N$ implies that $H N / N$ is a π-subgroup of G / N. Moreover, $[G / N: H N / N]=[G: H N]$ is a π^{\prime}-number and $H N / N$ is a normal Hall π-subgroup of G / N. Now, by induction the claim follows.

Claim 3: If H has a subgroup $1<N<H$ which is normal in G, then (a) and (b) hold. Proof: (a) By Claim 2, $H N / N=H / N$ has a complement U / N in G / N, where $N \leqslant U \leqslant G$. One has $U<G$, since otherwise $U / N=G / N$ implies $H / N=N / N$ and $N=H$. By Claim $1, U \cap H$ has a complement K in U. We show that K is also a complement of H in G. We have $K H=K(U \cap$ $H) H=U H=G$ and $K \cap H=1$, since $K \cong U / U \cap H \cong U H / H \leqslant G / H$ implies that K is a π^{\prime}-group.
(b) Assume that K and K^{\prime} are complements of H in G. Then $K N / N$ and $K^{\prime} N / N$ are complements of the normal Hall π-subgroup H / N or G / N in G / N. In fact, $(K N / N)(H / N)=K H N / N=G / N$ and $K N / N \cong K / K \cap N$ is a π^{\prime}-group. With H or G / H also H / N or $(G / N) /(H / N) \cong G / H$ are
solvable. By induction there exists $g \in G$ such that

$$
K N / N=g N\left(K^{\prime} N / N\right) g^{-1} N=g K^{\prime} N g^{-1} / N=g K^{\prime} g^{-1} N / N
$$

and therefore, $K N=g K^{\prime} g^{-1} N$. But now K and $g K^{\prime} g^{-1}$ are complements of the normal Hall π-subgroup N of $K N$ in $K N$. Moreover, if H or G / H is solvable, then N or $K N / N \cong K \cong G / H$ are solvable. Again by induction, the groups K and $g K^{\prime} g^{-1}$ are conjugate in $K N$. Therefore, K and K^{\prime} are conjugate in G.

Claim 4: If $O_{p}(H)>1$ for some prime p, then (a) and (b) hold. Proof: If $O_{p}(H)<H$, this follows from Claim 3, since $O_{p}(H)$ is characteristic in H and therefore normal in G. If $O_{p}(H)=H$, then H is a p-group and we can consider the characteristic subgroup $\Phi(H)$ of H which is again normal in G. since H is not abelian, we have $1<\Phi(H)<H$. Now Claim 3 applies and (a) and (b) hold.

Claim 5: If H is solvable, then (a) and (b) hold. Proof: This follows immediately from Theorem 9.3 and Claim 4.

Claim 6: Part (a) holds. Proof: Let p be a prime divisor of $|H|$ and let P be a Sylow p-subgroup of H. By Claim 4 we may assume that P is not normal in G. Then $U=N_{G}(P)<G$. By Claim 1 there exists a complement K of $U \cap H$ in U. The Frattini-Argument implies that $G=H U=H(U \cap H) K=$ $H K$. Moreover, $K \cong U / U \cap H \cong U H / H=G / H$ is a π^{\prime}-group. This implies that K is a complement of H in G.

Claim 7: Part (b) holds. Proof: By Claim 5 we may assume that G / H is solvable. By Theorem 9.3, there exists a prime p such that $O_{p}(G / H)>$ 1. Write $O_{p}(G / H)=R / H$ with $H<R \unlhd G$. Let K and K^{\prime} be two complements of H in G. Then we have $(K \cap R) H=K H \cap R=G \cap R=R$ with $H \cap(K \cap R)=1$. Since $p \nmid|H|$ and $K \cap R \cong K \cap R / K \cap R \cap H \cong$ $(K \cap R) H / H=R / H$ is a p-group, $1 \neq K \cap R$ is a Sylow p-subgroup of R. Similarly, $K^{\prime} \cap R$ is a Sylow p-subgroup of R. Therefore, there exists $g \in R$ such that $K \cap R=g\left(K^{\prime} \cap R\right) g^{-1}=g K^{\prime} g^{-1} \cap g R g^{-1}=g K^{\prime} g^{-1} \cap R$. Set $V:=N_{G}(K \cap R)$. Since $K \cap R \unlhd K$ and $K \cap R=g K^{\prime} g^{-1} \cap R \unlhd g K^{\prime} g^{-1}$, we have $\left\langle K, g K^{\prime} g^{-1}\right\rangle \leqslant V$. We observe that K is a complement of the normal Hall π-subgroup $V \cap H$ of V in V, since $K(V \cap H)=V \cap K H=V \cap G=V$, $|K|=|G / H|$, and $|V \cap H|\left||H|\right.$. Similarly, $g K^{\prime} g^{-1}$ is a complement of $V \cap H$ in V. Note that with G / H also $V / V \cap H \cong V H / H \leqslant G / H$ is solvable. If $V<G$, then K and $g K^{\prime} g^{-1}$ are conjugate in V by induction, and K and K^{\prime} are conjugate in G. Therefore, we may assume that $V=G$ and we set
$M:=K \cap R \unlhd G$. Since K and $g K^{\prime} g^{-1}$ are complements of H in $G, K / M$ and $g K^{\prime} g^{-1} / M$ are complements of the normal Hall π-subgroup $H M / M$ of G / M in G / M; in fact, $(K / M)(H M / M)=K H M / M=G / M$ with K / M a π^{\prime}-group and $H M / M \cong H /(H \cap M)$ a π-group, and similar for $g K^{\prime} g^{-1} / M$. Moreover, $(G / M) /(H M / M) \cong G / H M \cong(G / H) /(H M / H)$ is solvable. By induction, K / M and $g K^{\prime} g^{-1} / M$ are conjugate in G / M. But then also K and $g K^{\prime} g^{-1}$ are conjugate in G. This implies that K and K^{\prime} are conjugate in G and finishes the proof of the theorem.
9.6 Remark Feit and Thompson proved the celebrated Odd-Order-Theorem stating that every finite group of odd order is solvable. Therefore, the solvability condition in Theorem 8.5(b) is always satisfied.

10 The π-Sylow Theorems

Throughout this Section let G denote a finite group and π a set of primes.
10.1 Definition (a) G is called π-separable, if G has a normal series

$$
1=G_{0} \leqslant G_{1} \leqslant \cdots \leqslant G_{r}=G
$$

such that each factor $G_{i} / G_{i-1}, i=1 \ldots, r$, is a π-group or a π^{\prime}-group.
(b) G is called π-solvable, if G has a normal series each of whose factors is a solvable π-groups or an arbitrary π^{\prime}-groups.
10.2 Remark (a) G is π-separable if and only if G is π^{\prime}-separable.
(b) If G is π-solvable, then G is π-separable.
(c) With the Odd-Order-Theorem of Feit and Thompson we see that if G is π-separable, then G is π-solvable or π^{\prime}-solvable.
(d) Subgroups and factor groups of π-separable (resp. π-solvable) groups are again π-separable (resp. π-solvable).
(e) If G is π-solvable and $1 \leqslant H_{0} \unlhd H_{1} \leqslant G$ are subgroups such that H_{1} / H_{0} is a π-group, then H_{1} / H_{0} is solvable.
(f) One has: G is solvable $\Longleftrightarrow G$ is π-solvable for all π. In fact, if G is solvable then, by Theorem $9.3 G$ has a normal series whose factors are p groups. Therefore, G is π-solvable for every π. Conversely, if G is π-solvable for $\pi:=\{p|p||G|\}$, then the claim follows from part (e).
(g) If $N \unlhd G$ and $H \leqslant G$ is a Hall π-subgroup of G, then $H N / N$ is a Hall π-subgroup of G / N and $H \cap N$ is a Hall π-subgroup of N. In fact, $H N / N \cong$ $H /(N \cap H$ and $H \cap N$ are π-groups and $[G / N: H N / N]=[G: H N] \mid[G: H]$ and $[N: H \cap N]=[H N: H] \mid[G: H]$ are π^{\prime}-numbers.
10.3 Theorem (π-Sylow Theorem, Ph. Hall 1928) (a) If G is π-separable, then there exist Hall π-subgroups and Hall π^{\prime}-subgroups in G.
(b) If G is π-solvable, any two Hall π-subgroups and any two Hall π^{\prime} subgroups are conjugate in G.
(c) If G is π-solvable, then any π-subgroup (resp. π^{\prime}-subgroup) of G is contained in some Hall π-subgroup (resp. Hall π^{\prime}-subgroup).

Proof We prove the statements by induction on $|G|$. If $G=1$, all assertions are clearly true. Now let $G>1$. Since G is π-separable, we have $O_{\pi}(G)>1$ or $O_{\pi^{\prime}}(G)>1$. Let $N:=O_{\pi}(G)>1$ or $N:=O_{\pi^{\prime}}(G)>1$.
(a) By induction there exists a Hall π-subgroup H / N of G / N. Then [$H: N$] is a π-number and $[G: H]$ is a π^{\prime}-number. If N is a π-group, then H is a Hall π-subgroup of G. If N is a π^{\prime}-group, then by the Theorem of Schur-Zassenhaus it has a complement K in H. Therefore, K is π-group and $[G: K]=|G| /(|H| /|N|)=[G: H] \cdot|N|$ is a π^{\prime}-number. Therefore, K is a Hall π-subgroup of G. Similarly, there exists a Hall π^{\prime}-subgroup of G.
(b) Let $\mu=\pi$ or $\mu=\pi^{\prime}$ and U and V be two Hall μ-subgroup of G. Then $U N / N$ and $V N / N$ are Hall μ-subgroups of G / N by Remark 10.2(g). By induction, there exists $g \in G$ such that $g U N g^{-1}=V N$ and so $g U g^{-1} N=$ $V N$. If also N is a μ-group, then $|V N|=|V||N| /|V \cap N|$ is a μ-number and therefore, $V N=V$. This implies $N \leqslant V, g U g^{-1} \leqslant V N=V$, and $g U g^{-1}=V$. If N is a μ^{\prime}-number, then $\left|g U g^{-1}\right|=|V|$ and $|N|$ are coprime. This implies $V \cap N=g U g^{-1} \cap N=1$ so that V and $g U g^{-1}$ are complements of the normal Hall μ-group N of $V N=g U g^{-1} N$. Now either $V N / N \cong V$ or N is a π-group and by Remark $10.2(\mathrm{e})$ solvable. By Schur-Zassenhaus, the complements $g U g^{-1}$ and V are conjugate in $V N$. Therefore, U and V are conjugate in G.
(c) Let $\mu=\pi$ or $\mu=\pi^{\prime}$ and let $U \leqslant G$ be a μ-subgroup. Moreover, let $H \leqslant G$ be a Hall μ-subgroup of G (which exists by (a)). Then $U N / N \cong$ $U /(U \cap N)$ is a μ-subgroup of G / N and by induction and by (b) there exists $g \in G$ such that $U N \leqslant g H g^{-1} N$, since $H N / N$ is a Hall μ-subgroup of G / N by Remark $10.2(\mathrm{~g})$. If N is a μ-group, then $g \mathrm{Hg}^{-1} N=g \mathrm{Hg}^{-1}$ and $U \leqslant U N \leqslant g H g^{-1} N=g H g^{-1}$. If N is a μ^{\prime}-group, then $U \cap N=1$. Moreover, $U N=U N \cap g H g^{-1} N=\left(U N \cap g H g^{-1}\right) N$ and $V \cap N=1$, where $V:=U N \cap g \mathrm{Hg}^{-1}$. Therefore, U and V are two complements of the normal Hall μ^{\prime}-subgroup N of $U N=V N$. Moreover, N or $U N / N \cong U$ is a π-group and solvable by Remark 10.2(e). Therefore, by Schur-Zassenhaus, there exists $x \in U N$ such that $U=x V x^{-1}=x\left(U N \cap g H g^{-1}\right) x^{-1} \leqslant(x g) H(x g)^{-1}$.
10.4 Remark By the Odd-Order-Theorem of Feit-Thompson, it would be enough to require G to be π-separable in Theorem 10.3 (b) and (c).
10.5 Corollary Let G be solvable and let π be arbitrary. Then G has a Hall π-subgroup, any two Hall π-subgroups of G are conjugate in G, and any π-subgroup of G is contained in a Hall π-subgroup.

Proof Clear with Theorem 10.3 and Remark 10.2(f).
10.6 Lemma Let $U, V \leqslant G$.
(a) If $\mathcal{R} \subseteq U$ is a set of representatives for the cosets $U / U \cap V$, then $U V=\dot{U}_{x \in \mathcal{R}} x V$ and $|U V|=|U| \cdot|V| /|U \cap V|$.
(b) One has $U V \leqslant G$ if and only if $U V=V U$.
(c) One has $[G: U \cap V] \leqslant[G: U][G: V]$ with equality if and only if $U V=G$.
(d) If $[G: U]$ and $[G: V]$ are coprime, then $[G: U \cap V]=[G: U] \cdot[G: V]$ and $U V=G$.

