Contents

1. The Alternating Group
 1

2. The Frattini Subgroup
 3

3. The Fitting Subgroup
 5

4. p-Groups
 8

5. Group Cohomology
 17

6. Group Extensions and Parameter Systems
 20

7. Group Extensions with Abelian Kernel
 34

8. Group Extensions with Non-Abelian Kernel
 36

9. The Theorem of Schur-Zassenhaus
 44

10. The π-Sylow Theorems
 48

11. Coprime Action
 55

12. Commutators
 60

13. Thompson’s $P \times Q$ Lemma
 68

14. The Transfer Map
 74

15. p-Nilpotent Groups
 80
1 The Alternating Group

1.1 Lemma (a) For $n \geq 3$, the group $\text{Alt}(n)$ is generated by the 3-cycles of the form $(i, i+1, i+2)$, $i = 1, \ldots, n-2$.

(b) For $n \geq 5$, any two 3-cycles of $\text{Alt}(n)$ are conjugate in $\text{Alt}(n)$.

Proof (a) Each element in $\text{Alt}(n)$ is a product of an even number of transpositions. Since

$$(a,b)(c,d) = ((a,b)(b,c))(b,c)(c,d) \quad \text{and} \quad (a,b)(a,c) = (a,c,b),$$

the group $\text{Alt}(n)$ is generated by its 3-cycles. Each 3-cycle or its inverse is of the form (a,b,c) with $a < b < c$. We can reduce the difference $c - a$ by the formulas

$$(a,b,d) = (a,b,c)(b,c,d)^2 \quad \text{and} \quad (a,c,d) = (a,b,c)^2(b,c,d)$$

whenever $a<b<c<d$. This proves the result.

(b) Let π_1 and π_2 be two 3-cycles in $\text{Alt}(n)$. Then there exists $\sigma \in \text{Sym}(n)$ with $\pi_2 = \sigma\pi_1\sigma^{-1}$. Since $n \geq 5$, there exists a transpositions $\tau \in \text{Sym}(n)$ which is disjoint to π_1. Thus $\tau\pi_1\tau^{-1} = \pi_1$ so that also $(\sigma\tau)\pi_1(\sigma\tau)^{-1} = \pi_2$, but either σ or $\sigma\tau$ is an element of $\text{Alt}(n)$.

1.2 Theorem For $n \geq 5$, the group $\text{Alt}(n)$ is simple.

Proof Assume that $1 < N \trianglelefteq \text{Alt}(n)$. We have to show that $N = \text{Alt}(n)$. By Lemma 1.1, it suffices to show that N contains some 3-cycle. We choose $1 \neq \sigma \in N$ and write $\sigma = \gamma_1 \cdots \gamma_r$ as product of disjoint cycles $\gamma_1, \ldots, \gamma_r$ in $\text{Sym}(n)$ and distinguish the following 4 cases:

Case 1: One of the cycles γ_i has length at least 4. Then we can write $\gamma_i = (a, b, c, d, e_1, \ldots, e_s)$, with $s \geq 0$. With $\rho := (a, b, c)$ we have

$$N \ni \rho\sigma\rho^{-1}\sigma^{-1} = (a, b, c)(a, b, c, d, e_1, \ldots, e_s)(a, c, b)(e_s, \ldots, e_1, d, c, b, a) = (a, b, d).$$

Case 2: All cycles γ_i have length at most 3 and one of them has length 3. We may assume that $\gamma_1 = (a, b, c)$ and that $r \geq 2$. Then $\gamma_2 = (d, e)$ or $\gamma_2 = (d, e, f)$. With $\rho := (a, b, d)$ we have

$$N \ni \rho^{-1}\sigma\rho\sigma^{-1} = (a, d, b)(a, b, c)(d, e)(a, b, d)(a, c, b)(d, e) = (a, d, b, c, e).$$
or
\[N \ni \rho^{-1} \sigma \rho \sigma^{-1} = (a, d, b)(a, b, c)(d, e, f)(a, b, d)(a, c, b)(d, f, e) = (a, d, b, c, e) \]
and, by Case 1, \(N \) contains a 3-cycle.

Case 3: All cycles \(\gamma_i \) are transpositions and \(r \geq 3 \). Then we can write \(\sigma = (a, b)(c, d)(e, f) \cdots \) with pairwise distinct \(a, b, c, d, e, f \). With \(\rho := (a, c, e) \) we have

\[
N \ni \rho \sigma \rho^{-1} \sigma^{-1} = (a, c, e)(a, b)(c, d)(e, f)(a, e, c)(a, b)(c, d)(e, f) = (a, c, e)(b, f, d)
\]
and \(N \) contains a 3-cycle by Case 2.

Case 4: \(\sigma = (a, b)(c, d) \) with pairwise distinct \(a, b, c, d \). Set \(\rho := (a, c, e) \) with \(e \not\in \{a, b, c, d\} \). Then

\[
N \ni \rho \sigma \rho^{-1} \sigma^{-1} = (a, c, e)(a, b)(c, d)(a, e, c)(a, b)(c, d) = (a, c, e, d, b)
\]
and \(N \) contains a 3-cycle by Case 1. \(\square \)
2 The Frattini Subgroup

2.1 Definition For a finite group G the intersection of all its maximal subgroups is called the Frattini subgroup of G. It is denoted by $\Phi(G)$. For the trivial group $G = 1$ one sets $\Phi(1) = 1$. Note that $\Phi(G)$ is a characteristic subgroup of G.

2.2 Proposition (Frattini-Argument) Let G be a finite group, let N be a normal subgroup of G and let $P \in \text{Syl}_p(N)$ for some prime p. Then $G = N \cdot N_G(P)$.

Proof Let $g \in G$. Then $P \leq N$ implies $gPg^{-1} \leq gNg^{-1} = N$ and $gPg^{-1} \in \text{Syl}_p(N)$. By Sylow’s Theorem, there exists $n \in N$ such that $ngPg^{-1}n^{-1} = P$. This implies that $ng \in N_G(P)$ and $g \in n^{-1}N_G(P) \subseteq N \cdot N_G(P)$.

2.3 Lemma If G is a finite group and $H \leq G$ such that $H\Phi(G) = G$ then $H = G$.

Proof Assume that $H < G$. Then there exists a maximal subgroup U of G with $H \leq U$. This implies $G = H\Phi(G) \leq U \cdot U = U$, which is a contradiction.

2.4 Lemma Let G be a finite group and let H and N be normal subgroups of G such that $N \leq H \cap \Phi(G)$. If H/N is nilpotent then every Sylow subgroup of H is normal in G. In particular, H is nilpotent.

Proof Let $P \in \text{Syl}_p(H)$ for some prime p. Then $PN/N \in \text{Syl}_p(H/N)$. Since H/N is nilpotent, PN/N is normal in H/N (cf. [P, 8.7]) and also characteristic in H/N. Since also H/N is normal in G/N, PN/N is normal in G/N and further, PN is normal in G. Since $P \in \text{Syl}_p(PN)$ and $PN \leq G$, the Frattini Argument implies that $G = PN \cdot N_G(P) = N_N_G(P) \leq \Phi(G)N_G(P)$ and therefore $G = N_G(P)\Phi(G)$. By Lemma 2.3, we have $N_G(P) = G$ and P is normal in G.

2.5 Corollary (Frattini 1885) For every finite group G, the Frattini subgroup $\Phi(G)$ is nilpotent.

Proof This follows from Lemma 2.4 with $H := N := \Phi(G)$.
2.6 Corollary Let G be a finite group. If $G/\Phi(G)$ is nilpotent then G is nilpotent.

Proof This follows from Lemma 2.4 with $H := G$ and $N := \Phi(G)$.

2.7 Theorem For every finite group G the following are equivalent:

(i) G is nilpotent.
(ii) $G/\Phi(G)$ is nilpotent.
(iii) $G' \leq \Phi(G)$.
(iv) $G/\Phi(G)$ is abelian.

Proof (i)\Rightarrow(ii): This follows from [P, 8.8]

(ii)\Rightarrow(i): This follows from Corollary 2.6.

(ii)\Rightarrow(iii): Let $U < G$ be a maximal subgroup. Then $U/\Phi(G)$ is a maximal subgroup of the nilpotent group $G/\Phi(G)$. By [P, 8.8], $U/\Phi(G)$ is normal in $G/\Phi(G)$, and therefore U is normal in G. Since U is maximal in G, G/U has no subgroup different from U/U and G/U. This implies that G/U is a cyclic group of prime order. In particular, G/U is abelian. This implies that $G' \leq U$. Since this holds for every maximal subgroup U of G, we have $G' \leq \Phi(G)$.

(iii)\Rightarrow(iv): This follows from [P, 4.3(c)].

(iv)\Rightarrow(ii): This is clear.
3 The Fitting Subgroup

3.1 Remark Let \(p \) be a prime and let \(G \) be a finite group. If \(P \) and \(Q \) are normal \(p \)-subgroups of \(G \) then \(PQ \) is again a normal \(p \)-subgroup of \(G \), since
\[
|QP| = |P| \cdot |Q|/|P \cap Q|.
\]
Therefore, the product of all normal \(p \)-subgroups of \(G \) is again a normal \(p \)-subgroup which we denote by \(O_p(G) \). By definition it is the largest normal \(p \)-subgroup of \(G \). Clearly, \(O_p \) is also characteristic in \(G \).

3.2 Definition Let \(G \) be a finite group. The Fitting subgroup \(F(G) \) of \(G \) is defined as the product of the subgroups \(O_p(G) \), where \(p \) runs through the prime divisors of \(p \). If \(G = 1 \) we set \(F(G) := 1 \).

3.3 Remark Let \(G \) be a finite group and let \(p_1, \ldots, p_r \) denote the prime divisors of the finite group \(G \). Then \(O_{p_i} \) is a Sylow \(p_i \)-subgroup of \(F(G) \) for every \(i = 1, \ldots, r \). Since \(O_{p_i}(G) \), \(i = 1, \ldots, r \), is normal in \(G \) it is also normal in \(F(G) \). It follows that \(F(G) \) is nilpotent and that \(F(G) \) is the direct product of the subgroups \(O_{p_1}, \ldots, O_{p_r}(G) \). Moreover, since \(O_{p_i} \) is characteristic in \(G \) for all \(i = 1, \ldots, r \), also \(F(G) \) is characteristic in \(G \).

3.4 Proposition Let \(G \) be a finite group. Then \(F(G) \) is the largest normal nilpotent subgroup of \(G \); i.e., it is a normal nilpotent subgroup of \(G \) and contains every other normal nilpotent subgroup of \(G \).

Proof We have already seen in the previous remark that \(F(G) \) is a normal nilpotent subgroup of \(G \). Let \(N \) be an arbitrary normal nilpotent subgroup of \(G \) and let \(p \) be a prime divisor of \(|N| \). Then \(N \) has a normal Sylow \(p \)-subgroup \(P \). This implies that \(P \) is characteristic in \(N \). Since \(N \) is normal in \(G \), we obtain that \(P \) is normal in \(G \). Therefore, \(P \trianglelefteq O_p(G) \trianglelefteq F(G) \). Since \(N \) is the product of its Sylow \(p \)-subgroups, for the different prime divisors \(p \) of \(|N| \), we obtain \(N \trianglelefteq F(G) \), as desired.

3.5 Corollary Let \(N_1 \) and \(N_2 \) be normal nilpotent subgroups of a finite group \(G \). Then \(N_1N_2 \) is again a normal nilpotent subgroup of \(G \).

Proof By Proposition 3.4, \(N_1 \) and \(N_2 \) are contained in \(F(G) \). Therefore \(N_1N_2 \trianglelefteq F(G) \). Since \(F(G) \) is nilpotent, also its subgroup \(N_1N_2 \) is nilpotent. Clearly \(N_1N_2 \) is normal in \(G \).
3.6 Definition A minimal normal subgroup of a finite group G is a normal subgroup N of G such that $N \neq 1$ and every normal subgroup N of G with $N \subseteq N$ is contained in M.

3.7 Proposition Let G be a finite group.

(a) $C_G(F(G))F(G)/F(G)$ does not contain any solvable normal subgroup of $G/F(G)$ different from the trivial one.

(b) $\Phi(G) \subseteq F(G)$ and if G is solvable and non-trivial then $\Phi(G) < F(G)$.

(c) $F(G/\Phi(G)) = F(G)/\Phi(G)$ is abelian.

(d) If N is a minimal normal subgroup of G then $N \leq C_G(F(G))$. If moreover N is abelian then $N \leq Z(F(G))$.

Proof (a) It suffices to show that $C_G(F(G))F(G)/F(G)$ contains no abelian normal subgroup of $G/F(G)$ different from 1. So let $N/F(G)$ be an abelian subgroup of $C_G(F(G))F(G)/F(G)$ which is normal in $G/F(G)$. Then $F(G)/\leq N$. We need to show that $F(G) = N$. Note that $N = F(G)C$ with $C = N \cap C_G(F(G))$. Since $N/C \cong F(G)/(F(G) \cap C)$ is nilpotent, there exists $l \in \mathbb{N}$ such that $Z_l(N/C) = 1$. Since $N \leq C(F(G))F(G)$, it follows that

$$Z_l(N) \leq C \cap N' \leq C \cap F(G) \leq Z(F(G)) \leq Z(N).$$

This implies that $Z_{l+1}(N) = [Z_l(N), N] = 1$ and that N is nilpotent. Therefore, $N \leq F(G)$.

(b) Since $\Phi(G)$ is nilpotent (cf. Corollary 2.5) and normal in G, we have $\Phi(G) \subseteq F(G)$. Assume moreover that G is solvable and $G \neq 1$. Then $G/\Phi(G)$ is solvable and $\Phi(G) < G$. There exists an abelian normal subgroup $1 \neq M/\Phi(G) \leq G/\Phi(G)$. Since $M/\Phi(G)$ is abelian (and hence nilpotent), Lemma 2.4 (with $H = M$ and $N = \Phi(G)$) implies that M is nilpotent. But then $M \leq F(G)$. Therefore, $\Phi(G) < M \leq F(G)$.

(c) Since $F(G)$ is nilpotent also $F(G)/\Phi(G)$ is nilpotent. Moreover, $F(G)/\Phi(G)$ is normal in $G/\Phi(G)$. Therefore $F(G)/\Phi(G) \leq F(G/\Phi(G))$. Conversely, we can write $F(G/\Phi(G)) = H/\Phi(G)$ with $\Phi(G) \leq H \leq G$. Since $H/\Phi(G)$ is nilpotent, Lemma 2.4 (with $N = \Phi(G)$) implies that H is nilpotent and therefore $H \leq F(G)$. Thus, $F(G/\Phi(G)) = H/\Phi(G) \leq F(G)/\Phi(G)$. Since $F(G)$ is normal in G, we have $\Phi(F(G)) \leq \Phi(G) \leq F(G)$. Since $F(G)$ is nilpotent, Theorem 2.7 implies that $F(G)/\Phi(F(G))$ is abelian. But $F(G)/\Phi(G)$ is isomorphic to a factor group of $F(G)/\Phi(F(G))$ and therefore also abelian.
(d) Since N is a minimal normal subgroup, we either have $N \cap F(G) = 1$ or $N \cap F(G) = N$. If N is abelian then, N is nilpotent and $N \leq F(G)$. It follows that $1 \neq N \cap Z(F(G)) \leq G$ (see homework problem), and the minimality of N implies $N \leq Z(F(G))$. If N is not abelian then $N \cap F(G) = 1$ (since otherwise $N \leq F(G)$ implies $1 < N' < N$ with $N' \leq Z(F(G))$ and thus $N' \leq \text{char } G$, a contradiction). But $N \cap F(G) = 1$ implies $[N, F(G)] \leq N \cap F(G) = 1$ and $N \leq C_G(F(G))$.

\[\square\]
4 \ p\text{-Groups}

4.1 Lemma Let G be a group and assume there exists H \leq Z(G) such that G/H is cyclic. Then G is abelian.

Proof Let x \in G with \langle xH \rangle = G/H. Every element of G can be written in the form x^n h with n \in \mathbb{Z} and h \in H. For n, n' \in \mathbb{Z} and h, h' \in H we have:

\[x^n h x^{n'} h' = x^n x^{n'} h h' = x^{n'} x^n h h' = x^{n'} h' x^n h, \]

and the lemma is proved. \(\square\)

4.2 Corollary If p is a prime and if G is a group of order p^2, then G is abelian.

Proof By [P, 5.10], we have Z(G) > 1. Therefore, |G/Z(G)| divides p so that G/Z(G) is cyclic. Now Lemma 4.1 applies. \(\square\)

4.3 Definition Let p be a prime. An abelian p-group G is called elementary abelian, if x^p = 1 for all x \in G. Equivalently, G is isomorphic to a direct product of cyclic groups of order p. If G is elementary abelian of order p^n, we call n the rank of G.

4.4 Remark Let p be a prime. If G is an elementary abelian p-group, then G is a finite dimensional vector space over the field \(\mathbb{Z}/p\mathbb{Z}\) in a natural way, namely by defining the scalar multiplication \((k + p\mathbb{Z}) \cdot x := x^k\) for x \in G and k \in \mathbb{Z}. Conversely, each \(\mathbb{Z}/p\mathbb{Z}\)-vector space has an elementary abelian p-group as underlying group. Therefore, elementary abelian p-groups and finite dimensional \(\mathbb{Z}/p\mathbb{Z}\)-vector spaces are the same thing. Moreover, every \(\mathbb{Z}/p\mathbb{Z}\)-linear map between \(\mathbb{Z}/p\mathbb{Z}\)-vector spaces is a group homomorphism and every group homomorphism between elementary abelian p-groups is also a \(\mathbb{Z}/p\mathbb{Z}\)-linear map. Therefore, Aut(G) \cong GL_n(\mathbb{Z}/p\mathbb{Z}) for any elementary abelian p-group G of rank n. Note also that a subgroup of an elementary abelian p-group G is the same thing as a subspace and that for X \subseteq G the \(\mathbb{Z}/p\mathbb{Z}\)-span of X is the same as the subgroup generated by X.

4.5 Theorem Let p be a prime and let G be a p-group. Then:

(a) \(\Phi(G) = G' \cdot G^p\), where \(G^p := \langle \{g^p \mid g \in G\}\rangle\). If p = 2, one has \(\Phi(G) = G^2\).
(b) $G/\Phi(G)$ is elementary abelian.
(c) For every $N \leq G$ on has: G/N is elementary abelian $\iff \Phi(G) \leq N$.
(d) If $U \leq G$, then $\Phi(U) \leq \Phi(G)$.
(e) If $N \leq G$, then $\Phi(G/N) = \Phi(G)N/N$.

Proof (a)–(c): By Theorem 2.7 and since G is nilpotent, we have $G' \leq \Phi(G)$. Each maximal subgroup U of G is normal and of index p in G. Therefore, $(gU)^p = U$ and $g^p \in U$ for each $g \in G$. This implies that $G^p \leq \Phi(G)$, and we have $G' \cdot G^p \leq \Phi(G)$. This implies (b); in fact, $G/\Phi(G)$ is abelian, since $G' \leq \Phi(G)$ and $(g\Phi(G))^p = g^p\Phi(G) = \Phi(G)$, since $G^p \leq \Phi(G)$. Next we show (c). If $\Phi(G) \leq N$, then $G/N \cong (G/\Phi(G))/(N/\Phi(G))$ is elementary abelian by (b). Conversely, assume that G/N is elementary abelian and that $N \neq G$. Then N is the intersection of all maximal subgroups of G that contain N; in fact, the intersection of all hyperplanes of G/N is N/N. This implies that $N \leq \Phi(G)$ and (c) is proved. From (c) we now obtain $\Phi(G) \leq G' \cdot G^p$, since $G/(G' \cdot G^p)$ is elementary abelian. If $p = 2$ each commutator

$$xyx^{-1}y^{-1} = xy^2x^{-1}x^2y^{-1}x^{-1}y^{-1} = (xyx^{-1})^2x^2(x^{-1}y^{-1})^2$$

is a product of squares, and therefore $G' \leq G^2$. This implies $\Phi(G) = G^2$.

(d) This follows from (a), since $U' \leq G'$ and $U^p \leq G^p$.

(e) We have $(G/N)^p = \langle \{g^pN \mid g \in G\} \rangle = G^pN/N$ and $(G/N)' = G'/N$. Now (a) implies

$$\Phi(G/N) = (G/N)^p \cdot (G/N)' = (G^pN/N) \cdot (G'/N) = (G'G^pN)/N = \Phi(G)N/N,$$

and the proof of the theorem is complete. \qed

4.6 Theorem (Burnside’s Basis Theorem) Let p be a prime and let G be a p-group with $|G/\Phi(G)| = p^d$, $d \in \mathbb{N}$. Then:

(a) Let $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$. Then

$$\langle x_1, \ldots, x_n \rangle = G \iff \langle x_1\Phi(G), \ldots, x_n\Phi(G) \rangle = G/\Phi(G).$$

(b) Each minimal generating set of G has d elements.

(c) Each element $x \in G \setminus \Phi(G)$ occurs in some minimal generating set of G. 9
Proof (a) With Lemma 2.3 we obtain
\[\langle x_1, \ldots, x_n \rangle = G \iff \langle x_1, \ldots, x_n \rangle \Phi(G) = G \]
\[\iff \langle x_1 \Phi(G), \ldots, x_n \Phi(G) \rangle = G / \Phi(G). \]

(b) Let \(\{ x_1, \ldots, x_n \} \) be a minimal generating set of \(G \) consisting of \(n \) elements. By (a) we have \(\langle x_1 \Phi(G), \ldots, x_n \Phi(G) \rangle = G / \Phi(G) \), and therefore \(d \leq n \). Assume that \(n > d \). Then there exists a proper subset of \(\{ x_1 \Phi(G), \ldots, x_n \Phi(G) \} \) which still generates \(G / \Phi(G) \). By (a) the corresponding proper subset of \(\{ x_1, \ldots, x_n \} \) then generates \(G \). This contradicts the minimality of the set \(\{ x_1, \ldots, x_n \} \).

(c) If \(x \in G \setminus \Phi(G) \), then \(x \Phi(G) \) is nonzero in the vector space \(G / \Phi(G) \) and can be extended to a basis \(x \Phi(G), x_2 \Phi(G), \ldots, x_d \Phi(G) \). Then, by (a) and (b), \(\{ x, x_2, \ldots, x_d \} \) is a minimal set of generators of \(G \).

4.7 Remark (a) Burnside’s Basis Theorem implies that every \(p \)-group \(G \) with \(|G / \Phi(G)| = p \) is cyclic.

(b) Part (b) of Burnside’s Basis Theorem does not hold for arbitrary finite groups. For example, the group \(\mathbb{Z}/6\mathbb{Z} \) has the minimal generating sets \(\{ 1 + 6\mathbb{Z} \} \) and \(\{ 3 + 6\mathbb{Z}, 2 + 6\mathbb{Z} \} \).

4.8 Examples (a) We already know two non-isomorphic groups of order 8, namely the dihedral group \(D_8 \) and the quaternion group \(Q_8 = \langle (i 0 0 -i), (0 1 -1 0) \rangle \).

(b) Let \(p \) be an odd prime. We will construct a non-abelian group of order \(p^3 \) as a semidirect product \(\mathbb{Z}/p^2\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z} \) with the following action. Recall that \(\text{Aut}(\mathbb{Z}/p^2\mathbb{Z}) \cong (\mathbb{Z}/p^2\mathbb{Z})^\times \) where \(i + p^2\mathbb{Z} \in (\mathbb{Z}/p^2\mathbb{Z})^\times \) corresponds to the automorphism \(\sigma_i \) of \(\mathbb{Z}/p^2\mathbb{Z} \) which raises every element to its \(i \)-th power. We have \(|\text{Aut}(\mathbb{Z}/p^2\mathbb{Z})| = p(p-1) \) and we observe that \(1+p+p^2\mathbb{Z} \) is an element of order \(p \) in \((\mathbb{Z}/p^2\mathbb{Z})^\times \), since \((1+p+p^2\mathbb{Z})^p = (1+p)^p + p^2\mathbb{Z} = 1 + p^2\mathbb{Z} \). Therefore, if \(Y = \langle y \rangle \) is a cyclic group of order \(p^2 \) and \(X = \langle x \rangle \) is a cyclic group of order \(p \), there exists a non-trivial group homomorphism \(\rho : X \to \text{Aut}(Y) \) such that the corresponding action satisfies \(x^p = y^{p+1} \). This gives rise to a semidirect product \(Y \rtimes X \) of order \(p^3 \). In Lemma 4.12 we will need the following property of \(Y \rtimes X \) which is now easy to verify:
\[\{ a \in Y \rtimes X \mid a^p = 1 \} = \langle x, y^p \rangle. \quad (4.8.a) \]
(c) Let p be an odd prime and let $n \in \mathbb{N}$. Then

$$E_{p^{2n+1}} := \left\{ \begin{pmatrix} 1 & \beta_1 & \cdots & \beta_n & \gamma \\ 1 & \alpha_1 \\ \ddots & \vdots \\ 1 & \alpha_n \\ 1 \end{pmatrix} \mid \alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n, \gamma \in \mathbb{Z}/p\mathbb{Z} \right\}$$

(with zeros in the empty spots) is a subgroup of $\text{GL}_{n+2}(\mathbb{Z}/p\mathbb{Z})$ of order p^{2n+1}, since

$$\begin{pmatrix} 1 & \beta_1 & \cdots & \beta_n & \gamma \\ 1 & \alpha_1 \\ \ddots & \vdots \\ 1 & \alpha_n \\ 1 \end{pmatrix} \begin{pmatrix} 1 & \beta'_1 & \cdots & \beta'_n & \gamma' \\ 1 & \alpha'_1 \\ \ddots & \vdots \\ 1 & \alpha'_n \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & \beta_1 + \beta'_1 & \cdots & \beta_n + \beta'_n & \gamma + \gamma' + \alpha'_1 \beta_1 + \cdots + \alpha'_n \beta_n \\ 1 \\ \ddots \\ 1 & \alpha_n + \alpha'_n \\ 1 \end{pmatrix}.$$

The group $E_{p^{2n+1}}$ is called the extra-special group of order p^{2n+1} and exponent p. Let $z, x_i, y_i \in E_{p^{2n+1}}, i = 1, \ldots, n$, be defined as the elements with precisely one non-zero entry off the diagonal, namely the entry $\gamma = 1$ for z, $\alpha_i = 1$ for x_i, and $\beta_i = 1$ for y_i. Then it is easy to see that the following assertions hold:

(i) For all $i, j \in \{1, \ldots, n\}$ one has

$$zx_i = x_i z, \quad zy_i = y_i z, \quad x_j x_i = x_i x_j, \quad y_j y_i = y_i y_j,$$

$$y_j x_i = \begin{cases} x_i y_j, & \text{if } i \neq j; \\ x_i y_j z, & \text{if } i = j. \end{cases}$$

(ii) Every element $g \in E_{p^{2n+1}}$ can be written uniquely in the form

$$g = x_1^{a_1} \cdots x_n^{a_n} y_1^{b_1} \cdots y_n^{b_n} z^c$$

with $a_1, \ldots, a_n, b_1, \ldots, b_n, c \in \{0, 1, \ldots, p-1\}$.

11
(iii) \(g^p = 1 \) for all \(g \in E_{p^{2n+1}} \).

(iv) The subgroups \(\langle x_1, \ldots, x_n, z \rangle \) and \(\langle y_1, \ldots, y_n, z \rangle \) are normal and elementary abelian.

(v) \(Z(E_{p^{2n+1}}) = E'_{p^{2n+1}} = \Phi(E_{p^{2n+1}}) = \langle z \rangle \).

(vi) If we identify \(Z := \langle z \rangle \) with \(\mathbb{Z}/p\mathbb{Z} \) via \(z^i \leftrightarrow i + p\mathbb{Z} \) for \(i \in \mathbb{Z} \), then the commutator defines a bilinear form on the \(2n \)-dimensional vector space \(V = E_{p^{2n+1}} / \mathbb{Z} \) by

\[
V \times V \longrightarrow \mathbb{Z}/p\mathbb{Z}, \quad (g \mathbb{Z}, h \mathbb{Z}) \mapsto [g, h],
\]

for \(g, h \in E_{p^{2n+1}} \). This bilinear form is skew-symmetric (\([a, b] = -[b, a] \)) and non-degenerate (\([a, b] = 0 \) for all \(a \) implies \(b = 0 \)).

For \(n = 1 \) we obtain a non-abelian group \(G \) of order \(p^3 \) and exponent \(p \), which is generated by a central element \(z \) and two elements \(x, y \) such that \(G = \langle x, z \rangle \rtimes \langle y \rangle \) under the action \(yx = xz \).

4.9 Lemma Let \(G \) be a \(p \)-group and let \(x, y \in G \).

(a) If \(G/Z(G) \) is abelian, then

\[
[x, y]^i = [x^i, y] \quad \text{and} \quad (xy)^i = x^iy^i[y^{-1}, x^{-1}]^i,
\]

for all \(i \in \mathbb{N}_0 \).

(b) If \(G/Z(G) \) is elementary abelian, then \((xy)^p = x^py^p \) for odd \(p \) and \((xy)^4 = x^4y^4 \) for \(p = 2 \).

Proof (a) Note that \([x, y], [y^{-1}, x^{-1}] \in G' \leq Z(G) \), since \(G/Z(G) \) is abelian. We prove the two equations by induction on \(i \). If \(i = 0 \) this is trivial. Assume the equations hold for some \(i \in \mathbb{N}_0 \). Then

\[
[x, y]^{i+1} = [x, y][x, y]^i = [x, y][x^i, y] = xyx^{-1}y^{-1}x^iyx^{-i}y^{-1}
\]

\[
eq x^i(yyx^{-1}y^{-1})yx^{-i}y^{-1} = x^{i+1}yx^{-i-1}y^{-1} = [x^{i+1}, y]
\]

and

\[
(xy)^{i+1} = (xy)^i xy = x^iy^i xy[y^{-1}, x^{-1}]^i
\]

with

\[
y^i x = xy^i y^{-i} x = xy^i[y^{-i}, x^{-1}] = xy^i[y^{-1}, x^{-1}]^i,
\]

12
and we obtain
\[(xy)^{i+1} = x^{i+1}y^{i+1}[y^{-1}, x^{-1}]^{(i+1)} \].

(b) Note that since \(G/Z(G)\) is elementary abelian, we have \(G^p \leq \Phi(G) \leq Z(G)\) by Theorem 4.5. By Part (a) we have for odd \(p\):
\[(xy)^p = x^py^p[y^{-1}, x^{-1}]^{(p)} \].

Since \(p \mid \left(\frac{p}{2}\right)\), it suffices to show that \([y^{-1}, x^{-1}]^p = 1\). But again by (a), we have \([y^{-1}, x^{-1}]^p = [y^p, x^{-1}] = 1\), since \(y^p \in G^p \leq Z(G)\).

Finally, for \(p = 2\), part (a) implies
\[(xy)^4 = x^4y^4[y^{-1}, x^{-1}]^6 = x^4y^4[y^{-6}, x^{-1}] = x^4y^4, \]
since \(y^6 \in G^2 \leq Z(G)\).

4.10 Theorem Let \(p\) be a prime and let \(G\) be a non-abelian group of order \(p^3\).

- (a) If \(p = 2\), then \(G \cong D_8\) or \(G \cong Q_8\).
- (b) If \(p\) is odd, then \(G\) is isomorphic to \(E_{p^3}\) or to the group constructed in Example 4.8(b).
- (c) If \(G\) is isomorphic to the group in Example 4.8(b) then \(f : G \mapsto G, a \mapsto a^p\), is a group homomorphism with image \(Z(G)\) and elementary abelian kernel of rank 2.

Proof From Lemma 4.1 we have \(|G/Z(G)| \geq p^2\) and from [P, 5.10] we have \(|Z(G)| \geq p\). This implies \(|Z(G)| = p\). Lemma 4.1 also implies that \(G/Z(G)\) is elementary abelian. With Theorem 4.5(a) and (c) we have \(1 < G' \leq \Phi(G) \leq Z(G)\), and therefore \(G' = \Phi(G) = Z(G)\).

(a) Assume that \(p = 2\). Then there exists an element of order 4 in \(G\). In fact, if every element in \(G\) is of order 2, \(G\) is abelian, since then \([x, y] = xyx^{-1}y^{-1} = xyxy = (xy)^2 = 1\) for all \(x, y \in G\). So let \(y \in G\) be an element of order 4 and set \(Y := \langle y \rangle\). Since \(Y\) has index 2 in \(G\), it is normal in \(G\) and \(Y \cap Z(G) > 1\) by Theorem 2.9. This implies that \(Z(G) < Y\) and \(Z(G) = \{1, y^2\}\).

(i) If there exists an element \(x \in G \setminus Y\) of order 2, then \(G \cong Y \rtimes X\) with \(X := \{1, x\}\) and with the only possible non-trivial action \(xyx^{-1} = y^{-1}\). Therefore \(G \cong D_8\).
(ii) If there exists no element \(x \in G \setminus Y \) of order 2, then we pick an element \(x \in G \setminus Y \) of order 4. Everything we proved about \(y \) also holds for \(x \). Therefore, \(Z(G) = \{1, x^2\} \) and \(x^2 = y^2 \). Moreover \(\langle x \rangle \) acts on \(Y \) via conjugation in the only non-trivial way: \(xyx^{-1} = y^{-1} \). This implies \(G = \{x^iy^j \mid 0 \leq i \leq 3, 0 \leq j \leq 1\} \) with \(x^4 = 1, y^4 = 1, x^2 = y^2 \), and \(yx = xy^3 = yx^2x^{-1} = x^2xy^{-1} = x^2x^{-1}y^3 = xy^3 = x^3y \), i.e. the multiplication in \(G \) coincides with the multiplication in \(Q_8 \) when we identify \(x \) with \(\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \)

and \(y \) with \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \). Therefore, \(G \cong Q_8 \).

(b) Now we assume that \(p \) is odd.

(i) We first consider the case that there exists an element \(y \in G \) of order \(p^2 \). Then \(Y := \langle y \rangle \) is a maximal subgroup of \(G \) and therefore normal in \(G \). Moreover, \(Z(G) \setminus Y > 1 \) so that \(Z(G) = \langle y^p \rangle \). We claim that there exists an element \(x \in G \setminus Y \) of order \(p \) such that \(xyx^{-1} = y^{1+p} \) which then implies that \(G \) is isomorphic to the semidirect product of Example 4.8(b). We prove the claim. First choose any \(x_1 \in G \setminus Y \). Then there exists \(i \in \{1, \ldots, p\} \) with \(x_1^i = y^p \), since \(x_1^i \in G^p \leq \Phi(G) = Z(G) = \langle y^p \rangle \). By Lemma 4.9(b) we have \((x_1y^{-i})^p = x_1^iy^{-ip} = 1 \) and therefore the element \(x_2 := x_1y^{-i} \in G \setminus Y \) has order \(p \). The conjugation of \(x_2 \) on \(Y \) is non-trivial. Therefore, the resulting homomorphism \(\rho: X := \langle x_2 \rangle \to \text{Aut}(Y) \cong (\mathbb{Z}/p\mathbb{Z})^\times \) has as image the Sylow \(p \)-subgroup \(\langle 1 + p + p^2\mathbb{Z} \rangle \) of \((\mathbb{Z}/p^2\mathbb{Z})^\times \). In particular, \(\rho(x_2^j) = 1 + p + p^2\mathbb{Z} \) for some \(j \in \{1, \ldots, p-1\} \) and the element \(x := x_2^j \) satisfies our claim.

(ii) If there exists no element of order \(p^2 \) in \(G \) we denote by \(z \) a generator of \(Z(G) \) and choose an element \(x \in G \setminus Z(G) \). Then \(X := \langle x, z \rangle \) is elementary abelian of order \(p^2 \) and also maximal in \(G \). Let \(y_1 \in G \setminus X \). Then \(G \cong X \rtimes Y \) with \(Y := \langle y_1 \rangle \) and with the conjugation action of \(Y \) on \(X \). Since \(z \) is central, we have \(y_1zy_1^{-1} = z \). Moreover \(y_1xy_1^{-1} = x^iz^j \) for some \(i, j \in \{0, \ldots, p-1\} \). Since the classes of \(y_1 \) and \(x \) commute in \(G/Z(G) \), we obtain \(i = 1 \). Since \(G \) is not abelian we have \(j \neq 0 \), and therefore \(y_1xy_1^{-1} = xz^j \) for some \(j \in \{1, \ldots, p-1\} \). Let \(k \in \{1, \ldots, p-1\} \) with \(k \equiv 1 \mod p \) and set \(y := y_1^k \). Then \(yzy^{-1} = 1, yxy^{-1} = y_1^ky_1^{-k} = xz^kj = xz \) and we obtain \(G \cong X \rtimes Y \cong E_{p^3} \) as described at the end of Example 4.8(c).

(c) We may assume that \(G = Y \rtimes X \) with the notation from Example 4.8(b). By Lemma 4.9(b), the map \(f \) is a homomorphism. Obviously, \(\langle x, y^p \rangle \leq \ker(f) \) and \(Z(G) = \langle y^p \rangle \leq \text{Im}(f) \leq G^p = Z(G) \). By the fundamental theorem of homomorphisms we even have equality everywhere. \(\Box \)
4.11 Notation For a p-group G and $n \in \mathbb{N}_0$ we set

$$\Omega_n(G) := \langle x \in G \mid x^{p^n} = 1 \rangle.$$

Obviously, this is a characteristic subgroup of G.

4.12 Lemma Let G be a p-group for an odd prime p and let $N \unlhd G$. If N is not cyclic then N contains an elementary abelian subgroup of rank 2 which is normal in G.

Proof Induction on $|G|$. The base case is $|G| = p^2$. The hypothesis implies that $N = G$ and that N is elementary abelian. Therefore, we can choose N as the desired subgroup.

Now let $|G| \geq p^3$. Since $N \neq 1$ it follows from a homework problem that N has a subgroup M of order p with is normal in G. By [P, 5.10] applied to M and N, $M \leq Z(N)$. We first consider the case that N/M is cyclic. Then N is abelian. Since N is not cyclic, it is a direct product of two non-trivial cyclic subgroups. This implies that the characteristic subgroup $\Omega_1(N)$ of N is elementary abelian of rank 2. Thus, $\Omega_1(N)$ is a subgroup as desired. From now on we can assume that N/M is not cyclic. By induction, applied to $N/M \unlhd G/M$ there exists $N < U \leq M$ with $U \unlhd G$ and U/N elementary abelian of rank 2. Since U is not cyclic, U can be elementary abelian, the direct product of two non-trivial cyclic subgroups, isomorphic to E_{p^3} or isomorphic to the group in Example 4.8(b). In the first and third case, choose any subgroup of U of order p^2 which is normal in G (see homework problem for the existence). This subgroup has the desired property. In the second and fourth case consider $\Omega_1(U)$. This group again has the desired property, cf. Theorem 4.10.

4.13 Corollary Let G be a p-group for an odd prime p and assume that G has precisely one subgroup of order p. Then G is cyclic.

Proof Assume that G is not cyclic. Then Lemma 4.12 with $N = G$ implies that G has a normal subgroup which is elementary abelian of rank 2. But then G has at least $p + 1$ subgroups of order p. This is a contradiction.

4.14 Definition (a) For every integer $n \geq 3$ we define the generalized quaternion group Q_{2^n} of order 2^n as

$$Q_{2^n} := \langle x, y \mid x^{2^{n-1}} = 1, x^{2^{n-2}} = y^2, yxy^{-1} = x^{-1} \rangle.$$
(b) For every integer \(n \geq 4 \) we define the *semidihedral group* \(SD_{2n} \) by

\[
SD_{2n} := \langle x, y \mid x^{2^{n-1}} = 1, y^2 = 1, yxy^{-1} = x^{2^{n-2}+1} \rangle.
\]

4.15 Remark (a) The group \(Q_{2^n} \) has actually order \(2^n \), \(\langle x \rangle \) is a subgroup of index 2 in \(Q_{2^n} \), \(Q_{2^n} \) has only one element of order 2 namely \(z := y^2 = x^{2^{n-2}} \) and \(< z > = Z(Q_{2^n}) \), cf. homework.

(b) It follows from (a) and Theorem 4.10 that the generalized quaternion group of order 8 is equal to the quaternion group of order 8.

(c) The group \(SD_{2n} \) has order \(2^n \), the subgroup \(\langle x \rangle \) has index 2. It is the semidirect product of the cyclic group \(\langle x \rangle \) with the group \(\langle y \rangle \) of order 2.

(d) Without proof we state: If \(G \) is a 2-group with precisely one subgroup of order 2 then \(G \) is cyclic or isomorphic to a generalized quaternion group.

(e) Again without proof we state the following result: Let \(G \) be a non-abelian 2-group of order \(2^n \), and assume that \(G \) has a cyclic subgroup of order \(2^{n-1} \). Then \(n \geq 3 \) and exactly one of the four statements holds:

(i) \(G \) is isomorphic to the dihedral group \(D_{2^n} \).

(ii) \(G \) is isomorphic to the generalized quaternion group \(Q_{2^n} \).

(iii) \(n \geq 4 \) and \(G \) is isomorphic to the semidihedral group \(SD_{2n} \).

(iv) \(n \geq 4 \) and \(G \) is isomorphic to the group \(\langle x, y \mid x^{2^{n-1}} = 1, y^2 = 1, yxy^{-1} = x^{2^{n-2}+1} \rangle \).

The groups in (i),(iii),(iv) are semidirect products of the cyclic subgroup of order \(2^{n-1} \) with a subgroup of order 2. The group in (ii) is not a semidirect product. They are pairwise non-isomorphic, because the numbers of elements of order 2 they contain are different.
5 Group Cohomology

Throughout this section we fix two groups A and G and we assume that A is abelian.

5.1 Definition Let $\alpha : G \to \text{Aut}(K)$, $x \mapsto \alpha_x$ be a homomorphism. We write the corresponding left action exponentially: $\alpha_x(a) = \alpha^x a$ for $x \in G$ and $a \in A$. For $n \in \mathbb{N}_0$, we denote by $F(G^n, A)$ the abelian group of functions $f : G^n \to A$ under the multiplication $(fg)(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)g(x_1, \ldots, x_n)$, for $f, g \in F(G^n, A)$ and $x_1, \ldots, x_n \in G$. If $n = 0$ we set $G^0 := \{1\}$. For each $n \in \mathbb{N}_0$ there is a group homomorphism

$$d^n := d^n_\alpha : F(G^n, A) \to F(G^{n+1}, A)$$

given by

$$(d^n_\alpha(f))(x_0, \ldots, x_n) := x_0 f(x_1, \ldots, x_n) \cdot \left(\prod_{i=1}^n f(x_0, \ldots, x_{i-1}x_i, \ldots, x_n)^{(-1)^i} \right) \cdot f(x_0, \ldots, x_{n-1})^{(-1)^{n+1}},$$

for $f \in F(G^n, A)$ and $(x_0, \ldots, x_n) \in G^{n+1}$. For $n = 0$ we interpret this as $(d^0(f))(x) := -x f(1) \cdot f(1)^{-1}$. It is not difficult to see that $d^{n+1} \circ d^n = 1$ for $n \in \mathbb{N}_0$. This implies that $	ext{im}(d^n) \subseteq \ker(d^{n+1}) \subseteq F(G^{n+1}, A)$, for all $n \in \mathbb{N}_0$. We write

$$B^n(G, A) := B^n_\alpha(G, A) := \text{im}(d^{n-1})$$

and

$$Z^n(G, A) := Z^n_\alpha(G, A) := \ker(d^n),$$

for $n \in \mathbb{N}_0$, where we set $B^0(G, A) := B^0_\alpha(G, A) := 1$. The elements of $B^n_\alpha(G, A)$ are called n-coboundaries and the elements of $Z^n_\alpha(G, A)$ are called n-cocycles of G with coefficients in A (under the action α). Finally, we set

$$H^n(G, A) := H^n_\alpha(G, A) := Z^n_\alpha(G, A) / B^n_\alpha(G, A).$$

The group $H^n_\alpha(G, A)$ is called the n-th cohomology group of G with coefficients in A (under the action α) and its elements are called cohomology classes. If $f \in Z^n(G, A)$, we denote its cohomology class by $[f] \in H^n(G, A)$.

17
5.2 Remark Let $\alpha: G \to \text{Aut}(A)$ be a homomorphism.

(a) We can identify $F(G^0, A)$ with A under the map $f \mapsto f(1)$. With this identification, we obtain

$$Z^0(G, A) = A^G := \{a \in A \mid {}^x a = a \text{ for all } x \in G\},$$

the subgroup of G-fixed points of A. Since $B^0(G, A) = 1$, we obtain $H^0(G, A) \cong A^G$.

(b) A function $f: G \to A$ is in $Z^1(G, A)$, if and only if

$$f(xy) = {}^xf(y) \cdot f(x)$$

for all $x, y \in G$. The 1-cocycles of G with coefficients in A are also called the crossed homomorphisms from G to A. If the action of G on A is trivial, then the crossed homomorphisms are exactly the homomorphisms. A function $f: G \to A$ is a 1-boundary, if and only if there exists an element $a \in A$ such that

$$f(x) = {}^x a \cdot a^{-1},$$

for all $x \in G$. These functions are called the principal crossed homomorphisms. If G acts trivially on A, then they are all trivial and $H^0(G, A) \cong \text{Hom}(G, A)$.

(c) A function $f: G^2 \to A$ is a 2-cocycle, if and only if

$${}^xf(y, z)f(x, yz) = f(xy, z)f(x, y),$$

for all $x, y, z \in G$, and it is a 2-coboundary, if and only if there exists a function $g: G \to A$ such that

$$f(x, y) = {}^x g(y)g(x)g(xy)^{-1},$$

for all $x, y \in G$. We will see later that $H^2(G, A)$ describes the extensions $1 \to A \to X \to G \to 1$ of G by A, up to a suitable equivalence.

(d) If A has finite exponent e then $f^e = 1$ for all $f \in F(G^n, A)$ and all $n \in \mathbb{N}_0$. In particular, each cocycle and each cohomology class has an order which divides e.

5.3 Proposition Let $\alpha: G \to \text{Aut}(A)$ be a homomorphism and assume that G is finite. Then $[f]^{[G]} = 1$ for all n-cocycles $f \in Z^n_\alpha(G, A)$ and all $n \in \mathbb{N}$.

18
Proof Let \(n \in \mathbb{N} \), let \(f \in \mathbb{Z}^n_\alpha(G, A) \), and let \(x_0, \ldots, x_n \in G \). Then
\[
f(x_0, \ldots, x_{n-1})(-1)^n \]
\[
= x_0 f(x_1, \ldots, x_n) \cdot \left(\prod_{i=1}^n f(x_0, \ldots, x_{i-1}x_i, \ldots, x_n)(-1)^i \right).
\]

If we fix \(x_0, \ldots, x_{n-1} \in G \) and multiply the above equations for the different elements \(x_n \in G \), we obtain
\[
f(x_0, \ldots, x_{n-1})(-1)^n |G| \]
\[
= x_0 \left(\prod_{x_n \in G} f(x_1, \ldots, x_n) \right) \cdot \prod_{i=1}^n \left(\prod_{x_n \in G} f(x_0, \ldots, x_{i-1}x_i, \ldots, x_n) \right)(-1)^i.
\]

If we define \(g : G^{n-1} \to A \) by \(g(x_1, \ldots, x_{n-1}) := \prod_{x \in G} f(x_1, \ldots, x_{n-1}, x) \), then the above equation shows that
\[
f[G] = d^{n-1}(g(-1)^n),
\]
and \([f]^{|G|} = 1\) in \(H^n(G, A) \).

5.4 Corollary Let \(G \) and \(A \) be finite groups of coprime orders. Then
\(H^n(G, A) = 1 \) for all \(\alpha \in \text{Hom}(G, \text{Aut}(A)) \) and all \(n \in \mathbb{N} \).

Proof Let \(k := |G| \) and \(l := |A| \). Then there exist elements \(r, s \in \mathbb{Z} \) such that \(1 = rk + sl \). From Remark 5.2(d) and Proposition 5.3 we know that \([f]^k = 1\) and \([f]^l = 1\) for all \(f \in \mathbb{Z}^n_\alpha(G, A) \) and all \(n \in \mathbb{N} \). Therefore also
\[
[f] = [f]^1 = [f]^{rk+sl} = ([f]^k)^r([f]^l)^s = 1.
\]
6 Group Extensions and Parameter Systems

In this section we will try to find a way to describe for given groups \(K \) and \(G \) all possible groups \(H \) which have a normal subgroup \(N \) which is isomorphic to \(K \) and whose factor group \(H/N \) is isomorphic to \(G \). We fix \(K \) and \(G \) throughout this section. We do not require \(G \) or \(K \) to be finite.

6.1 Definition A group extension of \(G \) by \(K \) is a short exact sequence

\[
1 \rightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \rightarrow 1,
\]

i.e., \(H \) is a group, and at each of the three groups \(K \), \(H \), \(G \), the image of the incoming map is equal to the kernel of the outgoing map. Equivalently, \(\varepsilon \) is injective, \(\text{im}(\varepsilon) = \ker(\nu) \), and \(\nu \) is surjective. We say that the above group extensions is equivalent to the group extension

\[
1 \rightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \rightarrow 1
\]

if and only if there exists an isomorphism \(\varphi: H \rightarrow \tilde{H} \) such that the diagram

\[
\begin{array}{c}
H \\
\downarrow \varepsilon \\
K \\
\uparrow \gamma \\
\downarrow \tilde{\varepsilon} \\
\tilde{H} \\
\end{array}
\quad \begin{array}{c}
\downarrow \nu \\
G \\
\end{array}
\quad \begin{array}{c}
\downarrow \tilde{\nu} \\
\end{array}
\]

commutes. Obviously, this defines an equivalence relation on the set \(\text{ext}(G, K) \) of extensions of \(G \) by \(K \). The set of equivalence classes of \(\text{ext}(G, K) \) is denoted by \(\text{Ext}(G, K) \).

6.2 Remark (a) If \(1 \rightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \rightarrow 1 \) is a group extension of \(G \) by \(K \), then \(H \) has the normal subgroup \(\varepsilon(K) \) with factor group \(H/\varepsilon(K) = H/\ker(\nu) \cong G \). Conversely, whenever \(H \) is a group having a normal subgroup \(N \) such that \(N \cong K \) and \(H/N \cong G \), then there is a group extension
equivalent but involve isomorphic groups \(K \) is not true. There are examples of group extensions of homomorphism tensions then \(H \).