Proof (a) Obviously, $x V \subseteq U V$ for each $x \in \mathcal{R}$. Conversely, if $u \in U$, then there exists $x \in \mathcal{R}$ and $y \in U \cap V$ such that $u=x y$. Therefore, $u V=x y V=$ $x V$. Disjointness: Let $x, x^{\prime} \in \mathcal{R}$ and let $v, v^{\prime} \in V$ such that $x v=x^{\prime} v^{\prime}$. Then $x^{\prime-1} x=v^{\prime} v^{-1} \in U \cap V$. This implies $x^{\prime}=x$. The remaining formula follows from the established equality: $|U V|=|\mathcal{R}| \cdot|V|=|U||V| /|U \cap V|$.
(b) If $U V$ is a subgroup of G, then $v u \in U V$ for all $u \in U$ and all $v \in V$. Therefore, $V U \subseteq U V$. By the formula in (a) one has $|U V|=|V U|$ and therefore $U V=V U$. Conversely, if $U V=V U$, then with $u, u^{\prime} \in U$ and $v, v^{\prime} \in V$ also $(u v)\left(u^{\prime} v^{\prime}\right)^{-1}=u v v^{\prime-1} u^{\prime-1} \in U V U=U U V=U V$. This implies that $U V$ is a subgroup of G.
(c) By (a) we have

$$
[G: U \cap V]=\frac{|G|}{|U \cap V|}=\frac{|G| \cdot|U V|}{|U| \cdot|V|} \leqslant \frac{|G| \cdot|G|}{|U| \cdot|V|}=[G: U] \cdot[G: V]
$$

with equality if and only if $U V=G$.
(d) Since $[G: U] \mid[G: U \cap V]$ and $[G: V] \mid[G: U \cap V]$, and since $[G: U]$ and $[G: V]$ are coprime, we obtain $[G: U] \cdot[G: V] \mid[G: U \cap V]$. Now (c) implies (d).
10.7 Lemma If G has three solvable subgroups H_{1}, H_{2}, H_{3} of pairwise coprime indices, then G is solvable.

Proof We prove the assertion by induction on G. If $G=1$, then G is solvable. Now we assume that $G>1$. If $H_{1}=1$, then $H_{2}=G$ and G is solvable. If $H_{1}>1$, then H_{1} has a normal p-subgroup $N>1$, for some prime p by Theorem 9.3. Since $\left[G: H_{2}\right]$ and $\left[G: H_{3}\right]$ are coprime, one of them is not divisible by p. By symmetry we may assume that $p \nmid\left[G: H_{2}\right]$. Set $D:=H_{1} \cap H_{2}$. Then, by Lemma 10.6, we have $H_{1} H_{2}=G$ and $\left[G: H_{1}\right] \cdot[G:$ $\left.H_{2}\right]=[G: D]=\left[G: H_{1}\right] \cdot\left[H_{1}: D\right]$. This implies $\left[G: H_{2}\right]=\left[H_{1}: D\right]$.

Now $N D \leqslant H_{1}$ and $[N D: D]=[N: N \cap D]$ is a p-power which divides $\left[H_{1}: D\right]=\left[G: H_{2}\right]$. This implies $N D=D$ and $N \leqslant D$.

For all $g \in G$ we have $g N g^{-1} \leqslant H_{2}$; in fact, since $G=H_{1} H_{2}=H_{2} H_{1}$, there exist $h_{1} \in H_{1}$ and $h_{2} \in H_{2}$ such that $g=h_{2} h_{1}$ and we obtain $h_{2} h_{1} N h_{1}^{-1} h_{2}^{-1}=h_{2} N h_{2}^{-1} \leqslant h_{2} D h_{2}^{-1} \leqslant H_{2}$. This implies that $1<I:=$ $\left\langle\cup_{g \in G} g N g^{-1}\right\rangle \leqslant H_{2}$ and that I is a solvable normal subgroup of G. The group G / I has the solvable subgroups $H_{i} I / I, i=1,2,3$, with pairwise coprime indices $\left[G / I: H_{i} I / I\right]=\left[G: H_{i} I\right] \mid\left[G: H_{i}\right]$. By induction, G / I is solvable, and with I also G is solvable.
10.8 Remark A famous theorem of Burnside states that every finite group of order $p^{a} q^{b}$, with primes p and q and with $a, b \in \mathbb{N}_{0}$, is solvable. A purely group theoretical proof of this result is quite lengthy. There is a more elegant proof using representation theory. We will use Burnside's Theorem in order to prove the following Theorem.
10.9 Theorem (Ph. Hall, 1937) Let $|G|=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be the prime factor decomposition of $|G|$. If there exists for each $i \in\{1, \ldots, r\}$ a Hall p_{i}^{\prime}-subgroup of G, then G is solvable.

Proof We prove the assertion by induction on r. If $r=0$, then $G=1$ and solvable. If $r=1$, then G is a p-group and solvable. If $r=2$, then G is solvable by Burnside's Theorem. Now assume that $r \geqslant 3$. For $i \in\{1, \ldots, r\}$ let H_{i} be a Hall p_{i}^{\prime}-subgroup of G. For $i \neq j$ in $\{1, \ldots, r\}$, we set $V_{i j}:=U_{i} \cap U_{j}$. Then, by Lemma 10.6(d), $\left[G: U_{i j}\right]=p_{i}^{e_{i}} p_{j}^{e_{j}}$ and $\left[H_{i}: U_{i j}\right]=p_{j}^{e_{i}}$. Therefore, each H_{i} satisfies the hypothesis of the theorem with $r-1$ prime divisors. By induction, each H_{i} is solvable. By Lemma 10.7, G is solvable.
10.10 Corollary The following assertions are equivalent:
(i) G is solvable.
(ii) G has Hall π-subgroups for each π.
(iii) G has Hall p^{\prime}-subgroups for each prime p.

Proof (i) \Rightarrow (ii): This follows from the π-Sylow Theorem.
(ii) \Rightarrow (iii): This is trivial.
(iii) \Rightarrow (i): This follows from Theorem 10.9.
10.11 Theorem Let G be solvable, let p_{1}, \ldots, p_{r} be the prime divisors of G, and let H_{i} be a Hall p_{i}^{\prime}-subgroup of G for $i=1, \ldots, r$. Then for each $i=1, \ldots, r$, the group $P_{i}:=\bigcap_{j \neq i} H_{j}$ is a Sylow p_{i}-subgroup of G such that $P_{i} P_{j}=P_{j} P_{i}$ for all $i, j \in\{1, \ldots, r\}$.

Proof The assertion is clear for $r=0$ and $r=1$. If $r=2$, by Lemma 10.6(d) and (b) we have $P_{1} P_{2}=G=P_{2} P_{1}$. From now on we assume that $r \geqslant 3$. For every $\pi \subseteq\left\{p_{1}, \ldots, p_{r}\right\}$, the subgroup $\bigcap_{p_{i} \in \pi} H_{i}$ is a Hall π^{\prime}-subgroup of G. In fact, this follows from repeated use of Lemma 10.6(d). In particular, for $i \neq j$ in $\{1, \ldots, r\}$, the group $G_{i j}:=\bigcap_{k \in\{1, \ldots, r\} \backslash\{i, j\}} H_{k}$ is a Hall $\left\{p_{i}, p_{j}\right\}$-subgroup of G, and $P_{i}:=G_{i j} \cap H_{j}$ (resp. $P_{j}:=G_{i j} \cap H_{i}$) is a Sylow p_{i}-subgroup (resp. Sylow p_{j}-subgroup) of $G_{i j}$ and of G. As in the case $r=2$ we obtain $P_{i} P_{j}=G_{i j}=P_{j} P_{i}$.
10.12 Definition Let $|G|=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be the prime factor decomposition of $|G|$ with $p_{1}<\cdots<p_{r}$.
(a) A tuple $\left(P_{1}, \ldots, P_{r}\right)$ consisting of Sylow p_{i}-subgroups P_{i} of $G, i=$ $1, \ldots, r$, is called a Sylow system of G if $P_{i} P_{j}=P_{j} P_{i}$ for all $i, j \in\{1, \ldots, r\}$.
(b) A tuple $\left(K_{1}, \ldots, K_{r}\right)$ consisting of Hall p_{i}^{\prime}-subgroups of $G, i=1, \ldots, r$, is called a Sylow complement system of G.
10.13 Proposition Assume the notation from the previous definition and let $\pi \subseteq\left\{p_{1}, \ldots, p_{r}\right\}$. Let $\left(P_{1}, \ldots, P_{r}\right)$ be a Sylow system of G. Then $\prod_{p_{i} \in \pi} P_{i}$ is a Hall π-subgroup of G.

Proof The equalities $P_{i} P_{j}=P_{j} P_{i}$ for $i, j \in\{1, \ldots, r\}$ imply by repeated use of Lemma 10.6(b) that $\prod_{p_{i} \in \pi} P_{i}$ is a subgroup of G. Moreover, by induction on $|\pi|$ it is easy to see that $\prod_{p_{i} \in \pi} P_{i}$ is a Hall π-subgroup of G. In fact, if $|\pi|=0$ or $|\pi|=1$, this is clear, and if $|\pi|>1$ we choose $p_{i_{0}} \in \pi$ and set $\tilde{\pi}:=\pi \backslash\left\{p_{i_{0}}\right\}$. Then, by induction, $\prod_{p_{i} \in \tilde{\pi}} P_{i}$ is a Hall $\tilde{\pi}$-subgroup of G so that $\left(\prod_{p_{i} \in \tilde{\pi}} P_{i}\right) \cap P_{i_{0}}=1$. Now Lemma 10.6(a) implies that $\prod_{p_{i} \in \pi} P_{i}=$ $\left(\prod_{p_{i} \in \tilde{\pi}} P_{i}\right) P_{i_{0}}$ is a Hall π-subgroup of G.
10.14 Corollary The following assertions are equivalent:
(i) G is solvable.
(ii) G has a Sylow system.
(iii) G has a Sylow complement system.

Proof By Theorem 10.11, (i) implies (ii). Moreover, by Proposition 10.13, (ii) implies (iii). Finally, by Corollary 10.10, (iii) implies (i).
10.15 Remark Let \mathcal{S} denote the set of Sylow systems of G, let \mathcal{K} denote the set of Sylow complement systems of G, and assume that $p_{1}<\cdots<p_{r}$ are the prime divisors of $|G|$. Then, the maps

$$
\begin{gathered}
\mathcal{S} \underset{\psi}{\stackrel{\varphi}{\rightleftarrows} \mathcal{K}} \\
\left(P_{1}, \ldots, P_{r}\right) \\
\mapsto\left(\prod_{i \neq 1} P_{i}, \ldots, \prod_{i \neq r} P_{i}\right) \\
\left(\bigcap_{i \neq 1} K_{i}, \ldots, \bigcap_{i \neq r} K_{i}\right)
\end{gathered} \leftarrow_{\left(K_{1}, \ldots, K_{r}\right)}
$$

are well-defined inverse bijections. In fact, by Proposition $10.13, \varphi$ is welldefined, and by the arguments in the proof of Theorem 10.11, ψ is welldefined. If $\left(P_{1}, \ldots, P_{r}\right) \in \mathcal{S}$, and $K_{j}:=\bigcap_{i \neq j} P_{i}$, then $P_{i_{0}} \leqslant \bigcap_{j \neq i_{0}} K_{j}$ for all $i_{0}=1, \ldots, r$. This implies $P_{i}=\bigcap_{j \neq i} K_{j}$, since both groups are Sylow $p_{i^{-}}$ subgroups of G. On the other hand, if $\left(K_{1}, \ldots, K_{r}\right) \in \mathcal{K}$ and $P_{j}:=\bigcap_{i \neq j} K_{i}$, then $\prod_{j \neq i_{0}} P_{j} \leqslant K_{i_{0}}$ for all $i_{0}=1, \ldots, r$. This implies $\prod_{j \neq i} P_{j}=K_{i}$, since both groups are Hall p_{i}^{\prime}-subgroups of G.

Note that \mathcal{S} and \mathcal{K} are G-sets under the conjugation action of G and that φ and ψ are isomorphisms of G-sets.
10.16 Theorem (a) Let $\left(P_{1}, \ldots, P_{r}\right)$ and $\left(Q_{1}, \ldots, Q_{r}\right)$ be Sylow systems of G. Then there exists $g \in G$ such that $g P_{i} g^{-1}=Q_{i}$ for all $i \in\{1, \ldots, r\}$.
(b) Let $\left(K_{1}, \ldots, K_{r}\right)$ and $\left(L_{1}, \ldots, L_{r}\right)$ be Sylow complement systems of G. Then there exists $g \in G$ such that $g K_{i} g^{-1}=L_{i}$ for all $i \in\{1, \ldots, r\}$.

Proof Let $|G|=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$.
(b) By the π-Sylow theorem, for fixed $i \in\{1, \ldots, r\}$ all Hall p_{i}^{\prime}-subgroups of G are conjugate in G. In particular, G has $\left[G: N_{G}\left(K_{i}\right)\right]$ Hall p_{i}^{\prime}-subgroups and $\left[G: N_{G}\left(K_{i}\right)\right]$ divides $\left[G: K_{i}\right]=p^{e_{i}}$. Therefore, the number of Sylow complement systems of G is $k:=\prod_{i=1}^{r}\left[G: N_{G}\left(K_{i}\right)\right]$. Since $\left[G: N_{G}\left(K_{i}\right)\right]$, $i=1, \ldots, r$, are pairwise coprime, repeated application of Lemma 10.6(d) yields

$$
k=\prod_{i=1}^{r}\left[G: N_{G}\left(K_{i}\right)\right]=\left[G: \bigcap_{i=1}^{r} N_{G}\left(K_{i}\right)\right] .
$$

Therefore, the stabilizer of $\left(K_{1}, \ldots, K_{r}\right)$ in G has index k in G, which implies that the G-orbit of $\left(K_{1}, \ldots, K_{r}\right)$ contains all Sylow complement systems.
(a) This follows immediately from part (b) and Remark 10.15, since the maps φ and ψ are inverse isomorphisms of G-sets.
10.17 Theorem (Hall-Higman 1.2.3) Let G be a π-separable group and assume that $\mathrm{O}_{\pi^{\prime}}(G)=1$. Then $C_{G}\left(\mathrm{O}_{\pi}(G)\right) \leqslant \mathrm{O}_{\pi}(G)$.