Let \(\gamma \) be such that \(\alpha \) makes Diagram (6.1.a) commutative. In fact, it is easy to see that in this case it follows that \(\gamma \) is an isomorphism.

6.3 Proposition Let \(1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1 \) be a group extension of \(G \) by \(K \). For each \(x \in G \), let \(h_x \in H \) be such that \(\nu(h_x) = x \). Then the following hold:

(a) For every \(h \in H \) there exist unique elements \(x \in G \) and \(a \in K \) such that \(h = h_x \varepsilon(a) \).

(b) For every \(x \in G \) and \(a \in K \) there exists a unique element \(\alpha_x(a) \) in \(K \) such that \(\varepsilon(\alpha_x(a)) = h_x \varepsilon(a) h_x^{-1} \). Moreover, \(\alpha_x \in \text{Aut}(K) \).

(c) For every \(x, y \in G \) there exists a unique element \(\kappa(x, y) \) in \(K \) such that \(h_x h_y = \varepsilon(\kappa(x, y)) h_{xy} \). In particular, \(h_1 = \varepsilon(\kappa(1, 1)) \). Moreover, \(\alpha_x \circ \alpha_y = c_{\kappa(x, y)} \alpha_{xy} \), where \(c_a \in \text{Aut}(K) \) denotes the conjugation automorphism \(k \mapsto ak a^{-1} \) for \(a \in K \).

(d) For every \(x, y, z \in G \) on has \(\kappa(x, y) \kappa(xy, z) = \alpha_x(\kappa(y, z)) \kappa(x, yz) \).

(e) Let also \(h_x' \in H \) be such that \(\nu(h'_{x}) = x \) for all \(x \in G \). Then there exists a unique function \(g : G \rightarrow K \) such that \(h_x' = h_x \circ \varepsilon(g(x)) \) for all \(x \in G \). If \(\alpha' : G \rightarrow \text{Aut}(K) \) and \(\kappa' : G \times G \rightarrow K \) are constructed from \(h_x' \), \(x \in G \), then

\[
\alpha'_x = c_{f(x)} \circ \alpha_x \quad \text{and} \quad \kappa'(x, y) = f(x) \cdot \alpha_x(f(y)) \cdot \kappa(x, y) \cdot f(xy)^{-1}
\]

for all \(x, y \in G \), where \(f : G \rightarrow K \) is defined by \(f(x) := \alpha_x(g(x)) \) for all \(x \in G \).

Proof (a) Let \(h \in H \) and set \(x := \nu(h) \). Then \(\nu(h^{-1}h) = \nu(h_x^{-1}) = x^{-1}x = 1 \) and there exists \(a \in K \) such that \(\varepsilon(a) = h_x^{-1}h \). Assume that also
\(h = h_y \varepsilon(b) \) for \(y \in G \) and \(b \in K \). Then \(x = \nu(h) = \nu(h_y)\nu(\varepsilon(b)) = y \cdot 1 = y \) and therefore \(\varepsilon(a) = \varepsilon(b) \). Since \(\varepsilon \) is injective, also \(a = b \).

(b) For \(x \in G \) and \(a \in K \), we have \(h_x \varepsilon(a)h_x^{-1} \in \ker(\nu) = \text{im}(\varepsilon) \). Therefore, there exists \(b \in K \) with \(\varepsilon(b) = h_x \varepsilon(a)h_x^{-1} \). Since \(\varepsilon \) is injective, \(b \in K \) is unique. We set \(\alpha_x(a) := b \).

Let \(a, b \in K \) and \(x \in G \). Then \(\alpha_x(a)\alpha_x(b) \in K \) and
\[
\varepsilon(\alpha_x(a)\alpha_x(b)) = \varepsilon(\alpha_x(a))\varepsilon(\alpha_x(b)) = h_x \varepsilon(a)h_x^{-1}h_x \varepsilon(b)h_x^{-1} = h_x \varepsilon(ab)h_x^{-1} = \varepsilon(\alpha_x(ab)).
\]
Since \(\varepsilon \) is injective, we have \(\alpha_x(a)\alpha_x(b) = \alpha_x(ab) \) and \(\alpha_x \) is a group homomorphism from \(K \) to \(K \). If \(\alpha_x(a) = 1 \), then \(1 = \varepsilon(\alpha_x(a)) = h_x \varepsilon(a)h_x^{-1} \) and therefore, \(\varepsilon(a) = 1 \). Since \(\varepsilon \) is injective, also \(a = 1 \). This shows that \(\alpha_x \) is injective. Finally, let \(b \in K \) be arbitrary. Then \(h_x^{-1}\varepsilon(b)h_x \in \ker(\nu) = \text{im}(\varepsilon) \) and there exists \(a \in K \) such that \(h_x^{-1}\varepsilon(b)h_x = \varepsilon(a) \). This implies \(b = \alpha_x(a) \) and \(\alpha_x \) is surjective.

(c) Let \(x, y \in G \). Then \(\nu(h_xh_yh_{xy}^{-1}) = xy(xy)^{-1} = 1 \) and there exists a unique element \(a \in K \) such that \(\varepsilon(a) = h_xh_yh_{xy}^{-1} \). We set \(\kappa(x, y) := a \). For \(x, y \in G \) and \(a \in K \) we then have
\[
\varepsilon(\alpha_x(\alpha_y(a))) = h_x\varepsilon(\alpha_y(a))h_x^{-1} = h_xh_y\varepsilon(a)h_y^{-1}h_x^{-1}
\]
\[
= h_xh_yh_{xy}^{-1}h_{xy}\varepsilon(a)h_{xy}^{-1}h_{xy}h_{xy}h_{xy}h_{xy}^{-1}h_{xy}^{-1}
\]
\[
= \varepsilon(\kappa(x, y))\varepsilon(\alpha_x(a)\kappa(x, y))^{-1}
\]
\[
= \varepsilon(\alpha_x(a)\kappa(x, y))\varepsilon(\kappa(x, y))^{-1}
\]
and the injectivity of \(\varepsilon \) implies \((\alpha_x \circ \alpha_y)(a) = (c_{\kappa(x,y)} \circ \alpha_{xy})(a) \).

(d) Let \(x, y, z \in G \). Then
\[
\varepsilon(\kappa(x, y)\kappa(xy, z))h_{xyz} = \varepsilon(\kappa(x, y))\varepsilon(\kappa(xy, z))h_{xy}h_z = \varepsilon(\kappa(x, y))h_{xy}h_z
\]
and
\[
\varepsilon(\alpha_x(\kappa(y, z))\kappa(x, yz))h_{xyz} = \varepsilon(\alpha_x(\kappa(y, z)))\varepsilon(\kappa(x, yz))h_{yz} = h_x\varepsilon(\kappa(y, z))h_{yz}^{-1}h_xh_{yz} = h_x\varepsilon(\kappa(y, z))h_{yz}
\]
\[
= h_x(\varepsilon(yh_z)\).
\]
Now the injectivity of \(\varepsilon \) implies the desired equation.

(e) Let \(x \in G \). Since \(\nu(h_x^{-1}h_x') = x^{-1}x = 1 \), there exists a unique element \(g(x) \in K \) such that \(\varepsilon(g(x)) = h_x^{-1}h_x' \). Moreover, for each \(a \in K \) and \(x \in G \) we have

\[
\varepsilon(\alpha_x'(a)) = h_x'\varepsilon(a)h_x^{-1} = h_x\varepsilon(g(x)ag(x)^{-1})h_x^{-1},
\]

which implies \(\alpha'_x(a) = \alpha_x(g(x)ag(x)^{-1}) \) and \(\alpha'_x = c_{\alpha_x(g(x))} \circ \alpha_x = c_{f(x)} \circ \alpha_x \).

Moreover, for all \(x, y \in G \) we have

\[
\varepsilon(\kappa'(x, y)) = h_x' \cdot h_y' \cdot h_{xy}^{-1}
\]

\[
= h_x \cdot \varepsilon(g(x)) \cdot h_y \cdot \varepsilon(g(y)) \cdot \varepsilon(g(xy)^{-1}) \cdot h_{xy}^{-1}
\]

\[
= h_x \cdot \varepsilon(g(x)) \cdot h_{xy}^{-1} \cdot h_x \cdot h_y \cdot h_{xy}^{-1} \cdot h_{xy} \cdot \varepsilon(g(y)g(xy)^{-1}) \cdot h_{xy}^{-1}
\]

\[
= \varepsilon(\alpha_x(g(x))) \cdot \varepsilon(\kappa(x, y)) \cdot \varepsilon(\alpha_y(g(y)) \cdot \alpha_{xy}(g(xy))^{-1})
\]

\[
= \varepsilon[\alpha_x(g(x)) \cdot \kappa(x, y) \cdot \alpha_{xy}(g(y)) \cdot \alpha_{xy}(g(xy))^{-1}]
\]

\[
= \varepsilon[f(x) \cdot \kappa(x, y) \cdot \alpha_{xy}(g(y)) \cdot \kappa(x, y) \cdot f(xy)^{-1}]
\]

\[
= \varepsilon[f(x) \cdot \alpha_y(g(y))^r \cdot \kappa(x, y) \cdot f(xy)^{-1}]
\]

Since \(\varepsilon \) is injective, this implies the desired equation. \(\square \)

6.4 Definition (a) A parameter system of \(G \) in \(K \) is a pair \((\alpha, \kappa)\) of maps \(\alpha : G \rightarrow \text{Aut}(K) \), \(x \mapsto \alpha_x \), and \(\kappa : G \times G \rightarrow K \) with the following properties:

(i) For every \(x, y \in G \) one has \(\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy} \).

(ii) For every \(x, y, z \in G \) one has \(\kappa(x, y)\kappa(xy, z) = \alpha_x(\kappa(y, z))\kappa(x, yz) \).

We call \(\alpha \) the automorphism system and \(\kappa \) the factor system of \((\alpha, \kappa)\), and we denote the set of parameter systems of \(G \) in \(K \) by \(\text{par}(G, K) \).

(b) The set \(F(G, K) \) of functions from \(G \) to \(K \) is a group under the multiplication \((fg)(x) := f(x)g(x)\) for \(f, g : G \rightarrow K \) and \(x \in G \). If \((\alpha, \kappa) \in \text{par} \) and \(f : G \rightarrow K \) we set \(f'(\alpha, \kappa) := (\alpha', \kappa') \) with

\[
\alpha'_x := c_{f(x)} \circ \alpha_x, \text{ and } \kappa'(x, y) := f(x)\alpha_x(f(y))\kappa(x, y)f(xy)^{-1},
\]

for \(x, y \in G \). As the next lemma shows, this defines a group action of \(F(G, K) \) on the set \(\text{par}(G, K) \). We call two parameter systems of \(G \) in \(K \) equivalent if they belong to the same \(F(G, K) \)-orbit and we denote the set of equivalence classes by \(\text{Par}(G, K) \).
6.5 Remark Every extension of G by K and every choice of elements h_x as in Proposition 6.3 leads to a parameter system (α, κ) of G and K. If h'_x is another choice of elements then, by Proposition 6.3(e), one obtains an equivalent parameter system (α', κ'). Thus, Proposition 6.3 defines a function
\[\varphi : \text{ext}(G, K) \to \text{Par}(G, K). \]

6.6 Lemma (a) Let $(\alpha, \kappa) \in \text{par}(G, K)$. Then $\alpha_1 = c_{\kappa(1,1)}$, $\kappa(1, 1) = \kappa(1, z)$, and $\kappa(x, 1) = \alpha_x(\kappa(1, 1))$ for all $x, z \in G$.

(b) The definition of $f(\alpha, \kappa)$ in Definition 6.4(b) defines a group action of $F(G, K)$ on $\text{par}(G, K)$.

Proof (a) By Axiom (i) in Definition 6.4(a), we have $\alpha_1 \circ \alpha_1 = c_{\kappa(1,1)} \circ \alpha_1$ which implies $\alpha_1 = c_{\kappa(1,1)}$. For $z \in G$, this and Axiom (ii) in Definition 6.4(a) imply
\[\kappa(1, 1) \kappa(1 \cdot 1, z) = \alpha_1(\kappa(1, z)) \kappa(1, 1 \cdot z) = \kappa(1, 1) \kappa(1, z) \kappa(1, 1)^{-1} \kappa(1, z). \]

Therefore, $\kappa(1, z) = \kappa(1, 1)$. For $x \in G$, Axiom (ii) in Definition 6.4(a) implies $\kappa(x, 1) \kappa(x, 1) = \alpha_x(\kappa(1, 1)) \kappa(x, 1)$. Thus, $\kappa(x, 1) = \alpha_x(\kappa(1, 1))$.

(b) Let $f, g \in F(G, K)$ and $\kappa \in \text{par}(G, K)$. We set $(\alpha', \kappa') := f(\alpha, \kappa)$ and $(\alpha'', \kappa'') := g(\alpha', \kappa')$. For all $x, y \in G$, we then have
\[\alpha''_x = c_{g(x)} \circ \alpha'_x = c_{g(x)} \circ c_f(x) \circ \alpha_x = c_{g(x)} c_{f(x)} \circ \alpha_x = c_{g(f)(x)} \circ \alpha_x \]
and
\[\kappa''(x, y) = g(x) \alpha'_x(g(y)) \kappa'(x, y) g(xy)^{-1} \]
\[= g(x) f(x) \alpha_x(g(y)) f(x)^{-1} f(x) \alpha_x(f(y)) \kappa(x, y) f(xy)^{-1} g(xy)^{-1} \]
\[= (g f)(x) \cdot \alpha_x((g f)(y)) \cdot \kappa(x, y) \cdot (g f)(xy)^{-1}. \]

This implies that $(\alpha'', \kappa'') = g(\alpha, \kappa)$. If $f = 1$, then $\alpha' = \alpha$ by definition and $\kappa'(x, y) = \alpha_x(1) \kappa(x, y) = \kappa(x, y)$ for all $x, y \in G$. Therefore, $f(\alpha, \kappa) = (\alpha, \kappa)$. We still have to show that (α', κ') is again a parameter system. For $x, y, z \in G$, we have
\[\alpha'_x \circ \alpha'_y = c_f(x) \circ \alpha_x \circ c_f(y) \circ \alpha_y = c_f(x) \circ \alpha_x \circ c_f(y) \circ \alpha_x^{-1} \circ \alpha_x \circ \alpha_y \]
\[= c_f(x) \circ c_{\alpha_x(f(y))} \circ c_{\kappa(x, y)} \circ \alpha_{xy} = c_f(x) \alpha_x(f(y)) \kappa(x, y) \circ \alpha_{xy}^{-1} \circ \alpha_{xy} \]
\[= c_{\kappa'(x, y)} \circ \alpha'_{xy}. \]
and
\[
\kappa'(x, y)\kappa'(xy, z) \\
= f(x)\alpha_x(f(y))\kappa(x, y)f(xy)^{-1}f(xy)\alpha_{xy}(f(z))\kappa(xy, z)f(xyz)^{-1} \\
= f(x)\alpha_x(f(y))\kappa(x, y)\alpha_{xy}(f(z))\kappa(x, y)^{-1}\kappa(x, y)\kappa(xy, z)f(xyz)^{-1} \\
= f(x)\alpha_x(f(y))\alpha_x(\alpha_y(f(z)))\kappa(x, y)\kappa(x, y)f(xy)^{-1} \\
= f(x)\alpha_x(f(y))\alpha_x(\alpha_y(f(z)))\kappa(x, y, z)\kappa(x, y)f(xy)^{-1} \\
= f(x)\alpha_x(f(y))\kappa(y, z)f(yz)^{-1}\alpha_x(f(yz))\kappa(x, yz)f(xyz)^{-1} \\
= \alpha'_x(\kappa'(y, z))f(x)\alpha_x(f(yz))\kappa(x, yz)f(xyz)^{-1} \\
= \alpha'_x(\kappa'(y, z))\kappa'(x, yz).
\]

This implies that \((\alpha', \kappa') \in \text{par}(G, K)\). \(\square\)

6.7 Proposition Let \((\alpha, \kappa) \in \text{par}(G, K)\). Then the set \(K \times G\) together with the multiplication
\[
(a, x)(b, y) := (a \cdot \alpha_x(b) \cdot \kappa(x, y), xy), \quad \text{for } a, b \in K, x, y \in G,
\]
is a group with identity element \((1, 1)^{-1}, 1)\) and inverse element \((a, x)^{-1} = (\kappa(1, 1)^{-1}x^{-1}, x^{-1})\). Moreover, the functions \(\varepsilon: K \to K \times G, a \mapsto (\kappa(1, 1)^{-1}a, 1)\), and \(\nu: K \times G \to G, (a, x) \mapsto x\), are group homomorphisms such that \(1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1\) is a group extension of \(G\) by \(K\).

Proof First we prove associativity. Let \(a, b, c \in K\) and \(x, y, z \in G\). Then
\[
[(a, x)(b, y)](c, z) = (a\alpha_x(b)\kappa(x, y), xy)(c, z) \\
= (a\alpha_x(b)\kappa(x, y)\alpha_{xy}(c)\kappa(xy, z), xyz)
\]
and
\[
(a, x)[(b, y)(c, z)] = (a, x)(b\alpha_y(c)\kappa(y, z), yz) \\
= (a\alpha_x(b)\alpha_y(c)\kappa(y, z))\kappa(x, yz), xzy) \\
= (a\alpha_x(b)\alpha_x(\alpha_y(c))\alpha_x(\kappa(y, z))\kappa(x, yz), xzy) \\
= (a\alpha_x(b)\kappa(x, y)\alpha_{xy}(c)\kappa(x, y)^{-1}\kappa(x, y)\kappa(xy, z), xzy) \\
= (a\alpha_x(b)\kappa(x, y)\alpha_{xy}(c)\kappa(xy, z), xyz).
\]

25
Next we show that \((\kappa(1,1)^{-1}, 1)\) is a left identity element. In fact, for \(b \in K\) and \(y \in G\) we have
\[
(\kappa(1,1)^{-1}, 1)(b, y) = (\kappa(1,1)^{-1}\alpha_1(b)\kappa(1,1), 1 \cdot y) \\
= (\kappa(1,1)^{-1}\kappa(1,1)b\kappa(1,1)^{-1}\kappa(1,1), y) = (b, y).
\]
Moreover, for \(b \in K\) and \(y \in G\) we have
\[
(\kappa(1,1)^{-1}\kappa(y^{-1}, y)^{-1}\alpha_{y^{-1}}(b)^{-1}, y^{-1})(b, y) \\
= (\kappa(1,1)^{-1}\kappa(y^{-1}, y)^{-1}\alpha_{y^{-1}}(b)\kappa(y^{-1}, y), y^{-1}y) \\
= (\kappa(1,1)^{-1}, 1).
\]
This shows that \(H\) is a group.

For \(a, b \in K\) we have
\[
\epsilon(a)\epsilon(b) = (\kappa(1,1)^{-1}a, 1)(\kappa(1,1)^{-1}b, 1) \\
= (\kappa(1,1)^{-1}a\alpha_1(\kappa(1,1)^{-1}b)\kappa(1,1), 1 \cdot 1) \\
= (\kappa(1,1)^{-1}a\kappa(1,1)\kappa(1,1)^{-1}b\kappa(1,1)^{-1}\kappa(1,1), 1) \\
= (\kappa(1,1)^{-1}ab, 1) = \epsilon(ab),
\]
which shows that \(\epsilon\) is a homomorphism. Obviously, \(\epsilon\) is injective. For all \(a, b \in K\) and \(x, y \in G\), we have
\[
\nu((a, x)(b, y)) = \nu(a\alpha_x(b)\kappa(x, y), xy) = xy = \nu(a, x)\nu(b, y),
\]
which shows that \(\nu\) is a homomorphism. Obviously, \(\nu\) is surjective. Finally, for \(a \in K\) and \(x \in G\) we have
\[
(a, x) \in \ker(\nu) \iff x = 1 \iff (a, x) \in \epsilon(K),
\]
and the proof is complete.

6.8 Theorem (Schreier) The constructions in Proposition 6.3 and Proposition 6.7 induce mutually inverse bijections between Ext\((G, K)\) and Par\((G, K)\).

Proof First assume that
\[
1 \longrightarrow K \xrightarrow{\epsilon} H \xrightarrow{\nu} G \longrightarrow 1 \quad \text{and} \quad 1 \longrightarrow K \xrightarrow{\tilde{\epsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \longrightarrow 1
\]
are equivalent group extensions of \(G\) by \(K\). Then there exists an isomorphism \(\gamma: H \to \tilde{H}\) such that the diagram
is commutative. For each $x \in G$ let $h_x \in H$ such that $\nu(h_x) = x$ and assume that $\alpha : G \to \text{Aut}(K)$ and $\kappa : G \times G \to K$ is constructed as in Proposition 6.3, i.e.,

$$\varepsilon(\alpha_x(a)) = h_x \varepsilon(a) h_x^{-1} \quad \text{and} \quad h_x h_y = \varepsilon(\kappa(x,y)) h_{xy}$$

for all $x, y \in G$ and $a \in K$. We set $\tilde{h}_x := \gamma(h_x)$ for each $x \in G$. Then, $\tilde{\nu}(\tilde{h}_x) = \tilde{\nu}(\gamma(h_x)) = \nu(h_x) = x$ for each x and we can use the elements \tilde{h}_x in order to construct a parameter system $(\tilde{\alpha}, \tilde{\kappa})$ associated to the group extension $1 \to K \xrightarrow{\varepsilon} \tilde{H} \xrightarrow{\tilde{\nu}} G \to 1$. But applying γ to the two above equations we obtain

$$\varepsilon(\alpha_x(a)) = \tilde{h}_x \varepsilon(a) \tilde{h}_x^{-1} \quad \text{and} \quad \tilde{h}_x \tilde{h}_y = \varepsilon(\kappa(x,y)) \tilde{h}_{xy}^{-1}.$$

This implies that $\tilde{\alpha} = \alpha$ and $\tilde{\kappa} = \kappa$. Therefore, the construction in Proposition 6.3 induces a map

$$\Phi : \text{Ext}(G, K) \to \text{Par}(G, K).$$

Next let $(\alpha, \kappa) \in \text{par}(G, K)$, $f \in F(G, K)$, and set $(\tilde{\alpha}, \tilde{\kappa}) := f(\alpha, \kappa)$. Moreover, let $1 \to K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \to 1$ and $1 \to K \xrightarrow{\varepsilon} \tilde{H} \xrightarrow{\tilde{\nu}} G \to 1$ be the group extensions associated to (α, κ) and $(\tilde{\alpha}, \tilde{\kappa})$ by the construction in Proposition 6.7. We want to show that they are equivalent. We define $\gamma : H \to \tilde{H}$ by

$$\gamma(a, x) := (e a \alpha_x(e)^{-1} f(x)^{-1}, x) \quad \text{with} \quad e := \kappa(1,1)^{-1} f(1)^{-1} \kappa(1,1).$$

For all $a, b \in K$ and $x, y \in G$ we have

$$\gamma(a, x) \varphi(b, y) = (e a \alpha_x(e)^{-1} f(x)^{-1}, x) \cdot (e b \alpha_y(e)^{-1} f(y)^{-1}, y)$$

$$= (e a \alpha_x(e)^{-1} f(x)^{-1} \tilde{\alpha}_x(e \alpha_y(e)^{-1} f(y)^{-1}) \tilde{\kappa}(x,y), xy)$$

$$= (e a \alpha_x(e)^{-1} f(x)^{-1} f(x) \alpha_x(e \alpha_y(e)^{-1} f(y)^{-1)) f(x)^{-1})$$

$$\cdot f(x) \alpha_x(f(y)) \kappa(x,y) f(xy)^{-1}, xy)$$

$$= (e a \alpha_x(b) \alpha_x(e \alpha_y(e)^{-1} \kappa(x,y) f(xy)^{-1}, xy)$$

$$27$$
and
\[
\gamma((a, x)(b, y)) = \varphi(a\alpha_x(b)\kappa(x, y), xy)
= (e\alpha_x(b)\kappa(x, y)\alpha_{xy}(e)^{-1}f(xy)^{-1}, xy)
= (e\alpha_x(b)\kappa(x, y)\alpha_{xy}(e)^{-1}\kappa(x, y)^{-1}\kappa(x, y)f(xy)^{-1}, xy)
= (e\alpha_x(b)\alpha_x(\kappa(y, 1)^{-1}\kappa(x, y)f(xy)^{-1}, xy).
\]
This implies that γ is a homomorphism. Moreover, for $a \in K$ and $x \in G$, we have
\[
\gamma(\varepsilon(a)) = \gamma(\kappa(1, 1)^{-1}a, 1) = (e\kappa(1, 1)^{-1}a\alpha(1)^{-1}f(1)^{-1}, 1)
= (\kappa(1, 1)^{-1}f(1)^{-1}a\kappa(1, 1)d^{-1}\kappa(1, 1)^{-1}f(1)^{-1}, 1)
= (\kappa(1, 1)^{-1}f(1)^{-1}a, 1) = (\kappa(1, 1)^{-1}a, 1) = \varepsilon(a)
\]
and
\[
\tilde{\nu}(\gamma(a, x)) = \tilde{\nu}(e\alpha_x(e)^{-1}f(x)^{-1}, x) = x = \nu(a, x).
\]
Together with Remark 6.2(b), this implies that the two group extensions $1 \rightarrow K \overset{\varepsilon}{\rightarrow} H \overset{\nu}{\rightarrow} G \rightarrow 1$ and $1 \rightarrow K \overset{\tilde{\varepsilon}}{\rightarrow} \tilde{H} \overset{\tilde{\nu}}{\rightarrow} G \rightarrow 1$ are equivalent. Therefore, the construction in Proposition 6.7 induces a map
\[
\Psi: \text{Par}(G, K) \longrightarrow \text{Ext}(G, K).
\]

Finally, we show that Φ and Ψ are mutually inverse bijections. Let $1 \rightarrow K \overset{\varepsilon}{\rightarrow} H \overset{\nu}{\rightarrow} G \rightarrow 1$ be a group extension and, for each $x \in G$, let $h_x \in H$ be such that $\nu(h_x) = x$. Moreover, let (α, κ) be the parameter system defined in Proposition 6.3 from h_x, $x \in G$, and let $1 \rightarrow K \overset{\tilde{\varepsilon}}{\rightarrow} \tilde{H} \overset{\tilde{\nu}}{\rightarrow} G \rightarrow 1$ be the group extension constructed from (α, κ) according to Proposition 6.7.