Proof We set $C:=C_{G}\left(\mathrm{O}_{\pi}(G)\right)$ and $B:=C \cap \mathrm{O}_{\pi}(G)$. It suffices to show that $B=C$. We assume that $B<C$ and will derive a contradiction. Note that B and C are normal in G and that B is a π-group. Since C / B is a non-trivial π-separable group, it has a non-trivial characteristic subgroup K / B which is a π-group or a π^{\prime}-group. Therefore $K / B \unlhd G / B$ and $K \unlhd G$. First we consider the case that K / B is a π-group. Since B is a π-group, also K is a π-group. Since $K \unlhd G$, we obtain $K \leqslant \mathrm{O}_{\pi}(G)$ and $K \leqslant \mathrm{O}_{\pi}(G) \cap C=B$, in contradiction to $K / B>1$. Next consider the case that K / B is a π^{\prime} group. Then, by Schur-Zassenhaus, the normal Hall π-subgroup B of K has a complement H, and since $K / B>1$, we have $H>1$. We have $H \leqslant C=$ $C_{G}\left(\mathrm{O}_{\pi}(G)\right) \leqslant C_{G}(B)$. Thus, B centralizes H. Since $K=B H$, this implies that $H \unlhd K$. Thurs $1<H \leqslant \mathrm{O}_{\pi^{\prime}}(K) \unlhd G$. This is a contradiction to the hypothesis $\mathrm{O}_{\pi^{\prime}}(G)=1$.
10.18 Definition For a π-separable group G we define its π-length as the minimum number of factors that are π-groups in any normal series of G in which each factor is either a π-group or a π^{\prime}-group. For example G has π length 0 if and only if G is a π^{\prime}-group. And, G has π-length 1 if and only if G has a normal series $1=G_{0} \leqslant G_{1}<G_{2} \leqslant G_{3}=G$ such that G_{1} is a π^{\prime}-group, G_{2} / G_{1} is a non-trivial π-group and G_{3} / G_{2} is a π^{\prime}-group.
10.19 Theorem Let G be a π-separable group and suppose that a Hall π-subgroup of G is abelian. Then the π-length of G is at most 1 .

Proof Set $\bar{G}:=G / \mathrm{O}_{\pi^{\prime}}(G)$. Then $\mathrm{O}_{\pi^{\prime}}(\bar{G})=1$. Let H be an abelian Hall π-subgroup of G. Then $\bar{H}=H \mathrm{O}_{\pi^{\prime}}(G) / \mathrm{O}_{\pi^{\prime}}(G)$ is a Hall π-subgroup of \bar{G}, and it contains every normal π-subgroup of \bar{G}. In particular, it contains $\mathrm{O}_{\pi}(\bar{G})$. Since \bar{H} is abelian, we have $\bar{H} \leqslant C_{\bar{G}}\left(\mathrm{O}_{\pi}(\bar{G})\right) \leqslant \mathrm{O}_{\pi}(\bar{G})$, where the last containment follows from Hall-Higman. This implies $\bar{H}=\mathrm{O}_{\pi}(\bar{G})$ and $\bar{H} \unlhd \bar{G}$. This shows that $1 \leqslant \mathrm{O}_{\pi^{\prime}}(G) \leqslant H \mathrm{O}_{\pi^{\prime}}(G) \leqslant G$ is a normal sequence
whose first and third factor is a π^{\prime}-group and whose second factor is a π group.

11 Coprime Action

Throughout this section let G and A be finite groups. We assume that A acts by group automorphisms on G. We denote this action by $(a, g) \mapsto{ }^{a} g$. The resulting semi-direct product will be denoted by $\Gamma:=G \rtimes A$. Recall that $(g, a)(h, b)=\left(g^{a} h, a b\right)$ for $g, h \in G$ and $a, b \in A$. We will view G and S as subgroups of Γ via the usual embeddings and then have $\Gamma=G A=A G$ with $A \cap G=1$. Recall that

$$
C_{A}(G)=\left\{a \in A \mid{ }^{a} g=g \text { for all } g \in G\right\} \unlhd A
$$

denotes the kernel of the action of A on G and

$$
C_{G}(A)=\left\{g \in G \mid{ }^{a} g=g \text { for all } a \in A\right\} \leqslant G
$$

denotes the A-fixed points of G, previously also denoted by G^{A}.
11.1 Remark (a) We will often consider a set X on which A and G acts. We will denote these actions by $(a, x) \mapsto a \cdot x$ and $(g, x) \mapsto g \cdot x$. It is easy to verify that the map

$$
\Gamma \times X \rightarrow X, \quad(g a, x) \mapsto g \cdot(a \cdot x)
$$

defines an action of Γ on X if and only if the the actions of A and G on X are compatible in the following sense:

$$
\begin{equation*}
a \cdot(g \cdot x)={ }^{a} g \cdot(a \cdot x) \tag{11.1.a}
\end{equation*}
$$

for $x \in X, a \in A$ and $g \in G$.
(b) Assume that the compatibility condition (11.1.a) is satisfied. We will denote the A-fixed points of X by

$$
X^{A}:=\left\{x \in X \mid{ }^{a} x=x \text { for all } a \in A\right\}
$$

It is easy to see that X^{A} is stable under the action of $C_{G}(A)=G^{A}$.
11.2 Lemma (Glauberman) Assume that G and A act on a set X such that (11.1.a) is satisfied. Moreover assume that $\operatorname{gcd}(|G|,|A|)=1$, that G acts transitively on X and that G or A is solvable. Then the following hold:
(a) The set of A-fixed points X^{A} is non-empty.
(b) The action of G^{A} on X^{A} is transitive.

Proof (a) Let $x \in X$ and set $U=\Gamma_{x}$ denote the stabilizer of x in Γ. We claim that $G U=U G=\Gamma$. In fact, if $\gamma \in \Gamma$ then, by the transitivity of the action of G on X there exists $g \in G$ such that $\gamma \cdot x=g \cdot x$. Thus, $g^{-1} \gamma \in U$ and the claim is proved. Since

$$
U / U \cap G \cong G U / G=\Gamma / G \cong A
$$

$U \cap G$ is a normal Hall subgroup of U. By Schur-Zassenhaus, $U \cap G$ has a complement H in U. Then $|H|=[U: U \cap G]=|A|$ and H is also a complement of G in Γ. Again by Schur-Zassenhaus, A is conjugate to H in Γ and there exists $\gamma \in \Gamma$ such that $A={ }^{\gamma} H$. Since H stabilizes x, A stabilizes $\gamma \cdot x$ and $\gamma \cdot x \in X^{A}$.
(b) Let x and y be arbitrary elements in X^{A}. Set $M:=\{g \in G \mid g \cdot x=y\}$. Since G acts transitively on X, the subset M of G is non-empty. Moreover, set $H:=G_{y}$, the stabilizer of y in G. Then H acts by left multiplication on M. Also, M is A-stable, since ${ }^{a} m \cdot x={ }^{a} m \cdot(a \cdot x)=a \cdot(m \cdot x)=a \cdot y=y$. Therefore, M is a left A-set and a left H-set and $\operatorname{gcd}(|H|,|A|)=1$. We want to apply Part (a) to this situation. The actions of A and H on M satisfy (11.1.a), since ${ }^{a}(h m)={ }^{a} h{ }^{a} m$ for all $a \in A, h \in H$ and $m \in M$ (because A acts on G by group automorphisms). Finally, H acts transitively on M, since for $m, n \in M$ we have $m \cdot x=y=n \cdot x$ and therefore, $m n^{-1} \in G_{y}=H$ which implies that $m=h n$ for some $h \in H$. Now Part (a) implies that there exists an A-fixed point on M, i.e., an element $m \in M$ which is also in G^{A}.

Note that, since A acts on G via group automorphisms, A also acts on the set of subgroups of G, and also on the set of subgroups of G of a fixed order, by ${ }^{a} H:=\left\{{ }^{a} h \mid h \in H\right\}$ for $a \in A$ and $H \leqslant G$. In particular, A acts on $\operatorname{Syl}_{p}(G)$ for every prime p of G. We say that H is A-invariant if ${ }^{a} H=H$ for all $a \in A$.
11.3 Theorem Assume that $\operatorname{gcd}(G, A)=1$ and that G or A is solvable. Moreover, let p be a prime. Then the following hold:
(a) There exists an A-invariant Sylow p-subgroup of G.
(b) Any two A-invariant Sylow p-subgroups of G are conjugate by an element in G^{A}.
(c) Every A-invariant p-subgroup of G is contained in some A-invariant Sylow p-subgroup of G.

Proof Parts (a) and (b) follow immediately from Lemma 11.2. In fact, A and G act on $X:=\operatorname{Syl}_{p}(G), G$ acts transitively on X, and the compatibility condition (11.1.a) is satisfied: ${ }^{a} g \cdot(a \cdot P)={ }^{a} g\left({ }^{a} P\right)={ }^{a}\left({ }^{g} P\right)=a \cdot(g \cdot P)$, for all $a \in A, g \in G$ and $P \in \operatorname{Syl}_{p}(G)$.
(c) It suffices to show that every maximal A-invariant p-subgroup P of G is a Sylow p-subgroup of G. Set $N:=N_{G}(P)$ and note that with P also N is A-invariant. By Part (a) (applied to N instead of G), we may choose an A invariant Sylow p-subgroup S of N. Since P is normal in N, we have $P \leqslant S$. Since P was a maximal A-invariant p-subgroup of G, we have $P=S$ and P is a Sylow p-subgroup of N. But this implies that P is a Sylow p-subgroup of G. In fact assume this is not the case; then P is properly contained in some Sylow p-subgroup T of G and $Q:=N_{T}(P)>P$, since T is nilpotent. Thus, $Q \leqslant N_{G}(P)$, contradicting the fact that P is a Sylow p-subgroup of N.

Since A acts on G by automorphisms, we have for every $a \in A$ and $g, h \in G: g$ and h are conjugate in G if and only if ${ }^{a} g$ and ${ }^{a} h$ are conjugate in G. This implies that for every conjugacy class K of G the subset ${ }^{a} K:=$ $\left\{{ }^{a} g \mid g \in K\right\}$ is again a conjugacy class of G. Thus, A acts on the set $\operatorname{cl}(G)$ of conjugacy classes of G. If $K \in \operatorname{cl}(G)^{A}$, we also say that K is A-invariant.
11.4 Theorem Assume that $\operatorname{gcd}(|G|,|A|)=1$ and that A or G is solvable. Then the map

$$
\operatorname{cl}(G)^{A} \rightarrow \operatorname{cl}\left(G^{A}\right), \quad K \mapsto K \cap G^{A}
$$

is a well-defined bijection.
Proof Let $K \in \operatorname{cl}(G)^{A}$. We first show that $K \cap G^{A}$ is a conjugacy class of G^{A}. We will apply Glauberman's Lemma 11.2 to the set $X=K$ on which G acts transitively by conjugation and on which A acts, since K is A-invariant. It is straightforward to verify that the compatibility condition (11.1.a) holds: For $a \in A, g \in G$ and $x \in K$, the left hand side equals ${ }^{a}\left(g x g^{-1}\right)={ }^{a} g{ }^{a} x\left({ }^{a} g\right)^{-1}$ and the last expression equals the right hand side in (11.1.a). By Glauberman's Lemma, $K^{A}=K \cap G^{A}$ is not empty and it is a single orbit under the G^{A}-conjugation action. Therefore, $K \cap G^{A} \in \operatorname{cl}\left(G^{A}\right)$.

Next we show that the map in the theorem is surjective. Let $L \in \operatorname{cl}\left(G^{A}\right)$ and let $x \in L$. Let $K \in \operatorname{cl}(G)$ denote the conjugacy class of x. Then K is A invariant, since it contains the A-fixed point x. By the previous paragraph, $K \cap G^{A}$ is a single conjugacy class of G^{A}. But since it contains x, it is equal to L.

Finally, we show that the map in the theorem is injective. Assume that K_{1} and K_{2} are A-invariant conjugacy classes of G with $K_{1} \cap G^{A}=K_{2} \cap G^{A}$. By the first part of the proof, this latter is a non-epmty set. This implies that K_{1} and K_{2} have non-empty intersection. Therefore, $K_{1}=K_{2}$.

Since A acts on G, it acts on the set of subsets of G via ${ }^{a} Y=\left\{{ }^{a} y \mid y \in Y\right\}$ for $a \in A$ and $Y \subseteq G$. Since A acts on G via group automorphisms, it also acts on the set of subgroups. We say that a subset Y of G is A-invariant it it is a fixed point under this action, i.e., if $a_{y} \in Y$ for all $a \in A$ and $y \in Y$. In this case, A also acts on Y, and if Y is a subgroup of G then A acts on Y via group automorphisms. If the subgroup Y of G is A-stable then A also acts on the set G / Y of left cosets of Y and on the set $Y \backslash G$ of right cosets of Y.
11.5 Theorem Assume that $H \leqslant G$ is an A-invariant subgroup of G, that $\operatorname{gcd}(|A|,|H|)=1$ and that A or H is solvable. Then, the A-invariant left (or right) cosets of H are precisely those that contain an A-fixed point.

Proof Clearly, if a coset contains an A-fixed point g then it is equal to $g H$ (or $H g$) and it is A-invariant. Conversely, assume that the coset $g H$ is A invariant (right cosets can be treated similarly). We can consider $X:=g H$ as a left A-set and also as a left H-set via $h \cdot\left(g h^{\prime}\right):=g h^{\prime} h^{-1}$, for $h, h^{\prime} \in H$. Note that H acts transitively on X. We verify that the compatibility condition (11.1.a) is satisfied. For $h^{\prime} \in H, a \in A$ and $x \in X$, its left hand side equals $a \cdot\left(h \cdot g h^{\prime}\right)={ }^{a} g h^{\prime} h^{-1}={ }^{a} g h^{\prime}\left({ }^{a} h\right)^{-1}$ and the last expression is equal to ${ }^{a} h \cdot\left(a \cdot g h^{\prime}\right)$. By Glauberman's Lemma $11.2 X$ has an A-fixed point. This completes the proof.

If N is an A invariant normal subgroup of G then A acts on G / N via group automorphisms by ${ }^{a} g N={ }^{a} g{ }^{a} N={ }^{a} g N$, for $a \in A$ and $g \in G$.
11.6 Corollary Let N be an A-invariant normal subgroup of G and assume that $\operatorname{gcd}(|A|,|N|)=1$ and that A or N is solvable. Then $(G / N)^{A}=G^{A} N / N$.

Proof This follows immediately from Theorem11.5, since $(G / N)^{A}$ is the set of A-invariant cosets of N and $G^{A} N / N$ is the set of cosets of N which contain an A-fixed point.

Since the Frattini subgroup $\Phi(G)$ is characteristic in G, it is an A-stable normal subgroup of G and the action of A on G induces an action of A on $G / \Phi(G)$ via group automorphisms.
11.7 Corollary Assume that $\operatorname{gcd}(|A|,|\Phi(G)|)=1$ and that A acts trivially on $G / \Phi(G)$. Then A acts trivially on G.

Proof It suffices to show that for every element $a \in A$ the cyclic subgroup $B:=\langle a\rangle$ of A acts trivially on G. Note that with A also B acts trivially on $G / \Phi(G)$ and since B is solvable, we can apply Corollary 11.6 to $G, \Phi(G)$ and B to obtain $G^{B} \Phi(G) / \Phi(G)=(G / \Phi(G))^{B}=G / \Phi(G)$. The correspondence theorem implies $G^{B} \Phi(G)=G$ and Lemma 2.3 implies that $G^{B}=G$. Therefore, B acts trivially on G.
11.8 Corollary Assume that $\operatorname{gcd}(|A|,|\Phi(G)|)=1$ and that the action of A on G is faithful. Then the action of A on $G / \Phi(G)$ is faithful.

Proof Let B denote the kernel of the action of A on $G / \Phi(G)$. Then Corollary 11.7 implies that B acts trivailly on G. But since A acts faithfully on G we obtain $B=1$. But this means that A acts faithfully on $G / \Phi(G)$.

12 Commutators

Throughout this section we fix a group G.
12.1 Definition (a) For $x, y \in G$ we define their commutator by $[x, y]:=$ $x y x^{-1} y^{-1}$. For $n \geqslant 3$ and elements x_{1}, \ldots, x_{n} in G we define their commutator recursively by

$$
\left[x_{1}, \ldots, x_{n}\right]:=\left[x_{1},\left[x_{2}, \ldots, x_{n}\right]\right] .
$$

(b) For subgroups X and Y of G we define their commutator $[X, Y]$ as the subgroup generated by all commutators $[x, y]$ for $x \in X$ and $y \in Y$. For $n \geqslant 3$ and subgroups X_{1}, \ldots, X_{n} of G we define their commutator recursively by

$$
\left[X_{1}, \ldots, X_{n}\right]:=\left[X_{1},\left[X_{2}, \ldots, X_{n}\right]\right]
$$

Warning: In general, $\left[X_{1}, \ldots, X_{n}\right]$ is not generated by the elements $\left[x_{1}, \ldots, x_{n}\right]$ with $x_{i} \in X_{i}$ for $i=1, \ldots, n$.
12.2 Proposition Let x, y and z be elements of G, let X and Y be subgroups of G and let N be a normal subgroup of G.
(a) One has $[y, x]=[x, y]^{-1}$ and $[X, Y]=[Y, X]$.
(b) One has $[x, y z]=[x, y] \cdot{ }^{y}[x, z]$.
(c) One has $[X, Y] \unlhd\langle X, Y\rangle$.
(d) If $f: G \rightarrow H$ is a group homomorphism then $f([x, y])=[f(x), f(y)]$ and $f([X, Y])=[f(X), f(Y)]$.
(e) One has $[x N, y N]=[x, y] N$ and $[X, Y] N / N=[X N / N, Y N / N]$ in G / N.
(f) One has $[X, Y] \leqslant Y$ if and only if $X \leqslant N_{G}(Y)$.

Proof (a) $[x, y][y, x]=x y x^{-1} y^{-1} y x y^{-1} x^{-1}=1$. By definition, $[X, Y]$ is generated by the elements $[x, y]$ with $x \in X$ and $y \in Y$, and $[Y, X]$ is generated by their inverses. Therefore, $[X, Y]=[Y, X]$.
(b) We have $[x, y] \cdot{ }^{y}[x, z]=\left(x y x^{-1} y^{-1}\right)\left(y x z x^{-1} z^{-1} y^{-1}\right)=x y z x^{-1} z^{-1} y^{-1}=$ [$x, y z]$.
(c) For $x \in X$ and $y, y^{\prime} \in Y$, Part (a) yields $\left[x, y y^{\prime}\right]=[x, y] \cdot{ }^{y}\left[x, y^{\prime}\right]$, and therefore ${ }^{y}\left[x, y^{\prime}\right]=[x, y]^{-1} \cdot\left[x, y y^{\prime}\right] \in[X, Y]$. This shows that Y normalizes $[X, Y]$. For the same reason, X normalizes $[Y, X]$. But $[Y, X]=[X, Y]$, by Part (a). Therefore, the group $\langle X, Y\rangle$ normalizes $[X, Y]$. Obviously, $[X, Y] \leqslant\langle X, Y\rangle$.
(d) We have $f([x, y])=f\left(x y x^{-1} y^{-1}\right)=f(x) f(y) f(x)^{-1} f(y)^{-1}=[f(x), f(y)]$. Since $[X, Y]$ is generated by the elements $[x, y]$ with $x \in X$ and $y \in Y$, the group $f([X, Y])$ is generated by the elements $f([x, y])=[f(x), f(y)]$ with $x \in X$ and $y \in Y$. Thus, $f([X, Y])=[f(X), f(Y)]$.
(e) This follows immediately from part (e) applied to the natural epimorphism $f: G \rightarrow G / N, g \mapsto g N$.
(f) For $x \in X$ and $y \in Y$ one has $[x, y]={ }^{x} y \cdot y^{-1}$ and therefore ${ }^{x} y=$ $[x, y] \cdot y$. This shows that $[x, y] \in Y$ if and only if $x^{x} \in Y$ and the result follows.
12.3 Lemma Let A be an abelian normal subgroup of G and suppose that G / A is cyclic. Then $G^{\prime}=[G, A] \leqslant A$ and

$$
G^{\prime} \cong A /(A \cap Z(G))
$$

In particular, if A is finite then G^{\prime} is finite and $|A|=\left|G^{\prime}\right| \cdot|A \cap Z(G)|$.
Proof Let $g \in G$ be such that $G / A=\langle g A\rangle$. Since A is normal in G, we have $[G, A] \leqslant A$ and we can define the function $\theta: A \rightarrow A, a \mapsto[g, a]$. By Proposition $12.2(\mathrm{~b})$, and since A is abelian, we have $[g, a b]=[g, a][g, b]$ for all $a, b \in A$. Thus, θ is a homomorphism. Moreover, $\operatorname{ker}(\theta)=C_{A}(g)=$ $C_{A}(G)=A \cap Z(G)$, and $\theta(A) \leqslant[G, A] \leqslant G^{\prime}$. We will show that $G^{\prime} \leqslant \theta(A)$ and all statements in the lemma will follow. To that end it suffices to show that $\theta(A)$ is normal in G and that $G / \theta(A)$ is abelian. Since $\theta(A) \leqslant A$ and A is abelian, $\theta(A)$ is normalized by A. Moreover, for $a \in A$ we have ${ }^{g} \theta(a)={ }^{g}[g, a]=\left[{ }^{g} g,{ }^{g} a\right]=\left[g,{ }^{g} a\right]=\theta\left({ }^{g} a\right) \in \theta(A)$. Therefore, $\theta(A)$ is normal in G. Finally, set $\bar{G}:=G / \theta(A)$. Note that \bar{G} is generated by \bar{g} and the elements \bar{a} for $a \in A$. In order to show that \bar{G} is abelian it suffices to show that $[\bar{g}, \bar{a}]=\overline{1}$. But $[\bar{g}, \bar{a}]=\overline{[g, a]}=\overline{\theta(a)}=\overline{1}$.
12.4 Lemma For $x, y, z \in G$ one has the Hall-Witt identity

$$
{ }^{y}\left[x, y^{-1}, z\right] \cdot{ }^{z}\left[y, z^{-1}, x\right] \cdot{ }^{x}\left[z, x^{-1}, y\right]=1 .
$$

Proof Straightforward computation.
12.5 Lemma (3 subgroup lemma) Let X, Y and Z be subgroups of G. If $[X, Y, Z]=1$ and $[Y, Z, X]=1$ then $[Z, X, Y]=1$.

Proof It suffices to show that $[X, Y] \in C_{G}(Z)$. Since $C_{G}(Z)$ is a subgroup of G, it suffices to show that $[x, y] \in C_{G}(Z)$ for all $x \in X$ and $y \in Y$. For this it suffices to show that $[z, x, y]=1$ for all $x \in X, y \in Y$ and $z \in Z$. This follows now from the hypothesis and the Hall-Witt identity.
12.6 Corollary (3 subgroup corollary) Let N be a normal subgroup of G and let X, Y, Z be subgroups of G. If $[X, Y, Z] \leqslant N$ and $[Y, Z, X] \in N$ then $[Z, X, Y] \in N$.

Proof This follows immediately from Proposition 12.2(e) and the 3 subgroup lemma applied to G / N.
12.7 Definition We recalibrate the lower central series of a group by setting $G^{1}:=G, G^{2}:=[G, G]$ and $G^{n}:=[G, G, \ldots, G]$ with n entries G. Note that with the conventions in $[\mathrm{P}]$ we have $G^{n}=Z_{n-1}(G)$. Recall that G^{n} is characteristic in G for all $n \in \mathbb{N}$. We call any subgroup of n-fold commutators of copies of G a weight n commutator subgroup of G. For instance, $[[[G, G], G],[[G, G],[[G, G], G]]]$ is a weight 8 commutator subgroup of G.
12.8 Theorem For any $i, j \in \mathbb{N}$ one has $\left[G^{i}, G^{j}\right] \leqslant G^{i+j}$.

Proof We proceed by induction on i. If $i=1$ then $\left[G^{i}, G^{j}\right]=\left[G, G^{j}\right]=G^{j+1}$ by definition. Now assume that $i>1$. Then we can write $G^{i}=\left[G, G^{i-1}\right]$ and have $\left[G^{i}, G^{j}\right]=\left[G^{j}, G^{i}\right]=\left[G^{j}, G, G^{i-1}\right]$. By the 3 subgroup corollary it suffices to show that $\left.\left[G, G^{i-1}\right], G^{j}\right] \leqslant G^{i+j}$ and $\left[G^{i-1}, G^{j}, G\right] \leqslant G^{i+j}$. But, by induction, we have

$$
\left.\left[G, G^{i-1}, G^{j}\right]=\left[G,\left[G^{i-1}, G^{j}\right]\right] \leqslant\left[G, G^{i+j-1}\right]\right]=G^{i+j}
$$

and

$$
\left[G^{i-1}, G^{j}, G\right]=\left[G^{i-1},\left[G^{j}, G\right]\right]=\left[G^{i-1},\left[G, G^{j}\right]\right]=\left[G^{i-1}, G^{j+1}\right] \leqslant G^{i+j}
$$

and the proof is complete.
12.9 Corollary Let $n \in \mathbb{N}$. Any weight n commutator subgroup of G is contained in G^{n}.

Proof We proceed by induction on n. For $n=1$ and $n=2$ the statement is obviously true. For $n>2$ every weight n commutator subgroup of G is of the form $[X, Y]$ where X is a weight i commutator subgroup of G and Y is a weight j commutator subgroup of G for positive integers i and j with $i+j=n$. By induction and by Theorem 12.8, we obtain $[X, Y] \leqslant\left[G^{i}, G^{j}\right] \leqslant$ $G^{i+j}=G^{n}$ and the proof is complete.
12.10 Corollary For any $n \in \mathbb{N}_{0}$ one has $G^{(n)} \leqslant G^{2^{n}}$.

Proof We proceed by induction on n. For $n=0$ we have $G^{(0)}=G=$ $G^{1}=G^{2^{0}}$. For $n>0$ we have $G^{(n)}=\left[G^{(n-1)}, G^{(n-1)}\right] \leqslant\left[G^{2^{n-1}}, G^{2^{n-1}}\right] \leqslant$ $G^{2^{n-1}+2^{n-1}}=G^{2^{n}}$ by induction and Corollary 12.9.

For the rest of this section let A denote a group and assume that A acts on G via automorphisms. As before we view A and G as subgroups of the resulting semidirect product Γ and note that inside Γ the conjugation action of A on G coincides with the original action of A on G.
12.11 Remark (a) A subgroup H of G is A-invariant and normal in G if and only if it is normal in Γ. In this case $[A, H] \leqslant H$, since A normalizes H, and moreover, $[A, H]$ is again normal in $A H$. In fact, for $a, b \in A$ and $h, k \in H$ we have ${ }^{a}[b, h]=\left[{ }^{a} b,{ }^{a} h\right] \in[A, H]$ (showing that A normalizes $[A, H]$) and $[a, h k]=[a, h] \cdot{ }^{h}[a, k]$ (showing that ${ }^{h}[a, k] \in[A, H]$ and therefore that also H normalizes $[A, H]$). In particular, $[A, G]$ is an A-invariant normal subgroup of G. Iterating this process, one obtains a sequence

$$
G \unrhd[A, G] \unrhd[A, A, G] \unrhd[A, A, A, G] \unrhd \cdots
$$

of A invariant subgroups of G. In general the subgroups in this sequence are not normal in G. The next lemma will show that the induced A-action on each of the factor groups is trivial.
(b) If H is an A-invariant subgroup of G then the action of A on G induces an action of A on the set of left cosets, G / H, and also on the set of right cosets, $H \backslash G$, as already explained in the paragraph preceding Theorem 11.5. Moreover, if H is an A-invariant and normal subgroup of G, then the action of A on G induces an action of A on the group G / H via automorphisms.
12.12 Lemma The subgroup $[A, G]$ of G is A-invariant and normal in G and the induced action of A on $G /[A, G]$ is trivial. Conversely, assume that
N is a normal A-invariant normal subgroup of G such that the induced action of A on G / N is trivial. Then $[A, G] \leqslant N$.