We show that the two group extensions
\[
1 \rightarrow K \overset{\varepsilon}{\rightarrow} H \overset{\nu}{\rightarrow} G \rightarrow 1 \quad \text{and} \quad 1 \rightarrow K \overset{\tilde{\varepsilon}}{\rightarrow} \tilde{H} \overset{\tilde{\nu}}{\rightarrow} G \rightarrow 1
\]
are equivalent. In fact, let $\gamma: \tilde{H} \rightarrow H$ be defined by
\[
\gamma(a, x) := \varepsilon(\kappa(1, 1)a\kappa(x, 1)^{-1})h_x,
\]
for all $a, b \in K$ and $x, y \in G$. Then
\[
\gamma((a, x)(b, y)) = \gamma(a\alpha_x(b)\kappa(x, y), xy)
= \varepsilon(\kappa(1, 1)a\alpha_x(b)\kappa(x, y)\kappa(xy, 1)^{-1})h_{xy}
= \varepsilon(\kappa(1, 1)a\alpha_x(b)\alpha_x(\kappa(y, 1)^{-1}\kappa(x, y))h_{xy}
= \varepsilon(\kappa(1, 1)a\alpha_x(b)\alpha_x(\kappa(y, 1))^{-1})h_xh_y
\]
Therefore, the two group extensions by Proposition 6.3(c), and
\[\gamma(a, x)\gamma(b, y) = \varepsilon(\kappa(1, 1)a\kappa(x, 1)^{-1})h_x\varepsilon(\kappa(1, 1)b\kappa(y, 1)^{-1})h_y \]
\[= \varepsilon(\kappa(1, 1)a\kappa(x, 1)^{-1})\varepsilon(\alpha_x(\kappa(1, 1)b\kappa(y, 1)^{-1}))h_xh_y \]
\[= \varepsilon(\kappa(1, 1)a\alpha_x(b)\alpha_x(\kappa(y, 1))^{-1})h_xh_y. \]
This shows that \(\gamma \) is a homomorphism. Moreover, for \(a \in K \) and \(x \in G \) we have
\[\gamma(\tilde{\varepsilon}(a)) = \gamma(\kappa(1, 1)^{-1}a, 1) = \varepsilon(\kappa(1, 1)\kappa(1, 1)^{-1}a\kappa(1, 1)^{-1})h_1 \]
\[= \varepsilon(a)\varepsilon(\kappa(1, 1))^{-1}h_1 = \varepsilon(a), \]
by Proposition 6.3(c), and
\[\nu(\gamma(a, x)) = \nu(\varepsilon(\kappa(1, 1)a\kappa(x, 1)^{-1})h_x) = \nu(h_x) = x = \tilde{\nu}(a, x). \]

Therefore, the two group extensions
\[1 \rightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \rightarrow 1 \quad \text{and} \quad 1 \rightarrow K \xrightarrow{\tilde{\varepsilon}} \tilde{H} \xrightarrow{\tilde{\nu}} G \rightarrow 1 \]
are equivalent, and \(\Psi \circ \Phi = \text{id} \).

Now let \((\alpha, \kappa) \in \text{par}(G, K) \) and let \(1 \rightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \rightarrow 1 \) be the group extension constructed in Proposition 6.7. We set
\[h_x := (\kappa(1, 1)^{-1}\kappa(x, 1), x) \in H, \]
for \(x \in G \) and observe that \(\nu(h_x) = x \). Let \(x \in G \) and \(a \in K \), then
\[h_x\varepsilon(a) = (\kappa(1, 1)^{-1}\kappa(x, 1), x) \cdot (\kappa(1, 1)^{-1}a, 1) \]
\[= (\kappa(1, 1)^{-1}\kappa(x, 1)\alpha_x(\kappa(1, 1))^{-1}\alpha_x(a)\kappa(x, 1), x) \]
\[= (\kappa(1, 1)^{-1}\alpha_x(a)\kappa(x, 1), x) \]
and
\[\varepsilon(\alpha_x(a))h_x = (\kappa(1, 1)^{-1}\alpha_x(a), 1) \cdot (\kappa(1, 1)^{-1}\kappa(x, 1), x) \]
\[= (\kappa(1, 1)^{-1}\alpha_x(a)\alpha_1(\kappa(1, 1)^{-1}\kappa(x, 1))\kappa(1, x), x) \]
\[= (\kappa(1, 1)^{-1}\alpha_x(a)\kappa(x, 1)\kappa(1, 1)^{-1}\kappa(1, x), x) \]
\[= (\kappa(1, 1)^{-1}\alpha_x(a)\kappa(x, 1), x). \]
Moreover, for all $x, y \in G$ we have
\[
 h_x h_y = (\kappa(1, 1)^{-1}\kappa(x, 1), x) \cdot (\kappa(1, 1)^{-1}\kappa(y, 1), y)
 = (\kappa(1, 1)^{-1}\kappa(x, 1)\alpha_x(\kappa(1, 1))^{-1}\alpha_x(\kappa(y, 1))\kappa(x, y), xy)
 = (\kappa(1, 1)^{-1}\alpha_x(\kappa(y, 1))\kappa(x, y), xy)
 = (\kappa(1, 1)^{-1}\kappa(x, y)\kappa(xy, 1), xy)
\]
and
\[
 \epsilon(\kappa(x, y)) h_{xy} = (\kappa(1, 1)^{-1}\kappa(x, y), 1) \cdot (\kappa(1, 1)^{-1}\kappa(xy, 1), xy)
 = (\kappa(1, 1)^{-1}\kappa(x, y)\alpha_1(\kappa(1, 1)^{-1}\kappa(xy, 1))\kappa(1, xy), xy)
 = (\kappa(1, 1)^{-1}\kappa(x, y)\kappa(xy, 1)\kappa(1, 1)^{-1}\kappa(1, xy), xy)
 = (\kappa(1, 1)^{-1}\kappa(x, y)\kappa(xy, 1), xy)
\]

This shows that the parameter system constructed from the group extension
\[
 1 \xrightarrow{\varepsilon} K \xrightarrow{\epsilon} H \xrightarrow{\nu} G \xrightarrow{\iota} 1
\]
equals (α, κ). Therefore $\Phi \circ \Psi = \text{id}$, and the proof is complete. \qed

6.9 Proposition Let $1 \xrightarrow{\varepsilon} K \xrightarrow{\epsilon} H \xrightarrow{\nu} G \xrightarrow{\iota} 1$ be a group extension of G by K. Then the following are equivalent:

(i) There exists a homomorphism $\sigma: G \to H$ such that $\nu \circ \sigma = \text{id}_G$.

(ii) $\varepsilon(K)$ has a complement in H.

Proof (i) \Rightarrow (ii): Let $\sigma: G \to H$ be a homomorphism satisfying $\nu \circ \sigma = \text{id}_G$. We show that $\sigma(G)$ is a complement of $\varepsilon(K) = \ker(\nu)$ in H. Let $h \in \ker(\nu) \cap \sigma(G)$. Then $h = \sigma(x)$ for some $x \in G$ and we obtain $x = \nu(\sigma(x)) = \nu(h) = 1$ and $h = \sigma(x) = 1$. Now let $h \in H$ be arbitrary. Then $h = h\sigma(\nu(h))^{-1}\sigma(\nu(h))$ with $h\sigma(\nu(h))^{-1} \in \ker(\nu)$ and $\sigma(\nu(h)) \in \sigma(G)$.

(ii) \Rightarrow (i): Let C be a complement of $\varepsilon(K) = \ker(\nu)$ in H. Then the map $\delta: C \to H/\varepsilon(K)$, $c \mapsto c\varepsilon(K)$ is an isomorphism. By the homomorphism theorem, also the map $\tilde{\nu}: H/\varepsilon(K) \to G$, $h\varepsilon(K) \mapsto \nu(h)$, is an isomorphism. Now the map
\[
 \sigma: G \xrightarrow{\tilde{\nu}^{-1}} H/\varepsilon(K) \xrightarrow{\delta^{-1}} C \xrightarrow{\iota} H
\]
satisfies $\nu(\sigma(x)) = (\nu \circ \iota \circ \delta^{-1} \circ \tilde{\nu}^{-1})(x) = x$. In fact, we can write $x = \tilde{\nu}(\delta(c))$ for a unique $c \in C$. Then it suffices to show that $\nu(\iota(c)) = \tilde{\nu}(\delta(c))$. But $\tilde{\nu}(\delta(c)) = \tilde{\nu}(c\ker(\nu)) = \nu(c) = \nu(\iota(c))$. \qed
6.10 Remark (a) If the conditions in Proposition 6.9 is satisfied, then we say that the group extension $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ splits and that σ is a splitting map.

(b) If $1 \longrightarrow K \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ splits and $\sigma: G \to H$ satisfies $\nu \circ \sigma = \text{id}_G$, then we may use the elements $h_x := \sigma(x)$, $x \in G$, in order to construct a corresponding parameter system. Since $h_x h_y = h_{xy}$ for all $x, y \in G$, one has $\kappa(x, y) = 1$ for all $x, y \in G$. Moreover, this implies that $\alpha: G \to \text{Aut}(K)$ is a homomorphism.

Conversely, if $\alpha: G \to \text{Aut}(K)$ is a homomorphism and $\kappa(x, y) = 1$ for all $x, y \in G$, then (α, κ) is a parameter system of G in K and the corresponding group extension splits and is represented by the semidirect product of G with K under the action defined by α.

6.11 Definition Even if K is not abelian, one can still define the so-called non-commutative cohomology $H^0(G, K)$ and $H^1(G, K)$ of G with values in K as follows:

(a) $H^0(G, K) := K^G$, the set of G-fixed points of K. This is a subgroup of K.

(b) $Z^1(G, K)$ is defined as the set of all functions $\mu: G \to K$ satisfying

$$\mu(xy) = x\mu(y)\mu(x).$$

It’s elements are called 1-cocycles or crossed homomorphisms from G to K. Two functions $\lambda, \mu \in Z^1(G, K)$ are called equivalent if there exists $a \in K$ such that

$$\lambda = \sigma a \cdot \mu(x) \cdot a^{-1}$$

for all $x \in G$. This defines an equivalence relation (see Homework problem). The equivalence class of $\mu \in Z^1(G, K)$ is denoted by $[\mu]$. The set of equivalence classes of $Z^1(G, K)$ is denoted by $H^1(G, K)$. It is not a group, but it has the structure of a pointed set, a set with a distinguished element, namely the class $[1]$ of the constant function $1: G \to K$.

6.12 Remark (a) There are no non-commutative versions of $H^n(G, K)$ for $n \geq 2$.

(b) If $K = A$ is abelian then the definitions in 6.11 coincide with the usual cohomology groups.

(c) If G acts on K and $\mu \in Z^1(G, K)$ then the equation $\mu(xy) = x\mu(y)\mu(x)$ implies that $\mu(1) = 1$ by setting $x = y = 1$. Moreover, by setting $y = x^{-1}$ we obtain $\mu(x^{-1}) = \mu(x)^{-1}$ and $x^{-1} \mu(x) = \mu(x^{-1})^{-1} x^{-1}$.
6.13 Theorem Let $\alpha: G \to \text{Aut}(K)$ be a group homomorphism and let $H := K \rtimes G$ be the corresponding semidirect product. To simplify notation we assume that $K \triangleleft H$ and $G \leq H$ with $K \cap G = 1$ and $KG = H$. Let \mathcal{C} denote the set of all complements of K in H, i.e., subgroups $C \leq H$, satisfying $K \cap C = 1$ and $KC = H$.

(a) H acts by conjugation on \mathcal{C} and the H-orbits of \mathcal{C} are equal to the K-orbits of \mathcal{C}. The K-conjugacy classes of \mathcal{C} will be denoted by \mathcal{C}.

(b) For each $C \in \mathcal{C}$ there exists a unique function $\mu_C: G \to K$ such that

$$\mu_C(x) \in xC \quad \text{for all } x \in G.$$

Moreover, $\mu_C \in Z^1(G, K)$. Conversely, for every $\mu \in Z^1(G, K)$, the set

$$C_\mu := \{\mu(x)^{-1}x \mid x \in G\}$$

is a subgroup and a complement of K in H. These two constructions define mutual inverse bijections

$$\mathcal{C} \leftrightarrow Z^1(G, K).$$

Moreover, these bijections induce mutually inverse bijections

$$\overline{\mathcal{C}} \leftrightarrow H^1(G, K).$$

Proof Both statements of (a) are easy to verify.

(b) Let $C \in \mathcal{C}$. For every $x \in G$ there exist unique elements $\mu(x) \in K$ and $c \in C$ such that

$$x = \mu(x)c.$$

This implies the first statement. Next we show that the function $\mu: G \to K$ is a 1-cocycle. Let $x, y \in G$ and let $c, d \in C$ with $x = \mu(x)c$ and $y = \mu(y)d$. Then

$$xy = x\mu(y)d = x\mu(y)\mu(x)c \quad \text{and} \quad y = \mu(y)d.$$

With $\mu(y)\mu(x) \in K$ and $cd \in C$.

Next let $\mu \in Z^1(G, K)$ and let C_μ be defined as in the theorem. First we show that C_μ is a subgroup: For $x, y \in G$ we have

$$\mu(x)^{-1}x\mu(y)^{-1}y = \mu(x)^{-1}x\mu(y)\mu(x)^{-1}xy = \mu(xy)^{-1}xy$$

which shows that the product of two elements in C_μ is again in C_μ. Moreover, if for $x \in G$ we have

$$x^{-1}\mu(x) = \mu(x^{-1})^{-1}x^{-1}$$

32
by Remark 6.12(c). If \(x \) is an element in \(G \) such that \(\mu(x)^{-1}x \in K \), then also \(x \) is in \(K \) and therefore, \(x = 1 \) and \(\mu(x)^{-1}x = 1 \). Therefore, \(K \cap C_\mu = 1 \).

Finally, every element in \(H \) can be written as \(ax \) with \(a \in K \) and \(x \in G \) and \(ax = a\mu(x)\mu(x)^{-1}x \in KC_\mu \). This completes the proof that \(C_\mu \in \mathcal{C} \).

It is easy to see that the two constructions are inverse to each other so that we obtain a bijection \(\mathcal{C} \leftrightarrow Z^1(G, K) \).

Next assume that \(C, D \in \mathcal{C} \) and that \(D = aC \) with \(a \in K \). Let \(x \in G \) and let \(c \in C \) such that \(x = \mu_C(x)c \). Then,

\[
x = \mu_C(x)c = \mu(x) \cdot \alpha \cdot a^{-1} \cdot \gamma c
\]

with \(\mu_C(x) \cdot \alpha \cdot a^{-1} \in K \) and \(\gamma c \in D \). Therefore,

\[
\mu_D = \mu(x) \cdot \alpha \cdot a^{-1} = \mu_C(x) \cdot \mu_C(x)^{-1}x \cdot a^{-1} = x \cdot \mu(x) \cdot a^{-1}.
\]

Therefore, \([\mu_C] = [\mu_D] \in H^1(G, K)\). Conversely, let \(\lambda, \mu \in Z^1(G, K) \) and let \(a \in K \) such that \(\lambda(x) = \alpha \cdot \mu(x) \cdot a^{-1} \) for all \(x \in G \). Then \(C_\lambda \) consists of all elements of the form \(\lambda(x)^{-1}x = a \cdot \mu(x)^{-1}x \cdot x = a \mu(x)^{-1}x a^{-1} \) with \(x \in G \). But this is just \(aC_\mu a^{-1} \). This completes the proof of the Theorem. \(\square \)
7 Group Extensions with Abelian Kernel

Throughout this section let A be an abelian group and let G be an arbitrary group.

7.1 Remark Let $1 \longrightarrow A \xrightarrow{\varepsilon} H \xrightarrow{\nu} G \longrightarrow 1$ be a group extension, let $h_x \in H$ with $\nu(h_x) = x$ for all $x \in G$, and let $(\alpha, \kappa) \in \text{par}(G, A)$ be the parameter system as defined in Proposition 6.3. Then

$$
\varepsilon(\alpha_x(a)) = h_x \varepsilon(a) h_x^{-1}, \quad h_x h_y = \varepsilon(\kappa(x, y)) h_{xy},
$$

$$
\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy}, \quad \text{and} \quad \alpha_x(\kappa(y, z)) \kappa(x, y) = \kappa(xy, z) \kappa(x, y),
$$

for all $a \in A$ and $x, y, z \in G$. Since A is abelian, $c_{\kappa(x,y)} = \text{id}_K$ and the map $\alpha \colon G \to \text{Aut}(A)$ is a homomorphism. Moreover, κ is a 2-cocycle of G with coefficients in A under the action defined by α. If $(\alpha', \kappa') \in \text{par}(G, A)$ is equivalent to (α, κ), then there exists a function $f \colon G \to A$ such that

$$
\alpha'_x = c_{\alpha_x(f(x))} \circ \alpha_x \quad \text{and} \quad \kappa'(x, y) = f(x) \alpha_x(f(y)) \kappa(x, y) f(xy)^{-1},
$$

for all $x, y \in G$. Again, since A is abelian, this implies $\alpha' = \alpha$. Moreover, we can see that κ and κ' belong to the same cohomology class. Altogether we see that two parameter systems (α, κ) and (α', κ') are equivalent, if and only if $\alpha = \alpha'$ and $[\kappa] = [\kappa'] \in H_2^\alpha(G, A)$.

Therefore we can partition $\text{Ext}(G, A)$ and $\text{Par}(G, A)$ into disjoint unions indexed by $\alpha \in \text{Hom}(G, \text{Aut}(A))$, i.e., by the possible actions of G on A:

$$
\text{Par}(G, A) = \bigcup_{\alpha} H_2^\alpha(G, A)
$$

and

$$
\text{Ext}(G, A) = \bigcup_{\alpha} \text{Ext}_{\alpha}(G, A),
$$

where $\text{Ext}_{\alpha}(G, A)$ denotes those extensions which induce the automorphism system α. For given action $\alpha \colon G \to \text{Aut}(A)$, we have the bijections from Schreier’s Theorem 6.8:

$$
\text{Ext}_{\alpha}(G, A) \leftrightarrow H_2^\alpha(G, A).
$$

Recall that $H_2^\alpha(G, A)$ is an abelian group. Its identity element $[1]$ corresponds to the semidirect product extension of G by A under the action α. The multiplication in the group $H_2^\alpha(G, A)$ corresponds to the so-called Baer product which can be defined purely in terms of extensions.
Finally, if the above extension splits then the A-conjugacy classes (recall that they are the same as the H-conjugacy classes) of complements of A in H are parametrized by $H^1(G, A)$, by Theorem 6.13.

7.2 Corollary Assume that $\gcd(|G|, |A|) = 1$.

(a) Every extensions of G by A splits. In particular, for every action $\alpha \in \text{Hom}(G, \text{Aut}(A))$, there exist precisely one extension of G by A (up to equivalence) with automorphism system α, namely the semidirect product $A \rtimes_\alpha G$.

(b) Let $\alpha \in \text{Hom}(G, \text{Aut}(A))$ and let $H := A \rtimes_\alpha G$ be the corresponding semidirect product. Then any two complements of A in H are conjugate under A.

Proof (a) We have $\text{Ext}_\alpha(G, A) \cong H^2_\alpha(G, A)$ by the above remark. But the latter group is trivial by Corollary 5.4. Thus, the only extension of G by A, up to equivalence, that has automorphism system α, is the semidirect product.

(b) This follows immediately from Theorem 6.13. \hfill \square

35
8 Group Extensions with Non-Abelian Kernel

Throughout this section let K and G be arbitrary groups.

8.1 Remark An automorphism $f \in \text{Aut}(K)$ is called an \textit{inner} automorphism, if $f = c_a$ for some $a \in K$. The set $\text{Inn}(K)$ of inner automorphisms is the image of the homomorphism $c: K \rightarrow \text{Aut}(K), a \mapsto c_a$. Therefore, $\text{Inn}(K)$ is a subgroup of $\text{Aut}(K)$. It is even a normal subgroup, since $f \circ c_a \circ f^{-1} = c_{f(a)}$ for all $f \in \text{Aut}(K)$ and all $a \in K$. We call the quotient $\text{Out}(K) := \text{Aut}(K)/\text{Inn}(K)$ the group of \textit{outer} automorphisms of K.

For each $(\alpha, \kappa) \in \text{par}(G, K)$ one has $\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy}$ for all $x, y \in G$. This shows that the function $\omega: G \rightarrow \text{Out}(K), x \mapsto \alpha_x \text{Inn}(K)$, is a group homomorphism. We call ω the \textit{pairing} induced by the automorphism system α. If (α', κ') is an equivalent parameter system, then $\alpha'_x = c_{f(x)} \circ \alpha_x$ for some function $f: G \rightarrow K$, which shows that the pairing ω' induced by α' is equal to ω. Therefore, each element in $\text{Par}(G, K)$ defines a pairing $\omega: G \rightarrow \text{Out}(K)$. By Schreier’s Theorem also every element in $\text{Ext}(G, K)$ defines a pairing. If K is abelian, then $\text{Inn}(K) = 1$ and $\text{Out}(K) = \text{Aut}(K)/\text{Inn}(K) \cong \text{Aut}(K)$, and we do not have to distinguish between automorphism systems and pairings.

For each $\omega \in \text{Hom}(G, \text{Out}(K))$ we denote by $\text{ext}_\omega(G, K)$ (resp. $\text{par}_\omega(G, K)$) the set of extensions of G by K (resp. parameter systems of G in K) which induce the pairing ω, and by $\text{Ext}_\omega(G, K)$ (resp. $\text{Par}_\omega(G, K)$) the set of equivalence classes of extensions of G by K (resp. parameter systems of G in K) which induce the pairing ω. Then we have

$$ \text{Ext}(G, K) = \bigcup_{\omega \in \text{Hom}(G, \text{Out}(K))} \text{Ext}_\omega(G, K) $$

and

$$ \text{Par}(G, K) = \bigcup_{\omega \in \text{Hom}(G, \text{Out}(K))} \text{Par}_\omega(G, K), $$

and Schreier’s Theorem gives an isomorphism between $\text{Ext}_\omega(G, K)$ and $\text{Par}_\omega(G, K)$ for each $\omega \in \text{Hom}(G, \text{Out}(K))$. It may happen that $\text{Ext}_\omega(G, K)$ is empty. In the sequel we will find out, exactly when this happens, and we will also give a description of $\text{Ext}_\omega(G, K)$ in the case, where it is non-empty. Both results will use group cohomology of G with coefficients in $\mathbb{Z}(K)$.
For each automorphism $f \in \text{Aut}(K)$, the restriction $f|_{Z(K)}$ defines an automorphism of $Z(K)$, since $Z(K)$ is characteristic in K. This defines a group homomorphism $\text{res}^K_{Z(K)}: \text{Aut}(K) \to \text{Aut}(Z(K))$ whose kernel contains $\text{Inn}(K)$. By the fundamental theorem of homomorphisms, we obtain a homomorphism $\text{Out}(K) \to \text{Aut}(Z(K))$, $f \text{Inn}(K) \mapsto f|_{Z(K)}$, which we denote again by $\text{res}^K_{Z(K)}$.

If $\omega \in \text{Hom}(G, \text{Out}(K))$, then its composition with $\text{res}^K_{Z(K)}$ gives a homomorphism $\zeta := \text{res}^K_{Z(K)} \circ \omega: G \to \text{Aut}(Z(K))$. The next theorem will show that, if $\text{Par}_{\omega}(G, K)$ is non-empty then it is in bijection with $H^2_{\zeta}(G, Z(K))$.

In the sequel we will write $[\alpha, \kappa]$ for the equivalence class of any element $(\alpha, \kappa) \in \text{par}(G, K)$.