Proof By Remark 12.11(a), we already know that $[A, G]$ is an A-invariant and normal subgroup of G. Moreover, if N is any A-invariant normal subgroup of G then one has:

$$
\begin{aligned}
A \text { acts trivially on } G / N & \Longleftrightarrow{ }^{a}(N g)=N g \text { for all } g \in G \text { and all } a \in A \\
& \Longleftrightarrow N \cdot{ }^{a} g=N g \text { for all } g \in G \text { and all } a \in A \\
& \Longleftrightarrow{ }^{a} g g^{-1} \in N \text { for all } g \in G \text { and all } a \in A \\
& \Longleftrightarrow[a, g] \in N \text { for all } g \in G \text { and all } a \in A \\
& \Longleftrightarrow[A, G] \leqslant N .
\end{aligned}
$$

This completes the proof.
12.13 Corollary For any subgroup $H \leqslant G$ the following are equivalent:
(i) Every left coset of H in G is A-invariant.
(ii) Every right coset of H in G is A-invariant.
(iii) $[A, G] \leqslant H$.

Proof (i) \Longleftrightarrow (ii): If X is an A-stable subset of G then also $X^{-1}:=\left\{x^{-1} \mid\right.$ $x \in X\}$ is A-stable. But $(g H)^{-1}=H g^{-1}$ for all $g \in G$.
(ii) \Rightarrow (iii): The hypothesis implies in particular that H is A-invariant. Further, for every $a \in A$ and $g \in G$, we have $H g={ }^{a}(H g)={ }^{a} H^{a} g=H^{a} g$. This implies $[a, g]={ }^{a} g g^{-1} \in H$. Since a and g were arbitrary, we obtain $[A, G] \leqslant H$.
$($ iii $) \Rightarrow(\mathrm{i})$: Every left coset of H in G is a union of left cosets of $[A, G]$ in G. By Lemma 12.12, each coset of $[A, G]$ in G is A-invariant (since A acts trivially on $G /[A, G])$. Thus, every left coset of H is A-invariant.

For $n \in \mathbb{N}$ we set $[A, \ldots, A, G]_{n}:=[A, \ldots, A, G]$ where the last expression contains n copies of A.
12.14 Theorem Let $n \in \mathbb{N}$ and assume that $[A, \ldots, A, G]_{n}=1$. Then $A^{(n-1)} \leqslant C_{A}(G)$. In particular, if A acts faithfully on G and $[A, \ldots, A, G]_{n}=$ 1 then $A^{(n-1)}=1$ and A is solvable.

Proof It suffices to show the first statement. The second statement follows immediately, since $C_{A}(G)=1$ if A acts faithfully on G. We show the first statement by induction on n. If $n=1$ then $[A, G]=1$ and A acts trivially on G. Thus $A^{(0)}=A=C_{A}(G)$. Next we assume that $n>1$ and that the statement holds for values smaller than n. We want to show that $A^{(n-1)} \leqslant C_{A}(G)$, or equivalently that $\left[G, A^{(n-1)}\right]=1$. First note that the hypothesis yields $1=[A, \ldots, A, G]_{n}=[A, \ldots, A, N]_{n-1}$ for $N:=[A, G]$. By induction we obtain $A^{(n-2)} \leqslant C_{A}(N)$, or equivalently $1=\left[A^{(n-2)}, N\right]=$ $\left[A^{(n-2)}, A, G\right]$. In particular, we have $\left[A^{(n-2)}, A^{(n-2)}, G\right]=1$. But then also $\left[A^{(n-2)}, G, A^{(n-2)}\right]=\left[A^{(n-2)}, A^{(n-2)}, G\right]=1$. Now the 3 subgroup lemma implies $\left[G, A^{(n-2)}, A^{(n-2)}\right]=1$, and $\left[G, A^{(n-1)}\right]=1$, as desired.
12.15 Corollary Assume that A acts faithfully on G and that $[A, A, G]=1$. Then A is abelian.

Proof This is immediate from Theorem 12.14 with $n=2$.
For any group A we set $A^{\infty}:=\bigcap_{n \in \mathbb{N}} A^{n}$. If A is finite then the descending sequence A^{n} of subgroups of A terminates and A^{∞} is the final subgroup in this sequence, i.e., $A^{\infty}=A^{k}=A^{k+1}=\cdots$ for some $k \in \mathbb{N}$.
12.16 Theorem Assume that A and G are finite. If $[A, \ldots, A, G]_{n}=1$ for some positive integer n then $A^{\infty} \leqslant C_{A}(G)$. In particular, if A acts faithfully on G and $[A, \ldots, A, G]_{n}=1$ for some positive integer n then A is nilpotent.
Proof We proceed by induction on $|G|$. If $|G|=1$ then $C_{A}(G)=A$ and $A^{\infty} \leqslant A=C_{A}(G)$. Now we assume that $|G|>1$. Then $N:=[A, G]<$ G, since otherwise $1=[A, \ldots, A, G]_{n}=G$. Since $1=[A, \ldots, A, G]_{n}=$ $[A, \ldots, A, N]_{n-1}$, we obtain by induction that $C_{A}(N) \leqslant A^{\infty}$, or equivalently, $\left[A^{\infty}, A, G\right]=\left[A^{\infty}, N\right]=1$. We need to show that $\left[G, A^{\infty}\right]=1$, or equivalently that $\left[G, A^{\infty}, A\right]=1$, since $A^{\infty}=A^{k}=A^{k+1}=\left[A, A^{k}\right]=\left[A, A^{\infty}\right]=$ $\left[A^{\infty}, A\right]$ for some $k \in \mathbb{N}$. By the 3 subgroup lemma it suffices to show that $\left[A, G, A^{\infty}\right]=1$.

We claim that it suffices to find a normal subgroup C of G with $1<C \leqslant$ G^{A}. In fact, then we know that A acts on $\bar{G}:=G / C$ and $[A, \ldots, A, \bar{G}]_{n}=$ $\overline{[A, \ldots, A, G]_{n}}=\overline{1}$ and by induction we obtain $1=\left[A^{\infty}, \bar{G}\right]=\overline{\left[A^{\infty}, G\right]}$. This implies $\left[A^{\infty}, G\right] \leqslant C$, and since A acts trivially on C we obtain $1=$ $\left[A, A^{\infty}, G\right]=\left[A, G, A^{\infty}\right]$, and the claim is proved.

We may assume that $\left[A^{\infty}, G\right]>1$, since otherwise $A^{\infty} \leqslant C_{A}(G)$ and we are done. We set $C:=C_{\left[A^{\infty}, G\right]}(A)$. Then clearly, $C \leqslant G^{A}$. To see that $C>1$, note that $\left[A, \ldots, A,\left[A^{\infty}, G\right]\right]_{n} \leqslant[A, \ldots, A, G]=1$ but $\left[A^{\infty}, G\right]>1$. Let $m \in \mathbb{N}_{0}$ be maximal with $\left[A, \ldots, A,\left[A^{\infty}, G\right]\right]_{m}>1$, then this subgroup is centralized by A and it is contained in $\left[A^{\infty}, G\right]$. Therefore it is contained in C and $C>1$.

Finally, we show that C is normal in G. First we claim that $\left[A^{\infty}, G\right]$ centralizes $[A, G]$. From the first paragraph we have $\left[A^{\infty}, A, G\right]=1$ and therefore $\left[G, A^{\infty},[A, G]\right]=[G, 1]=1$. Moreover, $[A, G] \unlhd G$ and therefore $[[A, G], G]=[G,[A, G]] \leqslant[A, G]$. This implies $\left[A^{\infty},[A, G], G\right] \leqslant\left[A^{\infty},[A, G]\right]=$ 1. The 3 subgroup lemma now implies that $\left[[A, G], G, A^{\infty}\right]=1$, proving our claim. In particular, since $C \leqslant\left[A^{\infty}, G\right]$, we have $[C, A, G]=1$. Since A centralizes C, we also have $[G, C, A]=1$. The 3 subgroup lemma implies $[A, G, C]=1$ so that $[G, C]$ is centralized by A. Recall that $C \leqslant\left[A^{\infty}, G\right] \unlhd G$ and therefore $[G, C] \leqslant\left[G,\left[A^{\infty}, G\right]\right] \leqslant\left[A^{\infty}, G\right]$. But we just saw that A centralizes $[C, G]$. Thus, $[C, G] \leqslant C_{\left[A^{\infty}, G\right]}(A)=C$. This implies that G normalizes C and the proof is complete.
12.17 Lemma If $[A, A, G]=1$ then $[A, G]$ is abelian.

Proof We have $[G, A,[A, G]]=[G, 1]=1$. Moreover, $[A, G] \unlhd G$ implies $[A,[A, G], G]=[A, G,[A, G]] \leqslant[A,[A, G]]=1$. By the 3 subgroup lemma we obtain $[[A, G],[A, G]]=[[A, G], G, A]=1$ and $[A, G]$ is abelian.
12.18 Theorem Assume that A and G are finite and that A is a p-group. If $[A, \ldots, A, G]_{n}=1$ for some positive integer n then $[A, G]$ is a p-group.

Proof We set $N:=[A, G]$ and recall from Lemma 12.12 that N is an A-invariant normal subgroup of G and that A acts trivially on G / N. We prove the theorem by induction on $|G|$. If $|G|=1$ then $N=1$ and N is a p-group. Now we assume that $|G|>1$. Since $[A, \ldots, A, G]_{n}=1$, we have $N \triangleleft G$. Moreover, $[A, \ldots, A, N]_{n-1}=1$ and, by induction, $[A, N]$ is a p-group. Again by Lemma $12.12,[A, N]$ is a normal A-invariant subgroup of N and A acts trivially on $N /[A, N]$. Set $U:=\mathrm{O}_{p}(N)$. Then $U \underset{\text { char }}{\triangleleft} N \triangleleft G$ implies that U is A-invariant and normal in G. We have $[A, N] \leqslant U \leqslant N$ and set $\bar{G}:=G / U$. Then A acts trivially on \bar{N} since it acts trivially on $N /[A, N]$. Moreover, A acts trivially on G / N and on \bar{G} / \bar{N}. We obtain $1=[A, \bar{N}]=$
$[A, \overline{[A, G]}]=[A, A, \bar{G}]$ and by Lemma $12.17, \bar{N}=[A, \bar{G}]$ is abelian. Since $\mathrm{O}_{p}(\bar{N})=1$, we can conclude that \bar{N} is a p^{\prime}-group. Now the hypotheses of Corollary 11.6 are satisfied for the subgroup \bar{N} of \bar{G}. Thus, every coset of \bar{N} in \bar{G} contains an A-fixed point. But also \bar{N} consists of A-fixed points. This implies that A acts trivially on \bar{G}. This implies $1=[A, \bar{G}]=\overline{[A, G]}=\bar{N}$ and $N \leqslant U$. Thus, N is a p-group.
12.19 Theorem Assume that A and G are finite and that $[A, \ldots, A, G]_{n}=$ 1 for some positive integer n. Then $[A, G]$ is nilpotent.

Proof We prove the theorem by induction on $|A|$. If $|A|=1$ then $[A, G]=1$ is nilpotent. We assume from now on that $|A|>1$. We claim that every proper subgroup B of A acts trivially on $G / F(G)$, where $F(G)$ is the Fitting subgroup of G. In fact, $[B, \ldots, B, G]_{n} \leqslant[A, \ldots, A, G]_{n}=1$ and the induction hypothesis implies that $[B, G]$ is nilpotent. Since $[B, G] \unlhd G$, we obtain $[B, G] \leqslant F(G)$. Since B acts trivially on $G /[B, G]$, it also acts trivially on $\bar{G}:=G / F(G)$.

If A is generated by all its proper subgroups then A acts trivially on \bar{G}. This implies that $1=[A, \bar{G}]=\overline{[A, G]}$ and $[A, G] \leqslant F(G)$. But then $[A, G]$ is nilpotent. Therefore we may assume that A is not generated by its proper subgroups. Since A is generated by its Sylow subgroups for all prime divisors of $|A|, A$ must be equal to a Sylow subgroup of A. Thus, A is a p-group and Theorem 12.18 applies to show that $[A, G]$ is a p-group. This completes the proof.

13 Thompson's $P \times Q$ Lemma

Throughout this section, G and A denote groups and we assume that A acts on G via automorphisms. We view G and A as subgroups in the semidirect product $\Gamma:=G \rtimes A$.
13.1 Lemma Assume that A and G are finite, that $\operatorname{gcd}(|A|,[A, G])=1$, and that A or $[A, G]$ is solvable. Then $G=A^{G} \cdot[A, G]$.

Proof This follows immediately from Lemma 12.12 and Corollary 11.6, since every coset of $[A, G]$ in G is A-invariant and therefore contains an A-fixed point.
13.2 Lemma Assume that A and G are finite and that $\operatorname{gcd}(|A|,[A, G])=1$. Then $[A, A, G]=[A, G]$.