8.2 Theorem Let $\omega \in \text{Hom}(G, \text{Out}(K))$ with $\text{Par}_{\omega}(G, K) \neq \emptyset$ and let $\zeta := \text{res}^K_{Z(K)} \circ \omega \in \text{Hom}(G, \text{Aut}(Z(K)))$. Then the function

$$Z^2_{\zeta}(G, Z(K)) \times \text{par}_{\omega}(G, K) \to \text{par}_{\omega}(G, K), \quad (\gamma, (\alpha, \kappa)) \mapsto (\alpha, \gamma \kappa),$$

with

$$(\gamma \kappa)(x, y) := \gamma(x, y)\kappa(x, y),$$

for $x, y \in G$, defines an action of the group $Z^2_{\zeta}(G, Z(K))$ on the set $\text{par}_{\omega}(G, K)$. Moreover, this action induces an action of $H^2_{\zeta}(G, Z(K))$ on $\text{Par}_{\omega}(G, K)$ which is transitive and free. In particular, for any element $(\alpha, \kappa) \in \text{par}_{\omega}(G, K)$, the map

$$H^2_{\zeta}(G, Z(K)) \to \text{Par}_{\omega}(G, K), \quad [\gamma] \longmapsto [\gamma][\alpha, \kappa] = [\alpha, \gamma \kappa],$$

is a bijection.

Proof We first show that for $\gamma \in Z^2_{\zeta}(G, Z(K))$ and $(\alpha, \kappa) \in \text{par}_{\omega}(G, K)$ also $(\alpha, \gamma \kappa) \in \text{par}_{\omega}(G, K)$. In fact, for all $x, y, z \in G$ we have

$$(\gamma \kappa)(x, y) \cdot (\gamma \kappa)(xy, z) = \gamma(x, y)\kappa(x, y)\gamma(xy, z)\kappa(xy, z) = \gamma(x, y)\gamma(xy, z)\kappa(x, y)\kappa(xy, z) = \zeta_x(\gamma(y, z))\gamma(x, yz)\alpha_x(\kappa(y, z))\kappa(x, yz) = \alpha_x((\gamma \kappa)(y, z))(\gamma \kappa)(x, yz),$$

37
since $\alpha(z) = \zeta(z)$ for each $z \in Z(K)$, and

$$c(\gamma \kappa)(x,y) \circ \alpha_{xy} = c_1(\gamma(x,y) \kappa(x,y)) \circ \alpha_{xy}$$

$$= c_1(\gamma(x,y)) \circ c_1(\kappa(x,y)) \circ \alpha_{xy}$$

$$= c_1(\kappa(x,y)) \circ \alpha_{xy} = \alpha_x \circ \alpha_y,$$

since $\gamma(x,y) \in Z(K)$. Moreover, for all $(\alpha, \kappa) \in \text{par}_{\omega}(G, K)$ and $\gamma, \delta \in Z^2_\xi(G, Z(K))$ we have

$$\delta(\gamma(\alpha, \kappa)) = \delta(\alpha, \gamma \kappa) = (\alpha, \delta \gamma \kappa) = \delta(\alpha, \kappa)$$

and $^1(\alpha, \kappa) = (\alpha, \kappa)$ so that we have established an action of $Z^2_\xi(G, Z(K))$ on $\text{par}_{\omega}(G, K)$.

Next, let $(\alpha, \kappa), (\alpha', \kappa') \in \text{par}_{\omega}(G, K)$ be equivalent and let $\gamma \in Z^2_\xi(G, Z(K))$. Then there exists a function $f : G \to K$ such that

$$\alpha'_x = c_{f(x)} \circ \alpha_x \quad \text{and} \quad \kappa'(x, y) = f(x) \alpha_x (f(y)) \kappa(x, y) f(xy)^{-1},$$

for all $x, y \in G$. Multiplication of the last equation with $\gamma(x, y)$ yields

$$\gamma(x, y) \kappa'(x, y) = f(x) \alpha_x (f(y)) \gamma(x, y) \kappa(x, y) f(xy)^{-1},$$

which shows that also $\gamma(\alpha, \kappa) = (\alpha, \gamma \kappa)$ and $\gamma(\alpha', \kappa') = (\alpha', \gamma \kappa')$ are equivalent. Therefore, we obtain an action of $Z^2_\xi(G, Z(K))$ on $\text{Par}_{\omega}(G, K)$.

Now let $(\alpha, \kappa) \in \text{par}_{\omega}(G, K)$ and let $\gamma \in B^2_\xi(G, Z(K))$. We will show that $\gamma(\alpha, \kappa)$ is equivalent to (α, κ). In fact, there exists a function $f : G \to Z(K)$ such that $\gamma(x, y) = \zeta_\kappa(f(y)) f(xy)^{-1} f(x) = \alpha_x (f(y)) f(xy)^{-1} f(x)$ for all $x, y \in G$. With this function we have

$$\alpha_x = c_{f(x)} \circ \alpha_x$$

and

$$\gamma(\kappa)(x, y) = \gamma(x, y) \kappa(x, y) = f(x) \alpha_x (f(y)) \kappa(x, y) f(xy)^{-1},$$

for all $x, y \in G$ and the claim is proven. Therefore, we have an action of $H^2_\xi(G, Z(K))$ on $\text{Par}_{\omega}(G, K)$.

Now we show that this action is free. Let $\gamma_1, \gamma_2 \in Z^2_\xi(G, Z(K))$ and $(\alpha, \kappa) \in \text{par}_{\omega}(G, K)$ such that $\gamma_1(\alpha, \kappa)$ and $\gamma_2(\alpha, \kappa)$ are equivalent. Set $\gamma := \gamma_1^{-1} \gamma_2$. Then $\gamma(\alpha, \kappa) = (\alpha, \kappa)$ is equivalent to (α, κ). Therefore, there exists a function $f : G \to K$ such that $\alpha_x = c_{f(x)} \circ \alpha_x$ and $\gamma(x, y) \kappa(x, y) =
$f(x)\alpha_x(f(y))\kappa(x,y)f(xy)^{-1}$ for all $x,y \in G$. This implies that $c_{f(x)} = \text{id}_K$ for all $x \in K$ so that $f(x) \in Z(K)$ for all $x \in K$. Using this we also obtain $\gamma(x,y) = f(x)\alpha_x(f(y))f(xy)^{-1} = f(x)\zeta_x(f(y))f(xy)^{-1}$. Therefore, $\gamma \in B_G^K(G,Z(K))$ and $[\gamma_1] = [\gamma_2] \in H_2^G(Z,K)$.

Finally, we show that the action of $H_2^G(Z,K)$ on $\text{Par}_\omega(G,K)$ is transitive. Let $(\alpha,\kappa), (\beta,\lambda) \in \text{Par}_\omega(G,K)$. We will show that there exists $\gamma \in Z_2^G(G,Z(K))$ such that (α,κ) and $\gamma(\beta,\lambda)$ are equivalent. For each $x \in G$ we have $\alpha_x\text{Inn}(K) = \omega(x) = \beta_x\text{Inn}(K)$. Thus, there exists an element $f(x) \in K$ such that $c_{f(x)} \circ \alpha_x = \beta_x$. We set $\kappa'(x,y) := f(x)\alpha_x(f(y))\kappa(x,y)f(xy)^{-1}$ for all $x,y \in G$. Then $(\beta,\kappa') \in \text{Par}_\omega(G,K)$ and (α,κ) is equivalent to (β,κ'). Since also $(\beta,\lambda) \in \text{Par}_\omega(G,K)$, we obtain $c_{\kappa'(x,y)} \circ \beta_{xy} = \beta_x \circ \beta_y = c_{\lambda(x,y)} \circ \beta_{xy}$ and $c_{\kappa'(x,y)} = c_{\lambda(x,y)}$ for all $x,y \in K$. This implies that $\gamma(x,y) := \kappa'(x,y)\lambda(x,y)^{-1} \in Z(K)$ for all $x,y \in G$. We show that $\gamma \in Z_2^G(G,Z(K))$. In fact, for $x,y,z \in G$ we have

$$
\gamma(x,y)\gamma(xy,z) = \kappa'(x,y)\lambda(x,y)^{-1}\gamma(xy,z) \\
= \kappa'(x,y)\gamma(xy,z)\lambda(x,y)^{-1} \\
= \kappa'(x,y)\kappa'(xy,z)\lambda(xy,z)^{-1}\lambda(x,y)^{-1} \\
= \beta_x(\kappa'(y,z))\gamma(xy,z)\beta_x(\lambda(y,z))^{-1} \\
= \beta_x(\kappa'(y,z))\gamma(xy,z)\beta_x(\lambda(y,z))^{-1} \\
= \zeta_x(\gamma(y,z))\gamma(x,yz).
$$

This implies that $(\beta,\kappa') = \gamma(\beta,\lambda)$ and that (α,κ) is equivalent to $(\beta,\kappa') = \gamma(\beta,\lambda)$. This completes the proof of the Theorem.

8.3 Theorem Assume that $Z(K) = 1$. Then $|\text{Par}_\omega(G,K)| = 1$ for every $\omega: G \to \text{Out}(K)$.

Proof For each $x \in G$ we choose $\alpha_x \in \text{Aut}(K)$ such that $\omega(x) = \alpha_x\text{Inn}(K)$.

For all $x,y \in G$ we have $\alpha_x\alpha_y\text{Inn}(K) = \omega(x)\omega(y) = \omega(xy) = \alpha_{xy}\text{Inn}(K)$. Therefore, there exist elements $\kappa(x,y) \in K$, such that $\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy}$.
for all \(x, y \in G \). For all \(x, y, z \in G \) we obtain

\[
c_{\kappa(x,y)\kappa(xy,z)} \circ \alpha_{xyz} = c_{\kappa(x,y)} \circ c_{\kappa(xy,z)} \circ \alpha_{xyz}
\]

\[
= c_{\kappa(x,y)} \circ \alpha_{xy} \circ \alpha_z
\]

\[
= \alpha_x \circ \alpha_y \circ \alpha_z
\]

\[
= \alpha_x \circ c_{\kappa(y,z)} \circ \alpha_{yz}
\]

\[
= \alpha_x \circ c_{\kappa(y,z)} \circ \alpha_x^{-1} \circ \alpha_x \circ \alpha_{yz}
\]

\[
= c_{\alpha_x(\kappa(y,z))} \circ c_{\kappa(xy,z)} \circ \alpha_{x(yz)}
\]

\[
= c_{\alpha_x(\kappa(y,z))\kappa(xy,z)} \circ \alpha_{xyz},
\]

and therefore, \(c_{\kappa(x,y)\kappa(xy,z)} = c_{\alpha_x(\kappa(y,z))\kappa(xy,z)} \). Since \(Z(K) = 1 \), this implies \(\kappa(x,y)\kappa(xy,z) = \alpha_x(\kappa(y,z))\kappa(x,yz) \) for all \(x, y, z \in G \). Therefore, \((\alpha, \kappa) \in \text{par}_\omega(G,K)\), and \(\text{Par}_\omega(G,K) \) is not empty. On the other hand, by Theorem 8.2, \(\text{Par}_\omega(G,K) \) is in bijection to \(H^2_\omega(G,Z(K)) \), where \(\zeta := \text{res}_K^Z \circ \omega \).

Again since \(Z(K) = 1 \), we have \(F(G^2, Z(K)) = 1 \) and also \(H^2_\omega(G,Z(K)) = 1 \).

8.4 Theorem Let \(\omega : G \to \text{Out}(K) \) be a group homomorphism and let \(\zeta := \text{res}_K^Z \circ \omega \in \text{Hom}(G, \text{Aut}(Z(K))) \). Moreover, for each \(x \in G \), let \(\alpha_x \in \text{Aut}(K) \) be an automorphism with \(\omega(x) = \alpha_x \text{Inn}(K) \). Then the following assertions hold:

(a) For all \(x, y \in G \) there exists an element \(\chi(x,y) \in K \) such that \(\alpha_x \circ \alpha_y = c_{\chi(x,y)} \circ \alpha_{xy} \).

(b) Let \(\chi(x,y) \in K \) be chosen as in (a). Then, for all \(x, y, z \in G \) the element \(\vartheta(x,y,z) := \alpha_x(\chi(y,z))\chi(x,yz)\chi(xy,z)^{-1}\chi(x,y)^{-1} \) lies in \(Z(K) \), and the function \(\vartheta : G^3 \to Z(K) \) is an element of \(Z^3_\omega(G,Z(K)) \).

(c) The cohomology class \([\vartheta] \in H^3_\omega(G,Z(K)) \) of the element \(\vartheta \in Z^3_\omega(G,Z(K)) \) defined in (b) does not depend on the choices of \(\alpha_x \in \text{Aut}(K) \) and \(\chi(x,y) \in K \) for \(x, y \in G \).

Proof (a) For all \(x, y \in G \) we have

\[
\alpha_x \alpha_y \text{Inn}(K) = \omega(x)\omega(y) = \omega(xy) = \alpha_{xy} \text{Inn}(K),
\]

which implies that \(\alpha_x \alpha_y \alpha_{xy}^{-1} \in \text{Inn}(K) \).
(b) For all \(x, y, z \in G \) we have

\[
c_{\vartheta(x,y,z)} = c_{\varphi_x(\chi(y,z))} \circ c_{\chi(x,y)} \circ c_{\chi(x,y,z)} \circ c_{\chi(x,y)}^{-1}
\]

which implies that \(\vartheta(x, y, z) \in Z(K) \).

Next we show that \(\vartheta \in Z^3_\chi(G, Z(K)) \). Let \(x, y, z, w \in G \). Then

\[
\zeta(x(\vartheta(y, z, w))\vartheta(x, yz, w))\vartheta(x, y, z) = \alpha_x(\alpha_y(\chi(z, w))\alpha_x(\chi(y, zw))\alpha_x(\chi(yz, w))^{-1}\alpha_x(\chi(y, z))^{-1} \vartheta(x, yz, w).
\]

\[
\cdot \vartheta(x, y, z)
\]

\[
= \alpha_x(\alpha_y(\chi(z, w))\alpha_x(\chi(y, zw))\alpha_x(\chi(yz, w))^{-1}\vartheta(x, yz, w)\alpha_x(\chi(y, z))^{-1}.
\]

\[
\cdot \vartheta(x, y, z)
\]

\[
= \alpha_x(\alpha_y(\chi(z, w))) \alpha_x(\chi(y, zw)) \alpha_x(\chi(yz, w))^{-1} \vartheta(x, yz, w) \alpha_x(\chi(y, z))^{-1}.
\]

\[
\cdot \alpha_x(\chi(y, z)) \chi(x, y) \chi(y, z)^{-1} \chi(x, y)^{-1}
\]

\[
= \alpha_x(\alpha_y(\chi(z, w))) \alpha_x(\chi(y, zw)) \chi(x, yzw) \chi(xyz, w)^{-1} \chi(xy, z)^{-1} \chi(xy, y)^{-1}
\]

\[
= \alpha_x(\alpha_y(\chi(y, w))) \alpha_x(\chi(y, zw)) \chi(x, yzw) \chi(x, yw)^{-1} \chi(x, y)^{-1}.
\]

\[
\cdot \chi(y, z) \chi(x, yzw) \chi(xyz, w)^{-1} \chi(xy, z)^{-1} \chi(xy, y)^{-1}
\]

\[
= \alpha_x(\alpha_y(\chi(z, w))) \vartheta(x, y, z) \chi(x, y)^{-1} \chi(x, z)^{-1} \vartheta(x, y, z).
\]

\[
= \vartheta(x, y, z) \chi(x, y)^{-1} \vartheta(x, y, zw)
\]

\[
= \vartheta(x, y, z) \vartheta(x, y, zw).
\]

\((c) \) If, for each \(x \in G \), also \(\alpha_x' \in \text{Aut}(K) \) is chosen such that \(\alpha_x' \text{Im}(K) = \omega(x) \), and if, for each \(x, y \in G \), an element \(\chi'(x, y) \in K \) is chosen such that \(\alpha_x' \circ \alpha_y' = c_{\chi'(x,y)} \circ \alpha_{xy}' \), then there exists a function \(f: G \to K \) such that
\(\alpha'_x = c_f(x) \circ \alpha_x \). This implies

\[
\alpha'_x \circ \alpha'_y = c_f(x) \circ \alpha_x \circ c_f(y) \circ \alpha_y = c_f(x) \circ \alpha_x \circ c_f(y) \circ \alpha_x^{-1} \circ \alpha_x \circ \alpha_y = c_f(x) \circ c_{\alpha_x(f(y))} \circ c_{\chi(x,y)} \circ \alpha_{xy} = c_f(x) \alpha_x(f(y)) \chi(x,y) \circ c_{f(xy)^{-1}} \circ \alpha_{xy}' = c_f(x) \alpha_x(f(y)) \chi(x,y)f(xy)^{-1} \circ \alpha_{xy}',
\]

and we obtain

\[
\chi'(x, y) = f(x) \alpha_x(f(y)) \chi(x, y)f(xy)^{-1} g(x, y)
\]

for all \(x, y \in G \) with a function \(g: G \times G \to Z(K) \). For all \(x, y, z \in G \), the corresponding function

\[
\vartheta'(x, y, z) := \alpha'_x(\chi'(y, z)) \chi'(x, yz) \chi'(xy, z)^{-1} \chi'(x, y)^{-1}
\]

then satisfies

\[
\begin{align*}
\vartheta'(x, y, z) &= f(x) \alpha_x(f(y)) \alpha_x(\alpha_y(f(z))) \alpha_x(\chi(y, z)) \\
&\quad \cdot \chi(x, yz)f(xy)^{-1} g(x, y) f(xy)^{-1} \chi(x, y)^{-1} \alpha_x(f(y)^{-1}) f(x)^{-1} \\
&\quad \cdot \alpha_x(g(y, z)) g(x, yz) g(xy, z)^{-1} g(x, y)^{-1} \\
&= f(x) \alpha_x(f(y)) \alpha_x(\alpha_y(f(z))) \vartheta(x, y, z) \chi(x, y) \alpha_{xy}(f(z)^{-1}) \\
&\quad \cdot \chi(x, y)^{-1} \alpha_x(f(y)^{-1}) f(x)^{-1} (\partial^2_\xi(g))(x, y, z) \\
&= f(x) \alpha_x(f(y)) \alpha_x(\alpha_y(f(z))) \alpha_x(\alpha_y(f(z)^{-1})) \\
&\quad \cdot \alpha_x(f(y)^{-1}) f(x)^{-1} \vartheta(x, y, z)(\partial^2_\xi(g))(x, y, z) \\
&= \vartheta(x, y, z)(\partial^2_\xi(g))(x, y, z),
\end{align*}
\]

which shows that the cohomology classes \([\vartheta]\) and \([\vartheta']\) coincide. \(\square\)
8.5 Definition Let \(\omega: G \to \text{Out}(K) \) be a homomorphism and let \(\zeta := \text{res}_Z^K \circ \omega \in \text{Hom}(G, \text{Aut}(Z(K))) \). The element \([\vartheta] \in H^3_\zeta(G, Z(K))\) defined in Theorem 8.4 is called the obstruction of \(\omega \).

8.6 Theorem Let \(\omega: G \to \text{Out}(K) \) be a group homomorphism and let \(\zeta := \text{res}_Z^K \circ \omega \in \text{Hom}(G, \text{Aut}(Z(K))) \). Then, \(\text{Par}_\omega(G, K) \neq \emptyset \) if and only if the obstruction \([\vartheta] \in H_3^\zeta(G, Z(K))\) of \(\omega \) is trivial.

Proof First assume that \(\text{Par}_\omega(G, K) \neq \emptyset \) and let \((\alpha, \kappa) \in \text{par}_\omega(G, K) \). Then we have

\[
\omega(x) = \alpha_x \text{Inn}(K), \quad \alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy} \quad \text{and}
\]

\[
\alpha_x(\kappa(y, z))\kappa(x, yz)\kappa(xy, z)^{-1}\kappa(x, y)^{-1} = 1,
\]

for all \(x, y, z \in G \). This implies that we may define the obstruction \([\vartheta]\) of \(\omega \) using the elements \(\alpha_x \in \text{Aut}(K) \) and \(\kappa(x, y) \in K \) for \(x, y \in G \), and that \([\vartheta]\) = 1.

Conversely, if we choose elements \(\alpha_x \in \text{Aut}(K) \) such that \(\omega(x) = \alpha_x \text{Inn}(K) \) for all \(x \in G \), and elements \(\chi(x, y) \in K \) such that \(\alpha_x \circ \alpha_y = c_{\chi(x,y)} \circ \alpha_{xy} \) for all \(x, y \in G \), then we obtain the obstruction \([\vartheta]\) \(\in H^3_\zeta(G, Z(K)) \) of \(\omega \) from the 3-cocycle \(\vartheta(x, y, z) := \alpha_x(\chi(y, z))\chi(x, yz)\chi(xy, z)^{-1}\chi(x, y)^{-1} \in Z(K) \), for \(x, y, z \in G \). Since \([\vartheta]\) = 1, there exists an element \(\varphi: G \times G \to Z(K) \) such that \(\vartheta = d^2_\zeta(\varphi) \). We set \(\kappa(x, y) := \varphi(x, y)^{-1}\chi(x, y) \) for \(x, y \in G \) and show that \((\alpha, \kappa) \in \text{par}_\omega(G, K) \). In fact, for all \(x, y, z \in G \) we have

\[
\alpha_x \circ \alpha_y = c_{\kappa(x,y)} \circ \alpha_{xy}
\]

and

\[
\kappa(x, y)\kappa(xy, z) = \varphi(x, y)^{-1}\chi(x, y)\varphi(xy, z)^{-1}\chi(xy, z)
\]

\[
= \varphi(x, y)^{-1}\varphi(xy, z)^{-1}\chi(x, y)\chi(xy, z)
\]

\[
= \varphi(x, yz)^{-1}\alpha_x(\varphi(y, z))^{-1}(d^2_\zeta(\varphi))(x, y, z)\chi(x, y)\chi(xy, z)
\]

\[
= \varphi(x, yz)^{-1}\alpha_x(\varphi(y, z))^{-1}\vartheta(x, y, z)\chi(x, y)\chi(xy, z)
\]

\[
= \varphi(x, yz)^{-1}\alpha_x(\varphi(y, z))^{-1}\alpha_x(\chi(y, z))\chi(x, yz)
\]

\[
= \alpha_x(\kappa(y, z))\kappa(x, yz),
\]

which completes the proof. \(\square \)
9 The Theorem of Schur-Zassenhaus

9.1 Definition Let \(\pi \) be a set of primes. We denote by \(\pi' \) the set of primes not contained in \(\pi \).

(a) Let \(n \in \mathbb{N} \). If \(n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \) is the prime factorization of \(n \) then the \(\pi \)-part \(n_\pi \) of \(n \) is defined as \(\prod_{p_i \in \pi} p_i^{\alpha_i} \). One has \(n = n_\pi n_{\pi'} \).

(b) A finite group \(G \) is called a \(\pi \)-group, if \(|G|_\pi = |G| \). For an arbitrary finite group \(G \) we call a subgroup \(H \leq G \) a \(\pi \)-subgroup, if \(H \) is a \(\pi \)-group. A subgroup \(H \leq G \) is called a Hall \(\pi \)-subgroup of \(G \) if it is a Hall \(\pi \)-subgroup for some \(\pi \).

(c) For every element \(g \) of a finite group \(G \) there exist unique elements \(g_\pi \) and \(g_{\pi'} \) of \(G \) such that \(\langle g_\pi \rangle \) is a \(\pi \)-subgroup, \(\langle g_{\pi'} \rangle \) is a \(\pi' \)-subgroup, and \(g_\pi g_{\pi'} = g = g_{\pi'} g_\pi \). These elements are called the \(\pi \)-part and the \(\pi' \)-part of \(g \). One has \(g_\pi, g_{\pi'} \in \langle g \rangle \).

(d) For every finite group \(G \) there exists a largest normal \(\pi \)-subgroup of \(G \). It will be denoted by \(O_\pi(G) \).

9.2 Remark Let \(G \) be a finite group and let \(\pi \) be a set of primes. It is easy to see that \(O_\pi(G) \) is characteristic in \(G \). Considering the group \(\text{Alt}(5) \) and \(\pi = \{2, 5\} \) or \(\pi = \{3, 5\} \) one sees that in general Hall \(\pi \)-subgroups do not exist.

9.3 Theorem Let \(G \) be a finite group. Then the following are equivalent:

(i) \(G \) is solvable.

(ii) For every \(N \triangleleft G \) there exists a prime \(p \) such that \(O_p(G/N) > 1 \).

Proof (i) \(\Rightarrow \) (ii): We may assume that \(N = 1 \) and \(G > 1 \). Since \(G \) is solvable, there exists \(n \in \mathbb{N} \) such that \(G^{(n)} = 1 \) and \(G^{(n-1)} > 1 \). Then \(G^{(n-1)} \) is abelian.

Let \(p \) be a prime divisor of \(|G^{(n-1)}| \), then the set \(U := \{ x \in G^{(n-1)} \mid x^p = 1 \} \) is a non-trivial characteristic \(p \)-subgroup of \(G^{(n-1)} \) and therefore normal in \(G \). This implies \(O_p(G) \geq U > 1 \).

(ii) \(\Rightarrow \) (i): By (ii) there exist primes \(p_1, \ldots, p_r \) and normal subgroups \(N_0, N_1, \ldots, N_r \) of \(G \) such that \(1 = N_0 < N_1 < \cdots < N_r = G \) and \(N_i/N_{i-1} = O_{p_i}(G/N_{i-1}) \) for each \(i = 1, \ldots, r \). Since \(N_i/N_{i-1} \) is solvable for \(i = 1, \ldots, r \), also \(G \) is solvable. \(\Box \)
9.4 Remark Let G be a finite group. If U is a Hall π-subgroup of G for some π, then $H \leq G$ is a complement of U in G if and only if H is a Hall π'-subgroup of G.