Proof Clearly $[A, A, G] \leqslant[A, G]$. To show the reverse inclusion it suffices to show that $[a, g] \in[A, A, G]$ for all $a \in A$ and $g \in G$. In a first step we assume that A is solvable. Then, by Lemma 13.1, we can write $g=x c$ with $c \in G^{A}$ and $x \in[A, G]$. We obtain $[a, g]=[a, x c]=[a, x] \cdot{ }^{x}[a, c]=[a, x] \in[A, A, G]$, since $[a, c]=1$. In the general case (A not necessarily solvable), we work with $\langle a\rangle$ instead of A and obtain $[a, g] \in[\langle a\rangle,\langle a\rangle, G] \subseteq[A, A, G]$.
13.3 Corollary Assume that A and G are finite, that A acts faithfully on G and that $[A, \ldots, A, G]_{n}=1$ for some $n \in \mathbb{N}$. Then every prime divisor of $|A|$ also divides $|G|$.

Proof Let p be a prime divisor of $|A|$ and assume that p does not divide $|G|$. For $P \in \operatorname{Syl}_{p}(A)$, repeated application of Lemma 13.2 yields $1=[P, \ldots, P, G]_{n}=[P, G]$. This implies that P acts trivially on G, in contradiction to A acting faithfully on G.
13.4 Lemma Let p be a prime. Assume that A and G are p-groups and that $G>1$. Then $[A, G]<G$ and $G^{A}>1$.

Proof Note that the semidirect product $\Gamma:=G \rtimes A$ is again a p-group. Therefore, there exists $n \geqslant 2$ such that $\Gamma^{n}=1$. This implies $[A, \ldots, A, G]_{n-1} \leqslant$ $\Gamma^{n}=1$ with $n-1 \geqslant 1$. Since $G>1$ and $[A, \ldots, A, G]_{n-1}=1$, we have
$[A, G]<G$ and there exists an integer $i>0$ such that $C:=[A, \ldots, A, G]_{i-1}>$ 1 but $[A, \ldots, A, G]_{i}=1$. This implies $1<C \leqslant G^{A}$.
13.5 Theorem (Thompson's $P \times Q$ Lemma) Let p be a prime. Assume that $A=P \times Q$, where P is a p-group and Q is a p^{\prime}-group, and that G is a p-group. If $G^{P} \leqslant G^{Q}$ then $G^{Q}=G$.

Proof We prove the theorem by induction on $|G|$. If $|G|=1$ then the clearly Q acts trivially on G. So assume that $|G|>1$ and set $\Gamma:=G \rtimes A$. By Lemma 13.4 we have $[P, G]<G$. Since A normalizes P and G, the subgroup $[P, G]<G$ is A-invariant. Moreover, $[P, G]^{P}=G^{P} \cap[P, G] \leqslant G^{Q} \cap[P, G]=$ $[P, G]^{Q}$. By induction we obtain that Q acts trivially on $[P, G]$. In other words, $[Q, P, G]=1$. But also $[G, Q, P]=1$, since $[Q, P]=1$. By the 3 subgroup lemma we obtain $[P, G, Q]=1$ and P acts trivially on $[Q, G]$. But then $[Q, G]=[Q, G]^{P}=[Q, G] \cap G^{P} \leqslant[Q, G] \cap G^{Q}=[Q, G]^{Q}$, which implies that Q centralizes $[Q, G]$ and that $[Q, Q, G]=1$. Now, Lemma 13.2 implies that $[Q, Q, G]=[Q, G]$ and the proof is complete.
13.6 Theorem Let p be a prime, let G be a p-solvable group, let P be a p-subgroup of G, and set $H:=N_{G}(P)$. Then $\mathrm{O}_{p^{\prime}}(H) \leqslant \mathrm{O}_{p^{\prime}}(G)$.

Proof We set $Q:=\mathrm{O}_{p^{\prime}}(H)$ and $N:=\mathrm{O}_{p^{\prime}}(G)$. We first assume that $N=1$ and need to show that $Q=1$. Note that both P and Q are normal subgroups of H and that $P \cap Q=1$. Thus, $A:=P Q=P \times Q$ is the internal direct product of P and Q. Moreover, A acts on the p-group $U:=\mathrm{O}_{p}(G)>1$ by conjugation. We want to show that $C_{U}(P) \leqslant C_{U}(Q)$. Note that $C_{U}(P)=$ $U \cap C_{G}(P) \leqslant U \cap N_{G}(P)=U \cap H$ and that $U \cap H$ is a normal p-subgroup of H. Since Q is a normal p^{\prime}-subgroup of $H, U \cap H$ and Q centralize each other. Therefore $C_{U}(P)$ and Q centralize each other. In other words, $C_{U}(P) \leqslant$ $C_{G}(Q) \cap U=C_{U}(Q)$, and we can apply Thompson's $P \times Q$ lemma. This yields $[U, Q]=1$ or $Q \leqslant C_{G}(U)$. By the Higman-Hall 1.2.3 lemma, we have $C_{G}(U) \leqslant U$ and therefore $Q \leqslant U$. Since U is a p-group and Q is a p^{\prime}-group, this implies $Q=1$ as desired.

Now assume that $N=\mathrm{O}_{p^{\prime}}(G)>1$. Then $\bar{G}:=G / N$ is p-solvable with $\mathrm{O}_{p^{\prime}}(\bar{G})=1$. We have $N_{\bar{G}}(\bar{P})=\overline{N_{G}(P)}=\bar{H}$ (cf. Homework problem), since N is a normal p^{\prime}-subgroup of G. By the first case applied to \bar{G} we have $\mathrm{O}_{p^{\prime}}(\bar{H})=1$. But $\overline{\mathrm{O}_{p^{\prime}}(H)} \leqslant \mathrm{O}_{p^{\prime}}(\bar{H})$ and therefore, $\mathrm{O}_{p^{\prime}}(H) \leqslant N=\mathrm{O}_{p^{\prime}}(G)$. This completes the proof.
13.7 Theorem Assume that A and G are finite, that $\operatorname{gcd}(|A|,|G|)=1$, and that G is abelian. Then $G=G^{A} \times[A, G]$.

Proof We already know that $G=G^{A} \cdot[A, G]$ by Lemma 13.1. Since G is abelian, it suffices to show that $G^{A} \cap[A, G]=1$. Let $\theta: G \rightarrow G$ be defined as

$$
\theta(g):=\prod_{a \in A}{ }^{a} g .
$$

Since G is abelian, this definition does not depend on the order of the product. Also, since G is abelian, θ is a group homomorphism. If $c \in G^{A}$ then $\theta(c)=$ $c^{\mid} A \mid$. Moreover, for $a \in A$ and $g \in G$ we have $\theta\left({ }^{a} g\right)=\Pi b \in A^{b a} g=\theta(g)$ and therefore $\theta([a, g])=\theta\left({ }^{a} g\right) \theta\left(g^{-1}=\theta(g) \theta(g)^{-1}=1\right.$. This implies that $[A, G] \leqslant \operatorname{ker}(\theta)$. Now let $x \in G^{A} \cap[A, G]$. Then $1=\theta(x)=x^{|A|}$. But since A and G have coprime orders, this implies $x=1$ and the proof is complete.
13.8 Corollary Let p be a prime. Assume that G is an abelian p-group and A is a p^{\prime}-group. If A fixes every element of order p in G then A acts trivially on G.

Proof By Fitting's Theorem 13.7 we have $G=G^{A} \times[A, G]$ and every element of order p in G is already contained in G^{A}. Therefore, $[A, G]$ is a p-group with no elements of order p. This implies $[A, G]=1$ and $G^{A}=1$.

Our goal is to show that we can drop the assumption that G is abelian in the previous corollary. The following trick, due to Reinhold Baer, will come in handy.
13.9 Lemma (Baer trick) Let G be a finite nilpotent group of odd order with $G^{3}=1$ (i.e, $G^{\prime} \leqslant Z(G)$). There exists a binary operation

$$
G \times G \rightarrow G, \quad(x, y) \mapsto x+y
$$

with the following properties:
(i) $(G,+)$ is an abelian group.
(ii) If $x, y \in G$ are commuting elements then $x+y=x y$.
(iii) The additive order of every element of G is equal to its multiplicative order.
(iv) $\operatorname{Aut}(G) \leqslant \operatorname{Aut}(G,+)$.

Proof Since G has odd order, there exists $n \in \mathbb{Z}$ with $|G|+1=2 n$. For $x, y \in G$, we define $x+y:=[x, y]^{n} y x$.

We first show that $x+y=y+x$ for $x, y \in G$. We need to show that $[x, y]^{n} x y=[y, x]^{n} x y$, or equivalently that $[x, y]^{n}=x y x^{-1} y^{-1}$. But this holds, since $2 n=|G|+1$.

Next, assume that $x, y \in G$ are commuting elements. Then $x+y=$ $[x, y]^{n} y x=x y$, since $[x, y]=1$. This shows (ii).

Since 1 commutes with every x we have $x+1=x \cdot 1=x$. Thus, 1 is an identity element with respect to + . Moreover, since x and x^{-1} commute, we have $x+x^{-1}=x x^{-1}=1$. Next we show associativity of + . Note that, since $G^{\prime} \leqslant Z(G)$, every commutator is central in G, and every triple commutator is trivial. Moreover, for every $x \in G$, the function $G \rightarrow G, y \mapsto[x, y]$, is a homomorphism. In fact, $[x, y z]=[x, y] \cdot y[x, z]=[x, y][x, z]$ for $x, y, z \in G$. Similarly, $[x y, z]=[x, z][y, z]$. We have

$$
\begin{aligned}
x+(y+z) & =x+[y, z]^{n} z y=\left[x,[y, z]^{n} z y\right]^{n} \cdot[y, z]^{n} z y x \\
& =\left(\left[x,[y, z]^{n}\right][x, z][x, y]\right)^{n}[y, z]^{n} z y x \\
& =\left([x,[y, z]]^{n}[x, z][x, y]\right)^{n}[y, z]^{n} z y x \\
& =[x, y]^{n}[x, z]^{n}[y, z]^{n} z y x
\end{aligned}
$$

and similarly

$$
\begin{aligned}
(x+y)+z & =[x, y]^{n} y x+z=\left[[x, y]^{n} y x, z\right]^{n} \cdot z[x, y]^{n} y x \\
& =[x, y]^{n}[x, z]^{n}[y, z]^{n} z y x
\end{aligned}
$$

Thus, + is associative and $(G,+)$ is an abelian group with identity element 1 and $-x=x^{-1}$. This shows (i).

To see (iii), note that (a) implies $n \cdot x=x^{n}$ for all positive integers n (by induction on n) and that additive and multiplicative identity coincide.

Finally, let $f \in \operatorname{Aut}(G)$. Then

$$
\begin{aligned}
f(x+y) & =f\left([x, y]^{n} y x\right)=f([x, y])^{n} f(y) f(x)=[f(x), f(y)]^{n} f(y) f(x) \\
& =f(x)+f(y)
\end{aligned}
$$

and (iv) follows. This completes the proof.
13.10 Theorem Let p be an odd prime. Assume that G is a p-group and that A is a p^{\prime}-group. If A fixes every element of order p in G then A acts trivially on G.

Proof We prove the theorem by induction on $|G|$. If $|G|=1$ then certainly A acts trivially on G. So assume from now on that $|G|>1$. By induction, A acts trivially on every A-invariant proper subgroup H of G. In particular, if $[A, G]<G$ then A acts trivially on $[A, G]$ so that $[A, A, G]=1$. But by Lemma 13.2 we have $[A, G]=[A, A, G]=1$ and A acts trivially on G. Therefore, we can assume from now on that $[A, G]=G$. Since G is a nontrivial p-group we have $G^{\prime}<G$. Moreover, since G^{\prime} is characteristic in G, it is also A-invariant. We obtain, by induction, that $\left[A, G^{\prime}\right]=1$. In particular we have $\left[G, A, G^{\prime}\right]=1$. Moreover, since G^{\prime} is normal in G, we have $\left[G, G^{\prime}\right] \leqslant G^{\prime}$, which implies $\left[A, G^{\prime}, G\right]=\left[A, G, G^{\prime}\right] \leqslant\left[A, G^{\prime}\right]=1$. By the 3 subgroup lemma, we have $\left[G^{\prime}, G, A\right]=1$. But since we assumed that $[A, G]=G$, we obtain $\left[G^{\prime}, G\right]=1$. In other words, $G^{\prime} \leqslant Z(G)$. By Lemma 13.9, G carries an abelian group structure $(G,+)$ satisfying conditions (i)-(iv) in the Lemma. By (iv), the action of A on G is also an action on $(G,+)$ via group automorphisms. By (iii), every element of $(G,+)$ of order p is fixed by A. Thus, by Corollary 13.8, A acts trivially on $(G,+)$ and on G.
13.11 Theorem Let p be an odd prime. Assume that $A=P Q$, where P is a p-subgroup of A and Q is a normal p^{\prime}-subgroup of A, and assume that G is a p-group. If $G^{P} \leqslant G^{Q}$ then $G^{Q}=G$.

Proof First note that, since A normalizes G and Q, the subgroup $[Q, G]$ of G is A invariant.

Our next goal is to prove the theorem in the case that G is abelian. In this case, by Fitting's Theorem, we have $G=G^{Q} \times[Q, G]$. Assume that $[Q, G]>1$. Lemma 13.4 implies that $[Q, G]^{P}>1$. But then the hypothesis of the theorem implies $[Q, G]^{Q} \geqslant[Q, G]^{P}>1$. This implies $[Q, G] \cap G^{Q}=1$, in contradiction to $G=G^{Q} \times[Q, G]$.

Now we prove the theorem for general G by induction on $|G|$. We can assume that $|G|>1$. Note that if H is a proper A-invariant subgroup of G then H satisfies the hypothesis of the theorem and, by induction, Q acts trivially on H. We apply this to $[Q, G]$. So, if $[Q, G]<G$ then $[A, Q, G]=$ 1. In particular, $[Q, Q, G]=1$ and by Lemma 13.2 we obtain $[Q, G]=$ $[Q, Q, G]=1$ and we are done. So we can assume from now on that $[Q, G]=$
G. Consider the proper A-invariant subgroup G^{\prime} of G. By the above we obtain $\left[Q, G^{\prime}\right]=1$ and in particular $\left[G, Q, G^{\prime}\right]=1$ and $\left[Q, G^{\prime}, G\right] \leqslant\left[Q, G^{\prime}\right]=$ 1. The 3 subgroup lemma implies $\left[G^{\prime}, Q, G\right]=1$ and since $[Q, G]=G$, we obtain $\left[G^{\prime}, G\right]=1$. In other words, $G^{\prime} \leqslant Z(G)$. Now we can again apply Baer's trick to see that Q acts trivially on G, since we have already proved the theorem in the case that G is abelian.

14 The Transfer Map

Throughout this section, G denotes a finite group.
14.1 Definition Let H and K be subgroups of G with $H^{\prime} \leqslant K \unlhd H \leqslant G$ (in particular, H / K is abelian) and let $\mathcal{R} \subseteq G$ be a set of representatives for G / H. Then, for each $g \in G$ there exist unique elements $\rho(g) \in \mathcal{R}$ and $\eta(g) \in H$ such that $g=\rho(g) \eta(g)$. The function

$$
V_{H / K}^{G}: G \rightarrow H / K, \quad g \mapsto \prod_{r \in \mathcal{R}} \eta(g r) K,
$$

is called the transfer map from G to H / K (with respect to \mathcal{R}).
14.2 Proposition Using the notation of Definition 14.1, the function $V_{H / K}^{G}$ is a group homomorphism which does not depend on the choice of \mathcal{R}.

Proof Let \mathcal{R}^{\prime} be another set of representatives of G / H and let $\rho^{\prime}: G \rightarrow \mathcal{R}^{\prime}$ and $\eta^{\prime}: G \rightarrow H$ be such that $g=\rho^{\prime}(g) \eta^{\prime}(g)$ for all $g \in G$. Then there exists for each $r \in \mathcal{R}$ a unique $r^{\prime} \in \mathcal{R}^{\prime}$ such that $r H=r^{\prime} H$ and also a unique $h_{r} \in H$ such that $r^{\prime}=r h_{r}$. For any $x \in G$ we therefore have $\rho^{\prime}(x)=\rho(x) h_{\rho(x)}$. This implies

$$
\eta^{\prime}\left(g r^{\prime}\right)=\rho^{\prime}\left(g r^{\prime}\right)^{-1} g r^{\prime}=\rho^{\prime}\left(g r^{\prime}\right)^{-1} g r h_{r}=h_{\rho(g r)}^{-1} \rho(g r)^{-1} g r h_{r}=h_{\rho(g r)}^{-1} \eta(g r) h_{r},
$$

for all $g \in G$ and $r^{\prime} \in \mathcal{R}^{\prime}$. Therefore,

$$
\begin{aligned}
& \prod_{r^{\prime} \in \mathcal{R}^{\prime}} \eta^{\prime}\left(g r^{\prime}\right) K=\prod_{r \in \mathcal{R}} h_{\rho(g r)}^{-1} \eta(g r) h_{r} K \\
& =\left(\prod_{r \in \mathcal{R}} \eta(g r) K\right)\left(\prod_{r \in \mathcal{R}} h_{\rho(g r)} K\right)^{-1}\left(\prod_{r \in \mathcal{R}} h_{r} K\right) \\
& =\prod_{r \in \mathcal{R}} \eta(g r) K,
\end{aligned}
$$

for all $g \in G$, since with r also $\rho(g r)$ runs through \mathcal{R}. This shows that $V_{H / K}^{G}$ does not depend on the choice of \mathcal{R}.

Next we show that $V_{H / K}^{G}$ is a homomorphism. Let $g_{1}, g_{2} \in G$. Then, for every $r \in \mathcal{R}$ we have

$$
\rho\left(g_{1} g_{2} r\right) H=g_{1} g_{2} r H=g_{1} \rho\left(g_{2} r\right) H=\rho\left(g_{1} \rho\left(g_{2} r\right)\right) H
$$

and therefore, $\rho\left(g_{1} g_{2} r\right)=\rho\left(g_{1} \rho\left(g_{2} r\right)\right)$. This implies

$$
\begin{aligned}
& V_{H / K}^{G}\left(g_{1} g_{2}\right)=\prod_{r \in \mathcal{R}} \rho\left(g_{1} g_{2} r\right)^{-1} g_{1} g_{2} r K=\prod_{r \in \mathcal{R}} \rho\left(g_{1} \rho\left(g_{2} r\right)\right)^{-1} g_{1} g_{2} r K \\
& \quad=\prod_{r \in \mathcal{R}} \rho\left(g_{1} \rho\left(g_{2} r\right)\right)^{-1} g_{1} \rho\left(g_{2} r\right) \rho\left(g_{2} r\right)^{-1} g_{2} r K=\prod_{r \in \mathcal{R}} \eta\left(g_{1} \rho\left(g_{2} r\right)\right) \eta\left(g_{2} r\right) K \\
& \quad=\left(\prod_{r \in \mathcal{R}} \eta\left(g_{1} \rho\left(g_{2} r\right)\right) K\right)\left(\prod_{r \in \mathcal{R}} \eta\left(g_{2} r\right) K\right)=\left(\prod_{r \in \mathcal{R}} \eta\left(g_{1} r\right) K\right)\left(\prod_{r \in \mathcal{R}} \eta\left(g_{2} r\right) K\right) \\
& \quad=V_{H / K}^{G}\left(g_{1}\right) V_{H / K}^{G}\left(g_{2}\right),
\end{aligned}
$$

and the proposition is proved.
14.3 Remark Let $H^{\prime} \leqslant K \unlhd H \leqslant G$ be as in Definition 14.1. In order to calculate $V_{H / K}^{G}(g)$ for given $g \in G$, we can choose a set \mathcal{R} of representatives which depends on g and makes the computation easier. Note that $\langle g\rangle$ acts on G / H by left translations. Let $r_{1} H, \ldots, r_{s} H$ be a set of representatives of the $\langle g\rangle$-orbits and let d_{i} be the length of the orbit of $r_{i} H$, for $i=1, \ldots, s$. Then

$$
\mathcal{R}:=\left\{r_{1}, g r_{1}, \ldots, g^{d_{1}-1} r_{1}, r_{2}, g r_{2}, \ldots, r_{s}, g r_{s}, \ldots, g^{d_{s}-1} r_{s}\right\} \subseteq G
$$

is a set of representatives of $G / H, g^{d_{i}} r_{i} \in r_{i} H, r_{i}^{-1} g^{d_{i}} r_{i} \in H$ for all $i=$ $1, \ldots, s$, and

$$
V_{H / K}^{G}(g)=\prod_{i=1}^{s} r_{i}^{-1} g^{d_{i}} r_{i} K
$$

Note that $d_{1}+\cdots+d_{s}=[G: H]$. If moreover, $r_{i}^{-1} g^{d_{i}} r_{i} K=g^{d_{i}} K$ for all $i=1, \ldots, s$ (which holds for example if $g \in Z(G)$ or if $H \leqslant Z(G)$), then we obtain

$$
V_{H / K}^{G}(g)=g^{[G: H]} K
$$

This implies that $G \rightarrow Z(G), g \mapsto g^{[G: Z(G)]}$, is a homomorphism.
14.4 Definition For $H \leqslant G$ we call the group

$$
\left.\operatorname{Foc}_{G}(H):=\langle[g, h]| g \in G, h \in H \text { such that }[g, h] \in H\right\rangle
$$

the focal subgroup of H with respect of G.
14.5 Remark Let $H \leqslant G$ and set $F:=\operatorname{Foc}_{G}(H)$. Then it is clear that

$$
H^{\prime} \leqslant F \leqslant H \cap G^{\prime} \leqslant H
$$

Therefore, $F \unlhd H$ and H / F is abelian. For $r \in G$ and $h \in H$ with $[r, h] \in H$ we have

$$
r h r^{-1} F=r h r^{-1} h^{-1} F h=[r, h] F h=F h=h F .
$$

With Remark 14.3 we therefore have

$$
V_{H / F}^{G}(h)=h^{[G: H]} F
$$

for all $h \in H$.
14.6 Proposition Let $H \leqslant G$ and $F:=\operatorname{Foc}_{G}(H)$. If $[G: H]$ and $[H: F]$ are coprime, then the following assertions hold:
(a) $H \cap \operatorname{ker}\left(V_{H / F}^{G}\right)=H \cap G^{\prime}=\operatorname{Foc}_{G}(H)$.
(b) $H \operatorname{ker}\left(V_{H / F}^{G}\right)=G$.
(c) $G / G^{\prime} \cong H G^{\prime} / G^{\prime} \times \operatorname{ker}\left(V_{H / F}^{G}\right) / G^{\prime}$.
(d) $G / \operatorname{ker}\left(V_{H / F}^{G}\right) \cong H / F$.

Proof (a) Since H / F is abelian, also $G / \operatorname{ker}\left(V_{H / F}^{G}\right)$ is abelian by the Homomorphism Theorem. This implies $G^{\prime} \leqslant \operatorname{ker}\left(V_{H / F}^{G}\right)=: N$ and $F \leqslant H \cap G^{\prime} \leqslant$ $H \cap N$. On the other hand, if $h \in H \cap N$, then $1=V_{H / F}^{G}(h)=h^{[G: H]} F$ by Remark 10.5. Since also $h^{[H: F]} F=1$ and $[G: H]$ and $[H: F]$ are coprime, we obtain $h F=F$ and $h \in F$.
(b) By (a) we have

$$
|G / N| \geqslant|H N / N|=|H / H \cap N|=|H / F| \geqslant|G / N| .
$$

Therefore, we have equality everywhere and $H N=G$.
(c) By (b) we have $G / G^{\prime}=\left(H G^{\prime} / G^{\prime}\right)\left(N / G^{\prime}\right)$ and by (a) we have $N \cap$ $H G^{\prime}=(N \cap H) G^{\prime}=F G^{\prime}=G^{\prime}$.
(d) From the proof of (b) we see that $V_{H / F}^{G}$ is surjective.
14.7 Definition Let $H \leqslant G$. We set $H_{0}:=H$ and $H_{i}:=\operatorname{Foc}_{G}\left(H_{i-1}\right)$ for $i \in \mathbb{N}$. If $H_{n}=1$ for some $n \in \mathbb{N}_{0}$, then we say that H is hyperfocal in G.
14.8 Remark (a) If $H \leqslant G$ is hyperfocal in G and $K \leqslant H$, then also K is hyperfocal in G. In fact, this follows immediately from $\operatorname{Foc}_{G}(U) \leqslant \operatorname{Foc}_{G}(V)$, whenever $U \leqslant V \leqslant G$. Moreover, if $H \leqslant U \leqslant G$ and H is hyperfocal in G, then H is also hyperfocal in U. This follows immediately from $\operatorname{Foc}_{U}(V) \leqslant$ $\operatorname{Foc}_{G}(V)$, whenever $V \leqslant U \leqslant G$.
(b) Assume the notation from Definition 14.7. Then $H^{i+1} \leqslant H_{i}$ for all $i \in \mathbb{N}_{0}$, where $H^{i+1}=[H, H, \ldots, H]$ with $i+1$ entries equal to H. In fact, $H^{1}=H=H_{0}$ and if $i>0$, then by induction and Part (a) we have

$$
\begin{aligned}
H^{i+1} & =\left[H, H^{i}\right]=\left\langle\left\{[h, x] \mid h \in H, x \in H^{i}\right\}\right\rangle \\
& \leqslant\left\langle\left\{[g, x] \mid g \in G, x \in H^{i} \text { such that }[g, x] \in H^{i}\right\}\right\rangle \\
& =\operatorname{Foc}_{G}\left(H^{i}\right) \leqslant \operatorname{Foc}_{G}\left(H_{i-1}\right)=H_{i} .
\end{aligned}
$$

In particular, if H is hyperfocal in G then H is nilpotent.
14.9 Theorem If $H \leqslant G$ is a hyperfocal Hall subgroup of G, then H has a normal complement in G.

Proof We proof the assertion by induction on G. If $G=1$, this is obvious. Therefore, we assume that $G>1$. We may assume that $H>1$. Since H is hyperfocal in $G, F:=\operatorname{Foc}_{G}(H)<H$. Using Proposition 14.6, this implies $G / N \cong H / F>1$ with $N:=\operatorname{ker}\left(V_{H / F}^{G}\right)$ and therefore, $N<G$. The subgroup $H \cap N$ is again a Hall subgroup of N (by Remark 10.2(g)) and hyperfocal in N (by Remark 14.8). By induction, there exists a normal complement K of $H \cap N$ in N. As a normal Hall subgroup of N, K is characteristic in N and therefore normal in G. Moreover, $H \cap K=H \cap N \cap K=1$, and finally, by Proposition 14.6, $H K=H(H \cap N) K=H N=G$.
14.10 Theorem Let H be a nilpotent Hall subgroup of G. Assume that any two elements of H which are conjugate in G are also conjugate in H. Then H has a normal complement in G.