9.5 Theorem (Schur-Zassenhaus) Let G be a finite group and assume that $H \leq G$ is a normal Hall π-subgroup of G. Then:
(a) There exists a complement of H in G.
(b) If H or G/H is solvable, any two complements of H in G are conjugate in G.

Proof In the case that H is abelian, Parts (a) and (b) are immediate from Corollary 7.2.

From now on we assume that H is not abelian. We will show (a) and (b) by induction on $|G|$. If $G = 1$, the assertions are trivial. Therefore, we assume $|G| > 1$ and we also assume that (a) and (b) hold for every group of order smaller than $|G|$. Finally we may assume that $|H| > 1$. This will be done in 7 steps.

Claim 1: If $U < G$, then $U \cap H$ has a complement in U. Proof: $U \cap H$ is normal in U and a π-subgroup of U. Moreover, $U/U \cap H \cong UH/H$ implies $[U : U \cap H] | [G : H]$. Therefore, $U \cap H$ is a normal Hall π-subgroup of U and, by induction, has a complement in U.

Claim 2: If $1 < N \vartriangleleft G$, then HN/N has a complement in G/N. Proof: HN/N is normal in G/N and $HN/N \cong H/H \cap N$ implies that HN/N is a π-subgroup of G/N. Moreover, $[G/N : HN/N] = [G : HN]$ is a π'-number and HN/N is a normal Hall π-subgroup of G/N. Now, by induction the claim follows.

Claim 3: If H has a subgroup $1 < N < H$ which is normal in G, then (a) and (b) hold. Proof: (a) By Claim 2, $HN/N = H/N$ has a complement U/N in G/N, where $N \leq U \leq G$. One has $U < G$, since otherwise $U/N = G/N$ implies $H/N = N/N$ and $N = H$. By Claim 1, $U \cap H$ has a complement K in U. We show that K is also a complement of H in G. We have $KH = K(U \cap H)H = UH = G$ and $K \cap H = 1$, since $K \cong U/U \cap H \cong UH/H \leq G/H$ implies that K is a π'-group.

(b) Assume that K and K' are complements of H in G. Then KN/N and $K'N/N$ are complements of the normal Hall π-subgroup H/N or G/N in G/N. In fact, $(KN/N)(H/N) = KHN/N = G/N$ and $KN/N \cong K/K \cap N$ is a π'-group. With H or G/H also H/N or $(G/N)/(H/N) \cong G/H$ are
solvable. By induction there exists \(g \in G \) such that

\[
KN/N = gN(K'N/N)g^{-1}N = gK'N\langle g \rangle N/N,
\]

and therefore, \(KN = gK'g^{-1}N \). But now \(K \) and \(gK'g^{-1} \) are complements of the normal Hall \(\pi \)-subgroup \(N \) of \(KN \) in \(KN \). Moreover, if \(H \) or \(G/H \) is solvable, then \(N \) or \(KN/N \cong K \cong G/H \) are solvable. Again by induction, the groups \(K \) and \(gK'g^{-1} \) are conjugate in \(KN \). Therefore, \(K \) and \(K' \) are conjugate in \(G \).

Claim 4: If \(O_p(H) > 1 \) for some prime \(p \), then (a) and (b) hold. **Proof:** If \(O_p(H) < H \), this follows from Claim 3, since \(O_p(H) \) is characteristic in \(H \) and therefore normal in \(G \). If \(O_p(H) = H \), then \(H \) is a \(p \)-group and we can consider the characteristic subgroup \(\Phi(H) \) of \(H \) which is again normal in \(G \). Since \(H \) is not abelian, we have \(1 < \Phi(H) < H \). Now Claim 3 applies and (a) and (b) hold.

Claim 5: If \(H \) is solvable, then (a) and (b) hold. **Proof:** This follows immediately from Theorem 9.3 and Claim 4.

Claim 6: Part (a) holds. **Proof:** Let \(p \) be a prime divisor of \(|H| \) and let \(P \) be a Sylow \(p \)-subgroup of \(H \). By Claim 4 we may assume that \(P \) is not normal in \(G \). Then \(U = N_G(P) < G \). By Claim 1 there exists a complement \(K \) of \(U \cap H \) in \(U \). The Frattini-Argument implies that \(G = HU = H(U \cap H)K = HK \). Moreover, \(K \cong U/U \cap H \cong U/H/H = G/H \) is a \(\pi \)-group. This implies that \(K \) is a complement of \(H \) in \(G \).

Claim 7: Part (b) holds. **Proof:** By Claim 5 we may assume that \(G/H \) is solvable. By Theorem 9.3, there exists a prime \(p \) such that \(O_p(G/H) > 1 \). Write \(O_p(G/H) = R/H \) with \(H < R \leq G \). Let \(K \) and \(K' \) be two complements of \(H \) in \(G \). Then we have \((K \cap R)H = KH \cap R = G \cap R = R \) with \(H \cap (K \cap R) = 1 \). Since \(p \nmid |H| \) and \(K \cap R \cong K \cap R/K \cap R \cap H \cong (K \cap R)H/H = R/H \) is a \(p \)-group, \(1 \neq K \cap R = H \) is a Sylow \(p \)-subgroup of \(R \). Similarly, \(K' \cap R \) is a Sylow \(p \)-subgroup of \(R \). Therefore, there exists \(g \in R \) such that \(K \cap R = g(K' \cap R)g^{-1} = gK'g^{-1} \cap gRg^{-1} = gK'g^{-1} \cap R \). Set \(V := N_G(K \cap R) \). Since \(K \cap R \leq K \) and \(K \cap R = gK'g^{-1} \cap R \leq gK'g^{-1} \), we have \(\langle K, gK'g^{-1} \rangle \leq V \). We observe that \(K \) is a complement of the normal Hall \(\pi \)-subgroup \(V \cap H \) of \(V \) in \(V \), since \(K(V \cap H) = V \cap KH = V \cap G = V \), \(|K| = |G/H| \), and \(|V \cap H| \mid |H| \). Similarly, \(gK'g^{-1} \) is a complement of \(V \cap H \) in \(V \). Note that with \(G/H \) also \(V/V \cap H \cong V/H/H \leq G/H \) is solvable. If \(V < G \), then \(K \) and \(gK'g^{-1} \) are conjugate in \(V \) by induction, and \(K \) and \(K' \) are conjugate in \(G \). Therefore, we may assume that \(V = G \) and we set

46
\[M := K \cap R \leq G. \] Since \(K \) and \(gK'g^{-1} \) are complements of \(H \) in \(G \), \(K/M \) and \(gK'g^{-1}/M \) are complements of the normal Hall \(\pi \)-subgroup \(HM/M \) of \(G/M \) in \(G/M \); in fact, \((K/M)(HM/M) = KHM/M = G/M \) with \(K/M \) a \(\pi' \)-group and \(HM/M \cong H/(H \cap M) \) a \(\pi \)-group, and similar for \(gK'g^{-1}/M \).

Moreover, \((G/M)/(HM/M) \cong G/HM \cong (G/H)/(HM/H) \) is solvable. By induction, \(K/M \) and \(gK'g^{-1}/M \) are conjugate in \(G/M \). But then also \(K \) and \(gK'g^{-1} \) are conjugate in \(G \). This implies that \(K \) and \(K' \) are conjugate in \(G \) and finishes the proof of the theorem. \[\square \]

9.6 Remark Feit and Thompson proved the celebrated *Odd-Order-Theorem* stating that every finite group of odd order is solvable. Therefore, the solvability condition in Theorem 8.5(b) is always satisfied.
10 The \(\pi \)-Sylow Theorems

Throughout this Section let \(G \) denote a finite group and \(\pi \) a set of primes.

10.1 Definition (a) \(G \) is called \(\pi \)-separable, if \(G \) has a normal series

\[1 = G_0 \leq G_1 \leq \cdots \leq G_r = G \]

such that each factor \(G_i/G_{i-1}, i = 1, \ldots, r \), is a \(\pi \)-group or a \(\pi' \)-group.

(b) \(G \) is called \(\pi \)-solvable, if \(G \) has a normal series each of whose factors is a solvable \(\pi \)-groups or an arbitrary \(\pi' \)-groups.

10.2 Remark (a) \(G \) is \(\pi \)-separable if and only if \(G \) is \(\pi' \)-separable.

(b) If \(G \) is \(\pi \)-solvable, then \(G \) is \(\pi \)-separable.

(c) With the Odd-Order-Theorem of Feit and Thompson we see that if \(G \) is \(\pi \)-separable, then \(G \) is \(\pi \)-solvable or \(\pi' \)-solvable.

(d) Subgroups and factor groups of \(\pi \)-separable (resp. \(\pi \)-solvable) groups are again \(\pi \)-separable (resp. \(\pi \)-solvable).

(e) If \(G \) is \(\pi \)-solvable and \(1 \leq H_0 \leq H_1 \leq G \) are subgroups such that \(H_1/H_0 \) is a \(\pi \)-group, then \(H_1/H_0 \) is solvable.

(f) One has: \(G \) is solvable \(\iff \) \(G \) is \(\pi \)-solvable for all \(\pi \). In fact, if \(G \) is solvable then, by Theorem 9.3 \(G \) has a normal series whose factors are \(p \)-groups. Therefore, \(G \) is \(\pi \)-solvable for every \(\pi \). Conversely, if \(G \) is \(\pi \)-solvable for \(\pi := \{ p \mid p \ | \ |G| \} \), then the claim follows from part (e).

(g) If \(N \leq G \) and \(H \leq G \) is a Hall \(\pi \)-subgroup of \(G \), then \(HN/N \) is a Hall \(\pi \)-subgroup of \(G/N \) and \(H \cap N \) is a Hall \(\pi \)-subgroup of \(N \). In fact, \(HN/N \cong H/(N \cap H) \) and \(H \cap N \) are \(\pi \)-groups and \([G/N : HN/N] = [G : HN] \mid [G : H] \) and \([N : H \cap N] = [HN : H] \mid [G : H] \) are \(\pi' \)-numbers.

10.3 Theorem (\(\pi \)-Sylow Theorem, Ph. Hall 1928) (a) If \(G \) is \(\pi \)-separable, then there exist Hall \(\pi \)-subgroups and Hall \(\pi' \)-subgroups in \(G \).

(b) If \(G \) is \(\pi \)-solvable, any two Hall \(\pi \)-subgroups and any two Hall \(\pi' \)-subgroups are conjugate in \(G \).

(c) If \(G \) is \(\pi \)-solvable, then any \(\pi \)-subgroup (resp. \(\pi' \)-subgroup) of \(G \) is contained in some Hall \(\pi \)-subgroup (resp. Hall \(\pi' \)-subgroup).

Proof We prove the statements by induction on \(|G| \). If \(G = 1 \), all assertions are clearly true. Now let \(G > 1 \). Since \(G \) is \(\pi \)-separable, we have \(O_\pi(G) > 1 \) or \(O_{\pi'}(G) > 1 \). Let \(N := O_\pi(G) > 1 \) or \(N := O_{\pi'}(G) > 1 \).
(a) By induction there exists a Hall π-subgroup H/N of G/N. Then $[H : N]$ is a π-number and $[G : H]$ is a π'-number. If N is a π-group, then H is a Hall π-subgroup of G. If N is a π'-group, then by the Theorem of Schur-Zassenhaus it has a complement K in H. Therefore, K is π-group and $[G : K] = |G|/|[H]/|N|| = [G : H] \cdot |N|$ is a π'-number. Therefore, K is a Hall π-subgroup of G. Similarly, there exists a Hall π'-subgroup of G.

(b) Let $\mu = \pi$ or $\mu = \pi'$ and U and V be two Hall μ-subgroup of G. Then UN/N and VN/N are Hall μ-subgroups of G/N by Remark 10.2(g). By induction, there exists $g \in G$ such that $guNg^{-1} = VN$ and so $gu^{-1}N = VN$. If also N is a μ-group, then $|VN| = |V||N|/|V \cap N|$ is a μ-number and therefore, $VN = V$. This implies $N \leq V$, $gu^{-1} \leq VN = V$, and $gu^{-1} = V$. If N is a μ'-number, then $|gu^{-1}| = |V|$ and $|N|$ are coprime. This implies $V \cap N = gu^{-1} \cap N = 1$ so that V and gu^{-1} are complements of the normal Hall μ-group N of $VN = gu^{-1}N$. Now either $VN/N \cong V$ or N is a π-group and by Remark 10.2(e) solvable. By Schur-Zassenhaus, the complements gu^{-1} and V are conjugate in VN. Therefore, U and V are conjugate in G.

(c) Let $\mu = \pi$ or $\mu = \pi'$ and let $U \leq G$ be a μ-subgroup. Moreover, let $H \leq G$ be a Hall μ-subgroup of G (which exists by (a)). Then $UN/N \cong U/(U \cap N)$ is a μ-subgroup of G/N and by induction and by (b) there exists $g \in G$ such that $uNg^{-1}N$, since HN/N is a Hall μ-subgroup of G/N by Remark 10.2(g). If N is a μ-group, then $gHg^{-1}N = gHg^{-1}$ and $U \leq UN \leq gHg^{-1}N = gHg^{-1}$. If N is a μ'-group, then $U \cap N = 1$. Moreover, $UN = UN \cap gHg^{-1}N = (UN \cap gHg^{-1})N$ and $V \cap N = 1$, where $V := UN \cap gHg^{-1}$. Therefore, U and V are two complements of the normal Hall μ'-subgroup N of $UN = VN$. Moreover, N or $UN/N \cong U$ is a π-group and solvable by Remark 10.2(e). Therefore, by Schur-Zassenhaus, there exists $x \in UN$ such that $U = xVx^{-1} = x(UN \cap gHg^{-1})x^{-1} \leq (gx)H(xg)^{-1}$.

10.4 Remark By the Odd-Order-Theorem of Feit-Thompson, it would be enough to require G to be π-separable in Theorem 10.3(b) and (c).

10.5 Corollary Let G be solvable and let π be arbitrary. Then G has a Hall π-subgroup, any two Hall π-subgroups of G are conjugate in G, and any π-subgroup of G is contained in a Hall π-subgroup.

Proof Clear with Theorem 10.3 and Remark 10.2(f).
10.6 Lemma Let $U, V \leq G$.

(a) If $\mathcal{R} \subseteq U$ is a set of representatives for the cosets $U/U \cap V$, then $UV = \bigcup_{x \in \mathcal{R}} xV$ and $|UV| = |U| \cdot |V|/|U \cap V|$.

(b) One has $UV \leq G$ if and only if $UV = VU$.

(c) One has $[G : U \cap V] \leq [G : U][G : V]$ with equality if and only if $UV = G$.

(d) If $[G : U]$ and $[G : V]$ are coprime, then $[G : U \cap V] = [G : U] \cdot [G : V]$ and $UV = G$.

Proof (a) Obviously, $xV \subseteq UV$ for each $x \in \mathcal{R}$. Conversely, if $u \in U$, then there exists $x \in \mathcal{R}$ and $y \in U \cap V$ such that $u = xy$. Therefore, $uV = xyV = xV$. Disjointness: Let $x, x' \in \mathcal{R}$ and let $v, v' \in V$ such that $xv = x'v'$. Then $x^{-1}x = v^{-1}v' \in U \cap V$. This implies $x' = x$. The remaining formula follows from the established equality: $|UV| = |\mathcal{R}| \cdot |V| = |U||V|/|U \cap V|$.

(b) If UV is a subgroup of G, then $uv \in UV$ for all $u \in U$ and all $v \in V$. Therefore, $VU \subseteq UV$. By the formula in (a) one has $|UV| = |VU|$ and therefore $UV = VU$. Conversely, if $UV = VU$, then with $u, u' \in U$ and $v, v' \in V$ also $(uv)(u'v')^{-1} = uvv'^{-1}u'^{-1} \in UVU = UUV = UV$. This implies that UV is a subgroup of G.

(c) By (a) we have

$$[G : U \cap V] = \frac{|G|}{|U \cap V|} = \frac{|G| \cdot |UV|}{|U| \cdot |V|} \leq \frac{|G| \cdot |G|}{|U| \cdot |V|} = [G : U] \cdot [G : V],$$

with equality if and only if $UV = G$.

\[\square\]

10.7 Lemma If G has three solvable subgroups H_1, H_2, H_3 of pairwise coprime indices, then G is solvable.

Proof We prove the assertion by induction on G. If $G = 1$, then G is solvable. Now we assume that $G > 1$. If $H_1 = 1$, then $H_2 = G$ and G is solvable. If $H_1 > 1$, then H_1 has a normal p-subgroup $N > 1$, for some prime p by Theorem 9.3. Since $[G : H_2]$ and $[G : H_3]$ are coprime, one of them is not divisible by p. By symmetry we may assume that $p \nmid [G : H_2]$. Set $D := H_1 \cap H_2$. Then, by Lemma 10.6, we have $H_1 H_2 = G$ and $[G : H_1] \cdot [G : H_2] = [G : D] = [G : H_1] \cdot [H_1 : D]$. This implies $[G : H_2] = [H_1 : D]$.

50
Now \(ND \leq H_1 \) and \([ND : D] = [N : N \cap D]\) is a \(p \)-power which divides \([H_1 : D] = [G : H_2]\). This implies \(ND = D \) and \(N \leq D \).

For all \(g \in G \) we have \(gNg^{-1} \leq H_2 \); in fact, since \(G = H_1 H_2 = H_2 H_1 \), there exist \(h_1 \in H_1 \) and \(h_2 \in H_2 \) such that \(g = h_2 h_1 \) and we obtain \(h_2 h_1 N h_1^{-1} h_2^{-1} = h_2 N h_2^{-1} \leq h_2 D h_2^{-1} \leq H_2 \). This implies that \(1 < I := \langle \bigcup_{g \in G} gNg^{-1} \rangle \leq H_2 \) and that \(I \) is a solvable normal subgroup of \(G \). The group \(G/I \) has the solvable subgroups \(H_i I/I \), \(i = 1, 2, 3 \), with pairwise co-prime indices \([G/I : H_i I/I] = [G : H_i I] \mid [G : H_i] \). By induction, \(G/I \) is solvable, and with \(I \) also \(G \) is solvable.

10.8 Remark A famous theorem of Burnside states that every finite group of order \(p^aq^b \), with primes \(p \) and \(q \) and with \(a, b \in \mathbb{N}_0 \), is solvable. A purely group theoretical proof of this result is quite lengthy. There is a more elegant proof using representation theory. We will use Burnside’s Theorem in order to prove the following Theorem.

10.9 Theorem (Ph. Hall, 1937) Let \(|G| = p_1^{e_1} \cdots p_r^{e_r} \) be the prime factor decomposition of \(|G|\). If there exists for each \(i \in \{1, \ldots, r\} \) a Hall \(p_i' \)-subgroup of \(G \), then \(G \) is solvable.

Proof We prove the assertion by induction on \(r \). If \(r = 0 \), then \(G = 1 \) and solvable. If \(r = 1 \), then \(G \) is a \(p \)-group and solvable. If \(r = 2 \), then \(G \) is solvable by Burnside’s Theorem. Now assume that \(r \geq 3 \). For \(i \in \{1, \ldots, r\} \) let \(H_i \) be a Hall \(p_i' \)-subgroup of \(G \). For \(i \neq j \) in \(\{1, \ldots, r\} \), we set \(V_{ij} := U_i \cap U_j \). Then, by Lemma 10.6(d), \([G : U_{ij}] = p_i^{e_i} p_j^{e_j} \) and \([H_i : U_{ij}] = p_j^{e_j} \). Therefore, each \(H_i \) satisfies the hypothesis of the theorem with \(r - 1 \) prime divisors. By induction, each \(H_i \) is solvable. By Lemma 10.7, \(G \) is solvable.

10.10 Corollary The following assertions are equivalent:

(i) \(G \) is solvable.

(ii) \(G \) has Hall \(\pi \)-subgroups for each \(\pi \).

(iii) \(G \) has Hall \(p' \)-subgroups for each prime \(p \).

Proof (i) \(\Rightarrow \) (ii): This follows from the \(\pi \)-Sylow Theorem.

(ii) \(\Rightarrow \) (iii): This is trivial.

(iii) \(\Rightarrow \) (i): This follows from Theorem 10.9.
10.11 Theorem Let \(G \) be solvable, let \(p_1, \ldots, p_r \) be the prime divisors of \(G \), and let \(H_i \) be a Hall \(p'_i \)-subgroup of \(G \) for \(i = 1, \ldots, r \). Then for each \(i = 1, \ldots, r \), the group \(P_i := \bigcap_{j \neq i} H_j \) is a Sylow \(p_i \)-subgroup of \(G \) such that \(P_iP_j = P_jP_i \) for all \(i, j \in \{1, \ldots, r\} \).

Proof The assertion is clear for \(r = 0 \) and \(r = 1 \). If \(r = 2 \), by Lemma 10.6(d) and (b) we have \(P_1P_2 = G = P_2P_1 \). From now on we assume that \(r \geq 3 \). For every \(\pi \subseteq \{p_1, \ldots, p_r\} \), the subgroup \(\bigcap_{\pi \subseteq \pi} H_i \) is a Hall \(\pi' \)-subgroup of \(G \). In fact, this follows from repeated use of Lemma 10.6(d). In particular, for \(i \neq j \) in \(\{1, \ldots, r\} \), the group \(G_{ij} := \bigcap_{k \in \{1, \ldots, r\} \setminus \{i,j\}} H_k \) is a Hall \(\{p_i, p_j\} \)-subgroup of \(G \), and \(P_i := G_{ij} \cap H_j \) (resp. \(P_j := G_{ij} \cap H_i \)) is a Sylow \(p_i \)-subgroup (resp. Sylow \(p_j \)-subgroup) of \(G_{ij} \) and of \(G \). As in the case \(r = 2 \) we obtain \(P_iP_j = G_{ij} = P_jP_i \). \(\square\)

10.12 Definition Let \(|G| = p_1^{e_1} \cdots p_r^{e_r} \) be the prime factor decomposition of \(|G| \) with \(p_1 < \cdots < p_r \).

(a) A tuple \((P_1, \ldots, P_r)\) consisting of Sylow \(p_i \)-subgroups \(P_i \) of \(G \), \(i = 1, \ldots, r \), is called a Sylow system of \(G \) if \(P_iP_j = P_jP_i \) for all \(i, j \in \{1, \ldots, r\} \).

(b) A tuple \((K_1, \ldots, K_r)\) consisting of Hall \(p'_i \)-subgroups of \(G \), \(i = 1, \ldots, r \), is called a Sylow complement system of \(G \).

10.13 Proposition Assume the notation from the previous definition and let \(\pi \subseteq \{p_1, \ldots, p_r\} \). Let \((P_1, \ldots, P_r)\) be a Sylow system of \(G \). Then \(\Pi_{p_i \in \pi} P_i \) is a Hall \(\pi \)-subgroup of \(G \).

Proof The equalities \(P_iP_j = P_jP_i \) for \(i, j \in \{1, \ldots, r\} \) imply by repeated use of Lemma 10.6(b) that \(\Pi_{p_i \in \pi} P_i \) is a subgroup of \(G \). Moreover, by induction on \(|\pi| \) it is easy to see that \(\Pi_{p_i \in \pi} P_i \) is a Hall \(\pi \)-subgroup of \(G \). In fact, if \(|\pi| = 0 \) or \(|\pi| = 1 \), this is clear, and if \(|\pi| > 1 \) we choose \(p_{i_0} \in \pi \) and set \(\tilde{\pi} := \pi \setminus \{p_{i_0}\} \). Then, by induction, \(\Pi_{p_i \in \tilde{\pi}} P_i \) is a Hall \(\tilde{\pi} \)-subgroup of \(G \) so that \((\Pi_{p_i \in \tilde{\pi}} P_i) \cap P_{i_0} = 1 \). Now Lemma 10.6(a) implies that \(\Pi_{p_i \in \pi} P_i = (\Pi_{p_i \in \tilde{\pi}} P_i)P_{i_0} \) is a Hall \(\pi \)-subgroup of \(G \). \(\square\)

10.14 Corollary The following assertions are equivalent:

(i) \(G \) is solvable.
(ii) \(G \) has a Sylow system.
(iii) \(G \) has a Sylow complement system.
Proof By Theorem 10.11, (i) implies (ii). Moreover, by Proposition 10.13, (ii) implies (iii). Finally, by Corollary 10.10, (iii) implies (i).

10.15 Remark Let S denote the set of Sylow systems of G, let K denote the set of Sylow complement systems of G, and assume that $p_1 < \cdots < p_r$ are the prime divisors of $|G|$. Then, the maps

$$S \xrightleftharpoons{\varphi}{\psi} K,$$

$$(P_1, \ldots, P_r) \mapsto (\prod_{i \neq 1} P_i, \ldots, \prod_{i \neq r} P_i)$$

$$(\bigcap_{i \neq 1} K_i, \ldots, \bigcap_{i \neq r} K_i) \mapsto (K_1, \ldots, K_r)$$

are well-defined inverse bijections. In fact, by Proposition 10.13, φ is well-defined, and by the arguments in the proof of Theorem 10.11, ψ is well-defined. If $(P_1, \ldots, P_r) \in S$, and $K_j := \bigcap_{i \neq j} P_i$, then $P_{i_0} \leq \bigcap_{j \neq i_0} K_j$ for all $i_0 = 1, \ldots, r$. This implies $P_i = \bigcap_{j \neq i} K_j$, since both groups are Sylow p_i-subgroups of G. On the other hand, if $(K_1, \ldots, K_r) \in K$ and $P_j := \bigcap_{i \neq j} K_i$, then $\prod_{j \neq i_0} P_j \leq K_{i_0}$ for all $i_0 = 1, \ldots, r$. This implies $\prod_{j \neq i} P_j = K_i$, since both groups are Hall p_i'-subgroups of G.

Note that S and K are G-sets under the conjugation action of G and that φ and ψ are isomorphisms of G-sets.

10.16 Theorem (a) Let (P_1, \ldots, P_r) and (Q_1, \ldots, Q_r) be Sylow systems of G. Then there exists $g \in G$ such that $gP_ig^{-1} = Q_i$ for all $i \in \{1, \ldots, r\}$.

(b) Let (K_1, \ldots, K_r) and (L_1, \ldots, L_r) be Sylow complement systems of G. Then there exists $g \in G$ such that $gK_ig^{-1} = L_i$ for all $i \in \{1, \ldots, r\}$.

Proof Let $|G| = p_1^{e_1} \cdots p_r^{e_r}$.

(b) By the π-Sylow theorem, for fixed $i \in \{1, \ldots, r\}$ all Hall p_i'-subgroups of G are conjugate in G. In particular, G has $[G : N_G(K_i)]$ Hall p_i'-subgroups and $[G : N_G(K_i)]$ divides $[G : K_i] = p_i^{e_i}$. Therefore, the number of Sylow complement systems of G is $k := \prod_{i=1}^r [G : N_G(K_i)]$. Since $[G : N_G(K_i)]$, $i = 1, \ldots, r$, are pairwise coprime, repeated application of Lemma 10.6(d) yields

$$k = \prod_{i=1}^r [G : N_G(K_i)] = [G : \bigcap_{i=1}^r N_G(K_i)].$$
Therefore, the stabilizer of \((K_1, \ldots, K_r)\) in \(G\) has index \(k\) in \(G\), which implies that the \(G\)-orbit of \((K_1, \ldots, K_r)\) contains all Sylow complement systems.

(a) This follows immediately from part (b) and Remark 10.15, since the maps \(\varphi\) and \(\psi\) are inverse isomorphisms of \(G\)-sets. \(\square\)

10.17 Theorem (Hall-Higman 1.2.3) Let \(G\) be a \(\pi\)-separable group and assume that \(O_{\pi'}(G) = 1\). Then \(C_G(O_\pi(G)) \leq O_\pi(G)\).

Proof We set \(C := C_G(O_\pi(G))\) and \(B := C \cap O_\pi(G)\). It suffices to show that \(B = C\). We assume that \(B < C\) and will derive a contradiction. Note that \(B\) and \(C\) are normal in \(G\) and that \(B\) is a \(\pi\)-group. Since \(C/B\) is a non-trivial \(\pi\)-separable group, it has a non-trivial characteristic subgroup \(K/B\) which is a \(\pi\)-group or a \(\pi'\)-group. Therefore \(K/B \vartriangleleft G/B\) and \(K \vartriangleleft G\). First we consider the case that \(K/B\) is a \(\pi\)-group. Since \(B\) is a \(\pi\)-group, also \(K\) is a \(\pi\)-group. Since \(K \vartriangleleft G\), we obtain \(K \leq O_\pi(G)\) and \(K \leq O_{\pi'}(G) \cap C = B\), in contradiction to \(K/B > 1\). Next consider the case that \(K/B\) is a \(\pi'\)-group. Then, by Schur-Zassenhaus, the normal Hall \(\pi\)-subgroup \(B\) of \(K\) has a complement \(H\), and since \(K/B > 1\), we have \(H > 1\). We have \(H \leq C = C_G(O_\pi(G)) \leq C_G(B)\). Thus, \(B\) centralizes \(H\). Since \(K = BH\), this implies that \(H \vartriangleleft K\). Thurst \(1 < H \leq O_{\pi'}(K) \vartriangleleft G\). This is a contradiction to the hypothesis \(O_{\pi'}(G) = 1\). \(\square\)

10.18 Definition For a \(\pi\)-separable group \(G\) we define its \(\pi\)-length as the minimum number of factors that are \(\pi\)-groups in any normal series of \(G\) in which each factor is either a \(\pi\)-group or a \(\pi'\)-group. For example \(G\) has \(\pi\)-length 0 if and only if \(G\) is a \(\pi'\)-group. And, \(G\) has \(\pi\)-length 1 if and only if \(G\) has a normal series \(1 = G_0 \leq G_1 < G_2 \leq G_3 = G\) such that \(G_1\) is a \(\pi'\)-group, \(G_2/G_1\) is a non-trivial \(\pi\)-group and \(G_3/G_2\) is a \(\pi'\)-group.

10.19 Theorem Let \(G\) be a \(\pi\)-separable group and suppose that a Hall \(\pi\)-subgroup of \(G\) is abelian. Then the \(\pi\)-length of \(G\) is at most 1.

Proof Set \(\overline{G} := G/O_{\pi'}(G)\). Then \(O_{\pi'}(\overline{G}) = 1\). Let \(H\) be an abelian Hall \(\pi\)-subgroup of \(G\). Then \(\overline{H} = H O_{\pi'}(G)/O_{\pi'}(G)\) is a Hall \(\pi\)-subgroup of \(\overline{G}\), and it contains every normal \(\pi\)-subgroup of \(\overline{G}\). In particular, it contains \(O_\pi(\overline{G})\). Since \(\overline{H}\) is abelian, we have \(\overline{H} \leq C_{\overline{G}}(O_\pi(\overline{G})) \leq O_\pi(\overline{G})\), where the last containment follows from Hall-Higman. This implies \(\overline{H} = O_\pi(\overline{G})\) and \(\overline{H} \leq \overline{G}\). This shows that \(1 \leq O_{\pi'}(G) \leq HO_{\pi'}(G) \leq G\) is a normal sequence.
whose first and third factor is a π'-group and whose second factor is a π-group.

11 Coprime Action

Throughout this section let G and A be finite groups. We assume that A acts by group automorphisms on G. We denote this action by $(a, g) \mapsto a^g$. The resulting semi-direct product will be denoted by $\Gamma := G \rtimes A$. Recall that $(g, a)(h, b) = (g^ah, ab)$ for $g, h \in G$ and $a, b \in A$. We will view G and S as subgroups of Γ via the usual embeddings and then have $\Gamma = GA = AG$ with $A \cap G = 1$. Recall that

$$C_A(G) = \{a \in A \mid a^g = g \text{ for all } g \in G\} \leq A$$

denotes the kernel of the action of A on G and

$$C_G(A) = \{g \in G \mid a^g = g \text{ for all } a \in A\} \leq G$$

denotes the A-fixed points of G, previously also denoted by G^A.

11.1 Remark

(a) We will often consider a set X on which A and G acts. We will denote these actions by $(a, x) \mapsto a \cdot x$ and $(g, x) \mapsto g \cdot x$. It is easy to verify that the map

$$\Gamma \times X \to X, \quad (ga, x) \mapsto g \cdot (a \cdot x),$$

defines an action of Γ on X if and only if the actions of A and G on X are compatible in the following sense:

$$a \cdot (g \cdot x) = a^g \cdot (a \cdot x) \quad (11.1.a)$$

for $x \in X, a \in A$ and $g \in G$.

(b) Assume that the compatibility condition (11.1.a) is satisfied. We will denote the A-fixed points of X by

$$X^A := \{x \in X \mid a^x = x \text{ for all } a \in A\}.$$

It is easy to see that X^A is stable under the action of $C_G(A) = G^A$.

55
11.2 Lemma (Glauberman) Assume that G and A act on a set X such that (11.1.a) is satisfied. Moreover assume that $\gcd(|G|,|A|) = 1$, that G acts transitively on X and that G or A is solvable. Then the following hold:

(a) The set of A-fixed points X^A is non-empty.

(b) The action of G^A on X^A is transitive.

Proof (a) Let $x \in X$ and set $U = \Gamma_x$ denote the stabilizer of x in Γ. We claim that $GU = UG = \Gamma$. In fact, if $\gamma \in \Gamma$ then, by the transitivity of the action of G on X there exists $g \in G$ such that $\gamma \cdot x = g \cdot x$. Thus, $g^{-1}\gamma \in U$ and the claim is proved. Since

$$U/U \cap G \cong GU/G = \Gamma/G \cong A,$$

$U \cap G$ is a normal Hall subgroup of U. By Schur-Zassenhaus, $U \cap G$ has a complement H in U. Then $|H| = [U : U \cap G] = |A|$ and H is also a complement of G in Γ. Again by Schur-Zassenhaus, A is conjugate to H in Γ and there exists $\gamma \in \Gamma$ such that $A = \gamma H$. Since H stabilizes x, A stabilizes $\gamma \cdot x$ and $\gamma \cdot x \in X^A$.

(b) Let x and y be arbitrary elements in X^A. Set $M := \{g \in G \mid g \cdot x = y\}$. Since G acts transitively on X, the subset M of G is non-empty. Moreover, set $H := G_y$, the stabilizer of y in G. Then H acts by left multiplication on M. Also, M is A-stable, since $h \cdot m \cdot x = (a \cdot x) = a \cdot (m \cdot x) = a \cdot y = y$. Therefore, M is a left A-set and a left H-set and $\gcd(|H|,|A|) = 1$. We want to apply Part (a) to this situation. The actions of A and H on M satisfy (11.1.a), since $a(hm) = h \cdot a \cdot m$ for all $a \in A$, $h \in H$ and $m \in M$ (because A acts on G by group automorphisms). Finally, H acts transitively on M, since for $m, n \in M$ we have $m \cdot x = y = n \cdot x$ and therefore, $mn^{-1} \in G_y = H$ which implies that $m = hn$ for some $h \in H$. Now Part (a) implies that there exists an A-fixed point on M, i.e., an element $m \in M$ which is also in G^A. □

Note that, since A acts on G via group automorphisms, A also acts on the set of subgroups of G, and also on the set of subgroups of G of a fixed order, by $^aH := \{^ah \mid h \in H\}$ for $a \in A$ and $H \leq G$. In particular, A acts on $\text{Syl}_p(G)$ for every prime p of G. We say that H is A-invariant if $^aH = H$ for all $a \in A$.

11.3 Theorem Assume that $\gcd(G,A) = 1$ and that G or A is solvable. Moreover, let p be a prime. Then the following hold:

(a) There exists an A-invariant Sylow p-subgroup of G. 56
(b) Any two A-invariant Sylow p-subgroups of G are conjugate by an element in G^A.

(c) Every A-invariant p-subgroup of G is contained in some A-invariant Sylow p-subgroup of G.

Proof Parts (a) and (b) follow immediately from Lemma 11.2. In fact, A and G act on $X := \text{Syl}_p(G)$, G acts transitively on X, and the compatibility condition (11.1.a) is satisfied: $^ag \cdot (a \cdot P) = ^ag^g(aP) = a(gP) = a \cdot (g \cdot P)$, for all $a \in A$, $g \in G$ and $P \in \text{Syl}_p(G)$.

(c) It suffices to show that every maximal A-invariant p-subgroup P of G is a Sylow p-subgroup of G. Set $N := N_G(P)$ and note that with P also N is A-invariant. By Part (a) (applied to N instead of G), we may choose an A-invariant Sylow p-subgroup S of N. Since P is normal in N, we have $P \leq S$. Since P was a maximal A-invariant p-subgroup of G, we have $P = S$ and P is a Sylow p-subgroup of N. But this implies that P is a Sylow p-subgroup of G. In fact assume this is not the case; then P is properly contained in some Sylow p-subgroup T of G and $Q := N_T(P) > P$, since T is nilpotent. Thus, $Q \leq N_G(P)$, contradicting the fact that P is a Sylow p-subgroup of N. \[\square\]

Since A acts on G by automorphisms, we have for every $a \in A$ and $g, h \in G$: g and h are conjugate in G if and only if ag and ah are conjugate in G. This implies that for every conjugacy class K of G the subset $^aK := \{^ag \mid g \in K\}$ is again a conjugacy class of G. Thus, A acts on the set $\text{cl}(G)$ of conjugacy classes of G. If $K \in \text{cl}(G)^A$, we also say that K is A-invariant.

11.4 Theorem Assume that $\gcd(|G|, |A|) = 1$ and that A or G is solvable. Then the map

$$\text{cl}(G)^A \to \text{cl}(G^A), \quad K \mapsto K \cap G^A,$$

is a well-defined bijection.

Proof Let $K \in \text{cl}(G)^A$. We first show that $K \cap G^A$ is a conjugacy class of G^A. We will apply Glauberman’s Lemma 11.2 to the set $X = K$ on which G acts transitively by conjugation and on which A acts, since K is A-invariant. It is straightforward to verify that the compatibility condition (11.1.a) holds: For $a \in A$, $g \in G$ and $x \in K$, the left hand side equals $^a(exg^{-1}) = ^ag^x(^ag)^{-1}$ and the last expression equals the right hand side in (11.1.a). By Glauberman’s Lemma, $K^A = K \cap G^A$ is not empty and it is a single orbit under the G^A-conjugation action. Therefore, $K \cap G^A \in \text{cl}(G^A)$.
Next we show that the map in the theorem is surjective. Let \(L \in \text{cl}(G^A) \) and let \(x \in L \). Let \(K \in \text{cl}(G) \) denote the conjugacy class of \(x \). Then \(K \) is \(A \)-invariant, since it contains the \(A \)-fixed point \(x \). By the previous paragraph, \(K \cap G^A \) is a single conjugacy class of \(G^A \). But since it contains \(x \), it is equal to \(L \).

Finally, we show that the map in the theorem is injective. Assume that \(K_1 \) and \(K_2 \) are \(A \)-invariant conjugacy classes of \(G \) with \(K_1 \cap G^A = K_2 \cap G^A \). By the first part of the proof, this latter is a non-empty set. This implies that \(K_1 \) and \(K_2 \) have non-empty intersection. Therefore, \(K_1 = K_2 \).

Since \(A \) acts on \(G \), it acts on the set of subsets of \(G \) via \(aY = \{ ay \mid y \in Y \} \) for \(a \in A \) and \(Y \subseteq G \). Since \(A \) acts on \(G \) via group automorphisms, it also acts on the set of subgroups. We say that a subset \(Y \) of \(G \) is \(A \)-invariant if it is a fixed point under this action, i.e., if \(ay \in Y \) for all \(a \in A \) and \(y \in Y \). In this case, \(A \) also acts on \(Y \), and if \(Y \) is a subgroup of \(G \) then \(A \) acts on \(Y \) via group automorphisms. If the subgroup \(Y \) of \(G \) is \(A \)-stable then \(A \) also acts on the set \(G/Y \) of left cosets of \(Y \) and on the set \(Y \backslash G \) of right cosets of \(Y \).

11.5 Theorem Assume that \(H \leq G \) is an \(A \)-invariant subgroup of \(G \), that \(\gcd(|A|, |H|) = 1 \) and that \(A \) or \(H \) is solvable. Then, the \(A \)-invariant left (or right) cosets of \(H \) are precisely those that contain an \(A \)-fixed point.

Proof Clearly, if a coset contains an \(A \)-fixed point \(g \) then it is equal to \(gH \) (or \(Hg \)) and it is \(A \)-invariant. Conversely, assume that the coset \(gH \) is \(A \)-invariant (right cosets can be treated similarly). We can consider \(X := gH \) as a left \(A \)-set and also as a left \(H \)-set via \(h \cdot (gh') := gh'h^{-1} \), for \(h, h' \in H \). Note that \(H \) acts transitively on \(X \). We verify that the compatibility condition (11.1.a) is satisfied. For \(h' \in H \), \(a \in A \) and \(x \in X \), its left hand side equals \(a \cdot (h \cdot gh') = agh'h^{-1} = agh'('h')^{-1} \) and the last expression is equal to \('h \cdot (a \cdot gh') \). By Glauberman’s Lemma 11.2 \(X \) has an \(A \)-fixed point. This completes the proof.

If \(N \) is an \(A \) invariant normal subgroup of \(G \) then \(A \) acts on \(G/N \) via group automorphisms by \(aN = a'N = aN \), for \(a \in A \) and \(g \in G \).

11.6 Corollary Let \(N \) be an \(A \)-invariant normal subgroup of \(G \) and assume that \(\gcd(|A|, |N|) = 1 \) and that \(A \) or \(N \) is solvable. Then \((G/N)^A = G^AN/N \).
Proof This follows immediately from Theorem 11.5, since \((G/N)^A\) is the set of \(A\)-invariant cosets of \(N\) and \(G^A N / N\) is the set of cosets of \(N\) which contain an \(A\)-fixed point.

Since the Frattini subgroup \(\Phi(G)\) is characteristic in \(G\), it is an \(A\)-stable normal subgroup of \(G\) and the action of \(A\) on \(G\) induces an action of \(A\) on \(G/\Phi(G)\) via group automorphisms.

11.7 Corollary Assume that \(\gcd(|A|, |\Phi(G)|) = 1\) and that \(A\) acts trivially on \(G/\Phi(G)\). Then \(A\) acts trivially on \(G\).

Proof It suffices to show that for every element \(a \in A\) the cyclic subgroup \(B := \langle a \rangle\) of \(A\) acts trivially on \(G\). Note that with \(A\) also \(B\) acts trivially on \(G/\Phi(G)\) and since \(B\) is solvable, we can apply Corollary 11.6 to \(G, \Phi(G)\) and \(B\) to obtain \(G^B \Phi(G) / \Phi(G) = (G/\Phi(G))^B = G/\Phi(G)\). The correspondence theorem implies \(G^B \Phi(G) = G\) and Lemma 2.3 implies that \(G^B = G\). Therefore, \(B\) acts trivially on \(G\).

11.8 Corollary Assume that \(\gcd(|A|, |\Phi(G)|) = 1\) and that the action of \(A\) on \(G\) is faithful. Then the action of \(A\) on \(G/\Phi(G)\) is faithful.

Proof Let \(B\) denote the kernel of the action of \(A\) on \(G/\Phi(G)\). Then Corollary 11.7 implies that \(B\) acts trivially on \(G\). But since \(A\) acts faithfully on \(G\) we obtain \(B = 1\). But this means that \(A\) acts faithfully on \(G/\Phi(G)\).
12 Commutators

Throughout this section we fix a group G.

12.1 Definition (a) For $x,y \in G$ we define their commutator by $[x,y] := xyx^{-1}y^{-1}$. For $n \geq 3$ and elements x_1, \ldots, x_n in G we define their commutator recursively by

$$[x_1, \ldots, x_n] := [x_1, [x_2, \ldots, x_n]].$$

(b) For subgroups X and Y of G we define their commutator $[X,Y]$ as the subgroup generated by all commutators $[x,y]$ for $x \in X$ and $y \in Y$. For $n \geq 3$ and subgroups X_1, \ldots, X_n of G we define their commutator recursively by

$$[X_1, \ldots, X_n] := [X_1, [X_2, \ldots, X_n]].$$

Warning: In general, $[X_1, \ldots, X_n]$ is not generated by the elements $[x_1, \ldots, x_n]$ with $x_i \in X_i$ for $i = 1, \ldots, n$.

12.2 Proposition Let x, y and z be elements of G, let X and Y be subgroups of G and let N be a normal subgroup of G.

(a) One has $[y,x] = [x,y]^{-1}$ and $[X,Y] = [Y,X]$.

(b) One has $[x,yz] = [x,y] \cdot [x,z]$.

(c) One has $[X,Y] \leq \langle X,Y \rangle$.

(d) If $f : G \to H$ is a group homomorphism then $f([x,y]) = [f(x),f(y)]$ and $f([X,Y]) = [f(X),f(Y)]$.

(e) One has $[xN,yN] = [x,y]N$ and $[X,Y]N/N = [XN/N,YN/N]$ in G/N.

(f) One has $[X,Y] \leq Y$ if and only if $X \leq N_G(Y)$.

Proof (a) $[x,y][y,x] = xyx^{-1}y^{-1}yxy^{-1}x^{-1} = 1$. By definition, $[X,Y]$ is generated by the elements $[x,y]$ with $x \in X$ and $y \in Y$, and $[Y,X]$ is generated by their inverses. Therefore, $[X,Y] = [Y,X]$.

(b) We have $[x,y][x,z] = (xyx^{-1}y^{-1})(yxyx^{-1}z^{-1}y^{-1}) = xyzx^{-1}z^{-1}y^{-1} = [x,yz]$.

(c) For $x \in X$ and $y, y' \in Y$, Part (a) yields $[x,yy'] = [x, y] \cdot [x, y']$, and therefore $[x, y'] = [x, y]^{-1} \cdot [x, yy'] \in [X,Y]$. This shows that Y normalizes $[X,Y]$. For the same reason, X normalizes $[Y,X]$. But $[Y,X] = [X,Y]$, by Part (a). Therefore, the group $\langle X,Y \rangle$ normalizes $[X,Y]$. Obviously, $[X,Y] \leq \langle X,Y \rangle$.

60
1. But g, θ and all statements in the lemma will follow. To that end it suffices to show $A \in \mathcal{A}$, and since $f([x, y]) = [f(x), f(y)]$ with $x \in X$ and $y \in Y$. Thus, $f([X, Y]) = [f(X), f(Y)]$.

(e) This follows immediately from part (e) applied to the natural epimorphism $f: G \to G/N, g \mapsto gN$.

(f) For $x \in X$ and $y \in Y$ one has $[x, y] = x y \cdot y^{-1}$ and therefore $x y = [x, y] \cdot y$. This shows that $[x, y] \in Y$ if and only if $x y \in Y$ and the result follows.

\[\text{12.3 Lemma} \quad \text{Let } A \text{ be an abelian normal subgroup of } G \text{ and suppose that } G/A \text{ is cyclic. Then } G' = [G, A] \leq A \text{ and } \]

\[G' \cong A/(A \cap Z(G)). \]

In particular, if A is finite then G' is finite and $|A| = |G'| \cdot |A \cap Z(G)|$.

\textbf{Proof} \quad \text{Let } g \in G \text{ be such that } G/A = \langle gA \rangle. \text{ Since } A \text{ is normal in } G, \text{ we have } [G, A] \leq A \text{ and we can define the function } \theta: A \to A, \ a \mapsto [g, a]. \text{ By Proposition 12.2(b), and since } A \text{ is abelian, we have } [g, ab] = [g, a][g, b] \text{ for all } a, b \in A. \text{ Thus, } \theta \text{ is a homomorphism. Moreover, } \ker(\theta) = C_A(g) = C_A(G) = A \cap Z(G), \text{ and } \theta(A) \leq [G, A] \leq G'. \text{ We will show that } G' \leq \theta(A) \text{ and all statements in the lemma will follow. To that end it suffices to show that } \theta(A) \text{ is normal in } G \text{ and that } G/\theta(A) \text{ is abelian. Since } \theta(A) \leq A \text{ and } A \text{ is abelian, } \theta(A) \text{ is normalized by } A. \text{ Moreover, for } a \in A \text{ we have } \theta(a) = [g, a] = [g, a] = \theta(a) \in \theta(A). \text{ Therefore, } \theta(A) \text{ is normal in } G. \text{ Finally, set } \overline{G} := G/\theta(A). \text{ Note that } \overline{G} \text{ is generated by } \overline{g} \text{ and the elements } \overline{a} \text{ for } a \in A. \text{ In order to show that } \overline{G} \text{ is abelian it suffices to show that } [\overline{g}, \overline{a}] = 1. \text{ But } [\overline{g}, \overline{a}] = [\overline{g}, \overline{a}] = \overline{\theta(a)} = 1. \]

\[\text{12.4 Lemma} \quad \text{For } x, y, z \in G \text{ one has the Hall-Witt identity} \]

\[[x, y^{-1}, z] \cdot [y, z^{-1}, x] \cdot [z, x^{-1}, y] = 1. \]

\textbf{Proof} \quad \text{Straightforward computation.} \]

\[\text{12.5 Lemma (3 subgroup lemma) Let } X, Y \text{ and } Z \text{ be subgroups of } G. \text{ If } [X, Y, Z] = 1 \text{ and } [Y, Z, X] = 1 \text{ then } [Z, X, Y] = 1. \]
It suffices to show that \([X, Y] \in C_G(Z)\). Since \(C_G(Z)\) is a subgroup of \(G\), it suffices to show that \([x, y] \in C_G(Z)\) for all \(x \in X\) and \(y \in Y\). For this it suffices to show that \([z, x, y] = 1\) for all \(x \in X\), \(y \in Y\) and \(z \in Z\). This follows now from the hypothesis and the Hall-Witt identity.

12.6 Corollary (3 subgroup corollary) Let \(N\) be a normal subgroup of \(G\) and let \(X, Y, Z\) be subgroups of \(G\). If \([X, Y, Z] \leq N\) and \([Y, Z, X] \in N\) then \([Z, X, Y] \in N\).

Proof This follows immediately from Proposition 12.2(e) and the 3 subgroup lemma applied to \(G/N\).

12.7 Definition We recalibrate the lower central series of a group by setting \(G^1 := G\), \(G^2 := [G, G]\) and \(G^n := [G, G, \ldots, G]\) with \(n\) entries \(G\). Note that with the conventions in [P] we have \(G^n = Z_{n-1}(G)\). Recall that \(G^n\) is characteristic in \(G\) for all \(n \in \mathbb{N}\). We call any subgroup of \(n\)-fold commutators of copies of \(G\) a \textit{weight} \(n\) \textit{commutator subgroup} of \(G\). For instance, \([[[G, G], [G, G]], [G, G, [G, G, G]]]\) is a weight 8 commutator subgroup of \(G\).