Proof We set $H_{0}:=H$ and $H_{i}:=\operatorname{Foc}_{G}\left(H_{i-1}\right)$ for $i \in \mathbb{N}$. By Theorem 14.9, it suffices to show that $H_{i}=H^{i+1}$ for all $i \in \mathbb{N}_{0}$. We prove this by induction on i. For $i=0$, this is clear. So let $i>0$. By Remark 14.8(b), we have $H^{i+1} \leqslant H_{i}$. Conversely, if $g \in G$ and $h \in H_{i-1}$ such that $[g, h] \in H_{i-1}$, then $g h g^{-1} \in H_{i-1} \leqslant H$. By the hypothesis in the theorem there exists $k \in H$ such that $g h g^{-1}=k h k^{-1}$. From this we obtain

$$
[g, h]=g h g^{-1} h^{-1}=k h k^{-1} h^{-1}=[k, h] \in\left[H, H_{i-1}\right]=\left[H, Z_{i-1}(H)\right]=Z_{i}(H),
$$

and the result follows.
14.11 Lemma Let P be a Sylow p-subgroup of G and let $A, B \subseteq P$ be subsets such that $x A x^{-1}=A$ and $x B x^{-1}=B$ for all $x \in P$. If there exists $g \in G$ such that $g A g^{-1}=B$, then there also exists $n \in N_{G}(P)$ such that $n A n^{-1}=B$.

Proof Let $g \in G$ with $g A g^{-1}=B$. Then $P \leqslant N_{G}(A)=\{x \in G \mid$ $\left.x A x^{-1}=A\right\} \leqslant G$ and $P \leqslant N_{G}(B)=N_{G}\left(g A g^{-1}\right)=g N_{G}(A) g^{-1} \leqslant G$. Therefore, P and $g^{-1} P g$ are Sylow p-subgroups of $N_{G}(A)$ and there exists $y \in N_{G}(A)$ with $y g^{-1} P g y^{-1}=P$. Therefore, $n:=g y^{-1} \in N_{G}(P)$ and $n A n^{-1}=g y^{-1} A y g^{-1}=g A g^{-1}=B$.
14.12 Theorem (Burnside) Let P be a Sylow p-subgroup of G such that $N_{G}(P)=C_{G}(P)$ (in other words that $P \leqslant Z\left(N_{G}(P)\right.$). Then P has a normal complement in G. In particular, G is not simple, unless $P=1$ or $|G|=p$.

Proof Since $P \leqslant N_{G}(P)=C_{G}(P), P$ is abelian. By Lemma 14.11, any two elements $x, y \in P$ which are conjugate in G are also conjugate in $N_{G}(P)=$ $C_{G}(P)$ and therefore equal. Now Theorem 14.10 implies the assertion.
14.13 Theorem If p is the smallest prime divisor of $|G|$ and if a Sylow p-subgroup P of G is cyclic, then P has a normal complement in G.

Proof If P is cyclic of order p^{n}, then $|\operatorname{Aut}(P)|=p^{n-1}(p-1)$. The homomorphism $N_{G}(P) \rightarrow \operatorname{Aut}(P)$, mapping $n \in N_{G}(P)$ to the conjugation with n, induces a monomorphism $N_{G}(P) / C_{G}(P) \rightarrow \operatorname{Aut}(P)$. Since p is the smallest prime divisor of G, this implies that $N_{G}(P) / C_{G}(P)$ is a p-group. On the other hand, $P \leqslant C_{G}(P)$, since P is abelian, and $N_{G}(P) / C_{G}(P)$ is a p^{\prime}-group. This implies $N_{G}(P)=C_{G}(P)$ and Theorem 14.12 completes the proof.
14.14 Remark (a) If G has a cyclic Sylow 2-subgroup $P>1$, then P has a normal complement K in G. In particular, G is not simple, unless $|G|=2$. Since K has odd order, it is solvable by the Odd-Order-Theorem. Therefore, with $G / K \cong P$ also G is solvable. Using representation theory, one can also show that a finite group with a generalized quaternion Sylow 2-subgroup is not simple.
(b) Theorem 14.13 implies that every group of order $2 n$, with n odd, has a normal subgroup of order n.
14.15 Theorem If all Sylow subgroups of G are cyclic, then G is solvable.

Proof We prove the theorem by induction on $|G|$. The case $|G|=1$ is trivial and we may assume that $|G|>1$. Let p be the smallest prime divisor of $|G|$ and let P be a Sylow p-subgroup of G. Then P has a normal complement K by Theorem 14.13. Again, every Sylow subgroup of K is cyclic, and by induction K is solvable. Therefore, with $G / K \cong P$, also G is solvable.
14.16 Corollary If G is a group of square free order (i.e., $|G|=p_{1} \cdots p_{r}$ with pairwise distinct primes p_{1}, \ldots, p_{r}), then G is solvable.
Proof This is immediate with Theorem 14.15.
14.17 Theorem If G is a non-abelian simple group and p is the smallest prime divisor of $|G|$. Then $|G|$ is divisible by 12 or by p^{3}.

Proof Let P be a Sylow p-subgroup of G. By Theorem 10.13, P is not cyclic. Therefore, $|P| \geqslant p^{2}$. If $|P| \geqslant p^{3}$ we are done. Therefore we assume from now on that $|P|=p^{2}$. Since P is not cyclic, P is elementary abelian. Therefore, $\operatorname{Aut}(P) \cong \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ and $\left|N_{G}(P) / C_{G}(P)\right|$ divides $|\operatorname{Aut}(P)|=$ $p(p-1)^{2}(p+1)$. From Theorem 14.12 we know that $\left|N_{G}(P) / C_{G}(P)\right|>1$. Since p is the smallest prime dividing $|G|$ and since $P \leqslant C_{G}(P)$, we obtain that $\left|N_{G}(P) / C_{G}(P)\right|$ divides $p+1$. Since p is the smallest prime dividing $|G|$, also $p+1$ has to be prime and we obtain $p=2$ and $\left|N_{G}(P) / C_{G}(P)\right|=3$. This implies that $|G|$ is divisible by 12 .

15 p-Nilpotent Groups

15.1 Definition Let p be a prime. A finite group G is called p-nilpotent, if a Sylow p-subgroup of G has a normal complement.
15.2 Remark Let G be a finite group and let p be a prime.
(a) We have

$$
\begin{array}{ccc}
G \text { is nilpotent } & \Rightarrow & G p \text {-nilpotent } \\
\Downarrow & & \Downarrow \\
G \text { is solvable } & \Rightarrow & G p \text {-solvable }
\end{array}
$$

(b) Obviously the following statements are equivalent:
(i) G is p-nilpotent.
(ii) Each Sylow p-subgroup of G has a normal complement.
(iii) G has a normal Hall p^{\prime}-subgroup.
(iv) $G / O_{p^{\prime}}(G)$ is a p-group.
(v) G has a normal p^{\prime}-subgroup K such that G / K is a p-group.
(c) If G is p-nilpotent, then $O_{p^{\prime}}(G)$ is a normal complement of every Sylow p-subgroup of G.
(d) If G is p-nilpotent for every prime p dividing $|G|$, then G is nilpotent. In fact, the homomorphism

$$
G \rightarrow \prod_{p| | G \mid} G / O_{p^{\prime}}(G), \quad g \mapsto\left(g O_{p^{\prime}}(G)\right)_{p| | G \mid}
$$

has kernel $\bigcap_{p| | G \mid} O_{p^{\prime}}(G)=1$, and since both groups have the same order, it is an isomorphism.
(e) If G is p-nilpotent, then every subgroup and every factor group of G is p-nilpotent (Homework).
15.3 Theorem (Frobenius) Let p be a prime, let G be a finite group, and let P be a Sylow p-subgroup of G. Then the following statements are equivalent:
(i) G is p-nilpotent.
(ii) For each p-subgroup $Q>1$ of G, the normalizer $N_{G}(Q)$ is p-nilpotent.
(iii) For each p-subgroup $Q>1$ of G, the quotient $N_{G}(Q) / C_{G}(Q)$ is a p-group.
(iv) For each p-subgroup $Q>1$ of G and each Sylow p-subgroup R of $N_{G}(Q)$, one has $N_{G}(Q)=C_{G}(Q) R$.
(v) For each subgroup Q of P and each $g \in G$ with $g Q g^{-1} \leqslant P$, there exist $c \in C_{G}(Q)$ and $x \in P$ such that $g=x$.
(vi) For any two elements $x, y \in P$ and each element $g \in G$ with $y=$ $g x g^{-1}$, there exists an element $u \in P$ such that $y=u x u^{-1}$.

Proof We may assume that $p||G|$.
(i) \Rightarrow (ii): This follows from Remark 15.2(e).
(ii) \Rightarrow (iii): Let $Q>1$ be a p-subgroup of G and set $K:=O_{p^{\prime}}\left(N_{G}(Q)\right)$. Then, by (ii), $N_{G}(Q) / K$ is a p-group. In order to prove (iii), it suffices to show that $K \leqslant C_{G}(Q)$. But for $k \in K$ and $x \in Q$ one has $[k, x]=k x k^{-1} x^{-1} \in$ $K \cap Q=1$ and therefore, $K \leqslant C_{G}(Q)$.
(iii) \Rightarrow (iv): Let $Q>1$ be a p-subgroup of G and let R be a Sylow p-subgroup of $N_{G}(Q)$. Then $R \cdot C_{G}(Q) / C_{G}(Q)$ is a Sylow p-subgroup of $N_{G}(Q) / C_{G}(Q)$ by Remark $10.2(\mathrm{~g})$. This implies $N_{G}(Q) / C_{G}(Q)=R$. $C_{G}(Q) / C_{G}(Q)$, since $N_{G}(Q) / C_{G}(Q)$ is a p-group.
(iv) $\Rightarrow(\mathrm{v})$: Let $Q \leqslant P$ and let $g \in G$ such that $g Q g^{-1} \leqslant P$. We may assume that $Q>1$. By induction on $[P: Q]$ we will show that there exist $c \in C_{G}(Q)$ and $x \in P$ such that $g=x c$. If $[P: Q]=1$, then $P=Q$ and $g Q g^{-1} \leqslant P$ implies $g Q g^{-1}=P$ so that $g \in N_{G}(P)$. But $N_{G}(P)=P \cdot C_{G}(P)$ by (iv) and we can write g in the desired way. From now on we assume that $Q<P$. Then also $g Q g^{-1}<P$. For $R_{1}:=N_{P}(Q)$ and $R_{2}:=N_{g^{-1} P g}(Q)$ we then have $Q<R_{1} \leqslant P$ and $Q<R_{2} \leqslant g^{-1} P g$. Let R be a Sylow p subgroup of $N_{G}(Q)$ with $R_{1} \leqslant R$. Since $N_{G}(Q)=C_{G}(Q) R=R C_{G}(Q)$ (by (iv)), there exists $c \in C_{G}(Q)$ such that $c R_{2} c^{-1} \leqslant R$. Let $y \in G$ such that $y R y^{-1} \leqslant P$. Then, by induction applied to $R_{1} \leqslant P$ and $y R_{1} y^{-1} \leqslant P$, there exist $c_{1} \in C_{G}\left(R_{1}\right)$ and $x_{1} \in P$ such that $y=x_{1} c_{1}$. Similarly, for $g R_{2} g^{-1} \leqslant P$ and $y c R_{2} c^{-1} y^{-1} \leqslant y R y^{-1} \leqslant P$, there exist elements $c_{2} \in C_{G}\left(g R_{2} g^{-1}\right)$ and $x_{2} \in P$ such that $y c g^{-1}=x_{2} c_{2}$. Since $C_{G}\left(g R_{2} g^{-1}\right)=g C_{G}\left(R_{2}\right) g^{-1}$, there exists $c_{3} \in C_{G}\left(R_{2}\right)$ with $c_{2}=g c_{3} g^{-1}$. This implies $y c g^{-1}=x_{2} g c_{3} g^{-1}$, thus $y c=x_{2} g c_{3}$, and finally $g=x_{2}^{-1} y c c_{3}^{-1}=x_{2}^{-1} x_{1} c_{1} c c_{3}^{-1}$ with $x_{2}^{-1} x_{1} \in P$ and $c_{1} c c_{3} \in C_{G}(Q)$.
(v) $\Rightarrow(\mathrm{vi}):$ Let $x, y \in P$ and let $g \in G$ such that $y=g x g^{-1}$. If we set $Q:=\langle x\rangle$, then $Q \leqslant P$ and $g Q g^{-1}=\langle y\rangle \leqslant P$. By (v), there exist $c \in C_{G}(Q)=C_{G}(x)$ and $u \in P$ such that $g=u c$, and we have $u x u^{-1}=$ $u c x c^{-1} u^{-1}=g x g^{-1}=y$.
$(\mathrm{vi}) \Rightarrow(\mathrm{i})$: This follows from Theorem 14.10.
15.4 Remark Let G be a finite group and let p be a prime.
(a) One says that a subgroup H of G controls the fusion of p-subgroups of G, if there exists a Sylow p-subgroup P of G such that

- $P \leqslant H$ and
- for each $Q \leqslant P$ and each $g \in G$ with $g Q g^{-1} \leqslant P$ there exist $h \in H$ and $c \in C_{G}(Q)$ such that $g=h c$.

In view of Frobenius' Theorem, the p-nilpotent groups are exactly those, for which already the Sylow p-subgroups control the fusion of p-subgroups.
(b) If G has an abelian Sylow p-subgroup P then $N_{G}(P)$ controls the fusion of p-subgroups of G. (Homework)
(c) The rank of an abelian p-group is defined as the minimal number of generators. For an arbitrary p-group P one defines the Thompson subgroup $J(P)$ as the subgroup of P generated by all abelian subgroups of P of maximal rank.

Let p be odd and let P be a Sylow p-subgroup of G. J. Thompson showed that G is p-nilpotent if and only if $C_{G}(Z(P))$ and $N_{G}(J(P))$ are p-nilpotent.

References

[P] R. BoltJe: Preliminaries; Class Notes Algebra I (Math200), Fall 2008, UCSC.