12.8 Theorem For any \(i, j \in \mathbb{N}\) one has \([G^i, G^j] \leq G^{i+j}\).

Proof We proceed by induction on \(i\). If \(i = 1\) then \([G^i, G^j] = [G, G^j] = G^{j+1}\) by definition. Now assume that \(i > 1\). Then we can write \(G^i = [G, G^{i-1}]\) and have \([G^i, G^j] = [G^j, G^i] = [G^j, G, G^{i-1}]\). By the 3 subgroup corollary it suffices to show that \([G, G^{i-1}, G^j] \leq G^{i+j}\) and \([G^{i-1}, G, G^j] \leq G^{i+j}\). But, by induction, we have

\([G, G^{i-1}, G^j] = [G, [G^{i-1}, G^j]] \leq [G, G^{i+j-1}] = G^{i+j}\)

and

\([G^{i-1}, G, G^j] = [G^{i-1}, [G^j, G]] = [G^{i-1}, [G, G^j]] = [G^{i-1}, G^{j+1}] \leq G^{i+j}\)

and the proof is complete.

12.9 Corollary Let \(n \in \mathbb{N}\). Any weight \(n\) commutator subgroup of \(G\) is contained in \(G^n\).
Proof We proceed by induction on \(n \). For \(n = 1 \) and \(n = 2 \) the statement is obviously true. For \(n > 2 \) every weight \(n \) commutator subgroup of \(G \) is of the form \([X, Y]\) where \(X \) is a weight \(i \) commutator subgroup of \(G \) and \(Y \) is a weight \(j \) commutator subgroup of \(G \) for positive integers \(i \) and \(j \) with \(i + j = n \). By induction and by Theorem 12.8, we obtain \([X, Y] \leq [G^i, G^j] \leq G^{i+j} = G^n\) and the proof is complete.

12.10 Corollary For any \(n \in \mathbb{N}_0 \) one has \(G^{(n)} \leq G^{2^n} \).

Proof We proceed by induction on \(n \). For \(n = 0 \) we have \(G^{(0)} = G = G^1 = G^{2^0} \). For \(n > 0 \) we have \(G^{(n)} = [G^{(n-1)}, G^{(n-1)}] \leq [G^{2^{n-1}}, G^{2^{n-1}}] \leq G^{2^{n-1}+2^{n-1}} = G^{2^n} \) by induction and Corollary 12.9.

For the rest of this section let \(A \) denote a group and assume that \(A \) acts on \(G \) via automorphisms. As before we view \(A \) and \(G \) as subgroups of the resulting semidirect product \(\Gamma \) and note that inside \(\Gamma \) the conjugation action of \(A \) on \(G \) coincides with the original action of \(A \) on \(G \).

12.11 Remark (a) A subgroup \(H \) of \(G \) is \(A \)-invariant and normal in \(G \) if and only if it is normal in \(\Gamma \). In this case \([A, H] \leq H\), since \(A \) normalizes \(H \), and moreover, \([A, H]\) is again normal in \(AH \). In fact, for \(a, b \in A \) and \(h, k \in H \) we have \([a, [b, h]] = [a, [b, h]] \in [A, H] \) (showing that \(A \) normalizes \([A, H]\)) and \([a, [h, k]] = [a, h] \cdot [a, k] \) (showing that \([a, k] \in [A, H]\) and therefore that also \(H \) normalizes \([A, H]\)). In particular, \([A, G]\) is an \(A \)-invariant normal subgroup of \(G \). Iterating this process, one obtains a sequence

\[
\]

of \(A \) invariant subgroups of \(G \). In general the subgroups in this sequence are not normal in \(G \). The next lemma will show that the induced \(A \)-action on each of the factor groups is trivial.

(b) If \(H \) is an \(A \)-invariant subgroup of \(G \) then the action of \(A \) on \(G \) induces an action of \(A \) on the set of left cosets, \(G/H \), and also on the set of right cosets, \(H \backslash G \), as already explained in the paragraph preceding Theorem 11.5. Moreover, if \(H \) is an \(A \)-invariant and normal subgroup of \(G \), then the action of \(A \) on \(G \) induces an action of \(A \) on the group \(G/H \) via automorphisms.

12.12 Lemma The subgroup \([A, G] \) of \(G \) is \(A \)-invariant and normal in \(G \) and the induced action of \(A \) on \(G/[A, G] \) is trivial. Conversely, assume that
N is a normal A-invariant normal subgroup of G such that the induced action of A on G/N is trivial. Then $[A,G] \leq N$.

Proof By Remark 12.11(a), we already know that $[A,G]$ is an A-invariant and normal subgroup of G. Moreover, if N is any A-invariant normal subgroup of G then one has:

\[
\begin{align*}
A \text{ acts trivially on } G/N & \iff \forall g \in G \text{ and all } a \in A \Rightarrow \alpha^g(Ng) = Ng \iff N \cdot \alpha^g = Ng \text{ for all } g \in G \text{ and all } a \in A \\
& \iff \forall g \in G \text{ and all } a \in A \Rightarrow \alpha^{-1}g = N \iff a^g \in N \text{ for all } g \in G \text{ and all } a \in A \\
& \iff [a,g] \in N \text{ for all } g \in G \text{ and all } a \in A \\
& \iff [A,G] \leq N.
\end{align*}
\]

This completes the proof. \qed

12.13 Corollary For any subgroup $H \leq G$ the following are equivalent:

(i) Every left coset of H in G is A-invariant.

(ii) Every right coset of H in G is A-invariant.

(iii) $[A,G] \leq H$.

Proof (i) \iff (ii): If X is an A-stable subset of G then also $X^{-1} := \{x^{-1} | x \in X\}$ is A-stable. But $(gH)^{-1} = Hg^{-1}$ for all $g \in G$.

(ii) \Rightarrow (iii): The hypothesis implies in particular that H is A-invariant. Further, for every $a \in A$ and $g \in G$, we have $Hg = \alpha^g(Hg) = \alpha^g H \alpha^g = H \alpha^g$. This implies $[a,g] = \alpha^{-1}g \in H$. Since a and g were arbitrary, we obtain $[A,G] \leq H$.

(iii) \Rightarrow (i): Every left coset of H in G is a union of left cosets of $[A,G]$ in G. By Lemma 12.12, each coset of $[A,G]$ in G is A-invariant (since A acts trivially on $G/[A,G]$). Thus, every left coset of H is A-invariant. \qed

For $n \in \mathbb{N}$ we set $[A,\ldots,A,G]_n := [A,\ldots,A,G]$ where the last expression contains n copies of A.

12.14 Theorem Let $n \in \mathbb{N}$ and assume that $[A,\ldots,A,G]_n = 1$. Then $A^{(n-1)} \leq C_A(G)$. In particular, if A acts faithfully on G and $[A,\ldots,A,G]_n = 1$ then $A^{(n-1)} = 1$ and A is solvable.
Proof It suffices to show the first statement. The second statement follows immediately, since $C_A(G) = 1$ if A acts faithfully on G. We show the first statement by induction on n. If $n = 1$ then $[A, G] = 1$ and A acts trivially on G. Thus $A(0) = A = C_A(G)$. Next we assume that $n > 1$ and that the statement holds for values smaller than n. We want to show that $A^{(n-1)} \leq C_A(G)$, or equivalently that $[G, A^{(n-1)}] = 1$. First note that the hypothesis yields $1 = [A, \ldots, A, G]_n = [A, \ldots, A, N]_{n-1}$ for $N := [A, G]$. By induction we obtain $A^{(n-2)} \leq C_A(N)$, or equivalently $1 = [A^{(n-2)}, N] = [A^{(n-2)}, A, G]$. In particular, we have $[A^{(n-2)}, A^{(n-2)}, G] = 1$. But then also $[A^{(n-2)}, G, A^{(n-2)}] = [A^{(n-2)}, A^{(n-2)}, G] = 1$. Now the 3 subgroup lemma implies $[G, A^{(n-2)}, A^{(n-2)}] = 1$, and $[G, A^{(n-1)}] = 1$, as desired. \(\Box\)

12.15 Corollary Assume that A acts faithfully on G and that $[A, A, G] = 1$. Then A is abelian.

Proof This is immediate from Theorem 12.14 with $n = 2$. \(\Box\)

For any group A we set $A^\infty := \cap_{n \in \mathbb{N}} A^n$. If A is finite then the descending sequence A^n of subgroups of A terminates and A^∞ is the final subgroup in this sequence, i.e., $A^\infty = A^k = A^{k+1} = \cdots$ for some $k \in \mathbb{N}$.

12.16 Theorem Assume that A and G are finite. If $[A, \ldots, A, G]_n = 1$ for some positive integer n then $A^\infty \leq C_A(G)$. In particular, if A acts faithfully on G and $[A, \ldots, A, G]_n = 1$ for some positive integer n then A is nilpotent.

Proof We proceed by induction on $|G|$. If $|G| = 1$ then $C_A(G) = A$ and $A^\infty \leq A = C_A(G)$. Now we assume that $|G| > 1$. Then $N := [A, G] < G$, since otherwise $1 = [A, \ldots, A, G]_n = G$. Since $1 = [A, \ldots, A, G]_n = [A, \ldots, A, N]_{n-1}$, we obtain by induction that $C_A(N) \leq A^\infty$, or equivalently, $[A^\infty, A, G] = [A^\infty, N] = 1$. We need to show that $[G, A^\infty] = 1$, or equivalently that $[G, A^\infty, A] = 1$, since $A^\infty = A^k = A^{k+1} = [A, A^k] = [A, A^\infty] = [A^\infty, A]$ for some $k \in \mathbb{N}$. By the 3 subgroup lemma it suffices to show that $[A, G, A^\infty] = 1$.

We claim that it suffices to find a normal subgroup C of G with $1 < C \leq G^A$. In fact, then we know that A acts on $G := G/C$ and $[A, \ldots, A, G]_n = [A, \ldots, A, G]_n = 1$ and by induction we obtain $1 = [A^\infty, G] = [A^\infty, G]$. This implies $[A^\infty, G] \leq C$, and since A acts trivially on C we obtain $1 = [A, A^\infty, G] = [A, G, A^\infty]$, and the claim is proved.
We may assume that \([A^\infty, G] > 1\), since otherwise \(A^\infty \leq C_A(G)\) and we are done. We set \(C := C_{[A^\infty, G]}(A)\). Then clearly, \(C \leq G^A\). To see that \(C > 1\), note that \([A, \ldots, A, [A^\infty, G]]_n \leq [A, \ldots, A, G] = 1\) but \([A^\infty, G] > 1\).

Let \(m \in \mathbb{N}_0\) be maximal with \([A, \ldots, A, [A^\infty, G]]_m > 1\), then this subgroup is centralized by \(A\) and it is contained in \([A^\infty, G]\). Therefore it is contained in \(C\) and \(C > 1\).

Finally, we show that \(C\) is normal in \(G\). First we claim that \([A^\infty, G]\) centralizes \([A, G]\). From the first paragraph we have \([A^\infty, A, G] = 1\) and therefore \([G, A^\infty, [A, G]] = [G, 1] = 1\). Moreover, \([A, G] \leq G\) and therefore \([[A, G], G] = [G, [A, G]] \leq [A, G]\). This implies \([A^\infty, [A, G], G] \leq [A^\infty, [A, G]] = 1\). The 3 subgroup lemma now implies that \([[A, G], G, A^\infty] = 1\), proving our claim. In particular, since \(C \leq [A^\infty, G]\), we have \([C, A, G] = 1\). Since \(A\) centralizes \(C\), we also have \([G, C, A] = 1\). The 3 subgroup lemma implies \([A, G, C] = 1\) so that \([G, C]\) is centralized by \(A\). Recall that \(C \leq [A^\infty, G] \leq G\) and therefore \([G, C] \leq [G, [A^\infty, G]] \leq [A^\infty, G]\). But we just saw that \(A\) centralizes \([C, G]\). Thus, \([C, G] \leq C_{[A^\infty, G]}(A) = C\). This implies that \(G\) normalizes \(C\) and the proof is complete. \(\square\)

12.17 Lemma If \([A, A, G] = 1\) then \([A, G]\) is abelian.

Proof We have \([G, A, [A, G]] = [G, 1] = 1\). Moreover, \([A, G] \leq G\) implies \([A, [A, G], G] = [A, G, [A, G]] \leq [A, [A, G]] = 1\). By the 3 subgroup lemma we obtain \([[A, G], [A, G]] = [[A, G], G, A] = 1\) and \([A, G]\) is abelian. \(\square\)

12.18 Theorem Assume that \(A\) and \(G\) are finite and that \(A\) is a \(p\)-group. If \([A, \ldots, A, G]_n = 1\) for some positive integer \(n\) then \([A, G]\) is a \(p\)-group.

Proof We set \(N := [A, G]\) and recall from Lemma 12.12 that \(N\) is an \(A\)-invariant normal subgroup of \(G\) and that \(A\) acts trivially on \(G/N\). We prove the theorem by induction on \(|G|\). If \(|G| = 1\) then \(N = 1\) and \(N\) is a \(p\)-group. Now we assume that \(|G| > 1\). Since \([A, \ldots, A, G]_n = 1\), we have \(N \triangleleft G\). Moreover, \([A, \ldots, A, N]_{n-1} = 1\) and, by induction, \([A, N]\) is a \(p\)-group. Again by Lemma 12.12, \([A, N]\) is a normal \(A\)-invariant subgroup of \(N\) and \(A\) acts trivially on \(N/[A, N]\). Set \(U := O_p(N)\). Then \(U \leq N \triangleleft G\) implies that \(U\) is \(A\)-invariant and normal in \(G\). We have \([A, N] \leq U \leq N\) and set \(G := G/U\). Then \(A\) acts trivially on \(N\) since it acts trivially on \(N/[A, N]\). Moreover, \(A\) acts trivially on \(G/N\) and on \(G/N\). We obtain \(1 = [A, N] = \)

66
\[\{A, [A, G]\} = [A, A, G] \] and by Lemma 12.17, \(\bar{N} = [A, G] \) is abelian. Since \(O_p(N) = 1 \), we can conclude that \(N \) is a \(p' \)-group. Now the hypotheses of Corollary 11.6 are satisfied for the subgroup \(\bar{N} \) of \(\bar{G} \). Thus, every coset of \(\bar{N} \) in \(\bar{G} \) contains an \(A \)-fixed point. But also \(\bar{N} \) consists of \(A \)-fixed points. This implies that \(A \) acts trivially on \(\bar{G} \). This implies \(1 = [A, \bar{G}] = [A, G] = N \) and \(N \leq U \). Thus, \(N \) is a \(p \)-group.

12.19 Theorem Assume that \(A \) and \(G \) are finite and that \([A, \ldots, A, G]_n = 1\) for some positive integer \(n \). Then \([A, G]\) is nilpotent.

Proof We prove the theorem by induction on \(|A|\). If \(|A| = 1\) then \([A, G] = 1\) is nilpotent. We assume from now on that \(|A| > 1\). We claim that every proper subgroup \(B \) of \(A \) acts trivially on \(G/F(G) \), where \(F(G) \) is the Fitting subgroup of \(G \). In fact, \([B, \ldots, B, G]_n \leq [A, \ldots, A, G]_n = 1\) and the induction hypothesis implies that \([B, G]\) is nilpotent. Since \([B, G] \trianglelefteq G\), we obtain \([B, G] \leq F(G)\). Since \(B \) acts trivially on \(G/[B, G] \), it also acts trivially on \(\bar{G} := G/F(G) \).

If \(A \) is generated by all its proper subgroups then \(A \) acts trivially on \(\bar{G} \). This implies that \(1 = [A, \bar{G}] = [A, G] \) and \([A, G] \leq F(G)\). But then \([A, G]\) is nilpotent. Therefore we may assume that \(A \) is not generated by its proper subgroups. Since \(A \) is generated by its Sylow subgroups for all prime divisors of \(|A|\), \(A \) must be equal to a Sylow subgroup of \(A \). Thus, \(A \) is a \(p \)-group and Theorem 12.18 applies to show that \([A, G]\) is a \(p \)-group. This completes the proof.

\[\square \]
13 Thompson’s $P \times Q$ Lemma

Throughout this section, G and A denote groups and we assume that A acts on G via automorphisms. We view G and A as subgroups in the semidirect product $\Gamma := G \rtimes A$.

13.1 Lemma Assume that A and G are finite, that $\gcd(|A|, [A,G]) = 1$, and that A or $[A,G]$ is solvable. Then $G = A^G \cdot [A,G]$.

Proof This follows immediately from Lemma 12.12 and Corollary 11.6, since every coset of $[A,G]$ in G is A-invariant and therefore contains an A-fixed point.

Proof Clearly $[A,A,G] \leq [A,G]$. To show the reverse inclusion it suffices to show that $[a,g] \in [A,A,G]$ for all $a \in A$ and $g \in G$. In a first step we assume that A is solvable. Then, by Lemma 13.1, we can write $g = xc$ with $c \in G^A$ and $x \in [A,G]$. We obtain $[a,g] = [a,xc] = [a,x] \cdot [a,c] = [a,x] \in [A,A,G]$, since $[a,c] = 1$. In the general case (A not necessarily solvable), we work with $\langle a \rangle$ instead of A and obtain $[a,g] \in [\langle a \rangle, \langle a \rangle, G] \subseteq [A,A,G]$.

13.3 Corollary Assume that A and G are finite, that A acts faithfully on G and that $[A,\ldots,A,G]_n = 1$ for some $n \in \mathbb{N}$. Then every prime divisor of $|A|$ also divides $|G|$.

Proof Let p be a prime divisor of $|A|$ and assume that p does not divide $|G|$. For $P \in \text{Syl}_p(A)$, repeated application of Lemma 13.2 yields $1 = [P,\ldots,P,G]_n = [P,G]$. This implies that P acts trivially on G, in contradiction to A acting faithfully on G.

Proof Note that the semidirect product $\Gamma := G \rtimes A$ is again a p-group. Therefore, there exists $n \geq 2$ such that $\Gamma^n = 1$. This implies $[A,\ldots,A,G]_{n-1} \leq \Gamma^n = 1$ with $n-1 \geq 1$. Since $G > 1$ and $[A,\ldots,A,G]_{n-1} = 1$, we have...
[A, G] < G and there exists an integer \(i > 0 \) such that \(C := [A, \ldots, A, G]_{i-1} \geq 1 \) but \([A, \ldots, A, G]_i = 1\). This implies \(1 < C \leq G^A\). □

13.5 Theorem (Thompson’s \(P \times Q \) Lemma) Let \(p \) be a prime. Assume that \(A = P \times Q \), where \(P \) is a \(p \)-group and \(Q \) is a \(p' \)-group, and that \(G \) is a \(p \)-group. If \(G^P \leq G^Q \) then \(G^Q = G \).

Proof We prove the theorem by induction on \(|G| \). If \(|G| = 1 \) then the clearly \(Q \) acts trivially on \(G \). So assume that \(|G| > 1 \) and set \(\Gamma := G \rtimes A \). By Lemma 13.4 we have \([P, G] < G\). Since \(A \) normalizes \(P \) and \(G \), the subgroup \([P, G] < G\) is \(A \)-invariant. Moreover, \([P, G]^P = G^P \cap [P, G] \leq G^Q \cap [P, G] = [P, G]^Q\). By induction we obtain that \(Q \) acts trivially on \([P, G]\). In other words, \([Q, P, G] = 1\). But also \([G, Q, P] = 1\), since \([Q, P] = 1\). By the 3 subgroup lemma we obtain \([P, G, Q] = 1\) and \(P \) acts trivially on \([Q, G]\). But then \([Q, G] = [Q, G]^P = [Q, G] \cap G^P \leq [Q, G] \cap G^Q = [Q, G]^Q\), which implies that \(Q \) centralizes \([Q, G]\) and that \([Q, Q, G] = 1\). Now, Lemma 13.2 implies that \([Q, Q, G] = [Q, G]\) and the proof is complete. □

13.6 Theorem Let \(p \) be a prime, let \(G \) be a \(p \)-solvable group, let \(P \) be a \(p \)-subgroup of \(G \), and set \(H := N_G(P) \). Then \(O_{p'}(H) \leq O_{p'}(G) \).

Proof We set \(Q := O_{p'}(H) \) and \(N := O_{p'}(G) \). We first assume that \(N = 1 \) and need to show that \(Q = 1 \). Note that both \(P \) and \(Q \) are normal subgroups of \(H \) and that \(P \cap Q = 1 \). Thus, \(A := PQ = P \times Q \) is the internal direct product of \(P \) and \(Q \). Moreover, \(A \) acts on the \(p \)-group \(U := O_{p'}(G) > 1 \) by conjugation. We want to show that \(C_U(P) \leq C_U(Q) \). Note that \(C_U(P) = U \cap C_G(P) \leq U \cap N_G(P) = U \cap H \) and that \(U \cap H \) is a normal \(p \)-subgroup of \(H \). Since \(Q \) is a normal \(p' \)-subgroup of \(H \), \(U \cap H \) and \(Q \) centralize each other. Therefore \(C_U(P) \) and \(Q \) centralize each other. In other words, \(C_U(P) \leq C_G(Q) \cap U = C_U(Q) \), and we can apply Thompson’s \(P \times Q \) lemma. This yields \([U, Q] = 1\) or \(Q \leq C_G(U) \). By the Higman-Hall 1.2.3 lemma, we have \(C_G(U) \leq U \) and therefore \(Q \leq U \). Since \(U \) is a \(p \)-group and \(Q \) is a \(p' \)-group, this implies \(Q = 1 \) as desired.

Now assume that \(N = O_{p'}(G) > 1 \). Then \(\overline{G} := G/N \) is \(p \)-solvable with \(O_{p'}(\overline{G}) = 1 \). We have \(N_{\overline{G}}(\overline{P}) = \overline{N_G(P)} = \overline{H} \) (cf. Homework problem), since \(N \) is a normal \(p' \)-subgroup of \(G \). By the first case applied to \(\overline{G} \) we have \(O_{p'}(\overline{H}) = 1 \). But \(\overline{O_{p'}(H)} \leq O_{p'}(\overline{H}) \) and therefore, \(O_{p'}(H) \leq N = O_{p'}(G) \).

This completes the proof. □
13.7 Theorem Assume that A and G are finite, that $\gcd(|A|, |G|) = 1$, and that G is abelian. Then $G = G^A \times [A, G]$.

Proof We already know that $G = G^A \cdot [A, G]$ by Lemma 13.1. Since G is abelian, it suffices to show that $G^A \cap [A, G] = 1$. Let $\theta : G
ightarrow G$ be defined as

$$\theta(g) := \prod_{a \in A} a^g.$$

Since G is abelian, this definition does not depend on the order of the product. Also, since G is abelian, θ is a group homomorphism. If $c \in G^A$ then $\theta(c) = c^{|A|}$. Moreover, for $a \in A$ and $g \in G$ we have $\theta(a^g) = \prod b \in A b_g = \theta(g)$ and therefore $\theta([a, g]) = \theta(a^g)\theta(g^{-1}) = \theta(g)\theta(g)^{-1} = 1$. This implies that $[A, G] \leq \ker(\theta)$. Now let $x \in G^A \cap [A, G]$. Then $1 = \theta(x) = x^{|A|}$. But since A and G have coprime orders, this implies $x = 1$ and the proof is complete.

13.8 Corollary Let p be a prime. Assume that G is an abelian p-group and A is a p'-group. If A fixes every element of order p in G then A acts trivially on G.

Proof By Fitting’s Theorem 13.7 we have $G = G^A \times [A, G]$ and every element of order p in G is already contained in G^A. Therefore, $[A, G]$ is a p-group with no elements of order p. This implies $[A, G] = 1$ and $G^A = 1$.

Our goal is to show that we can drop the assumption that G is abelian in the previous corollary. The following trick, due to Reinhold Baer, will come in handy.

13.9 Lemma (Baer trick) Let G be a finite nilpotent group of odd order with $G^3 = 1$ (i.e, $G' \leq Z(G)$). There exists a binary operation

$$G \times G \rightarrow G, \quad (x, y) \mapsto x + y,$$

with the following properties:

(i) $(G, +)$ is an abelian group.

(ii) If $x, y \in G$ are commuting elements then $x + y = xy$.

(iii) The additive order of every element of G is equal to its multiplicative order.

(iv) $\Aut(G) \leq \Aut(G, +)$.

70
Proof Since G has odd order, there exists $n \in \mathbb{Z}$ with $|G| + 1 = 2n$. For $x, y \in G$, we define $x + y := [x, y]^n y x$.

We first show that $x + y = y + x$ for $x, y \in G$. We need to show that $[x, y]^n x y = [y, x]^n x y$, or equivalently that $[x, y]^n = x y x^{-1} y^{-1}$. But this holds, since $2n = |G| + 1$.

Next, assume that $x, y \in G$ are commuting elements. Then $x + y = [x, y]^n y x = x y$, since $[x, y] = 1$. This shows (ii).

Since 1 commutes with every x we have $x + 1 = x \cdot 1 = x$. Thus, 1 is an identity element with respect to +. Moreover, since x and x^{-1} commute, we have $x + x^{-1} = xx^{-1} = 1$. Next we show associativity of +. Note that, since $G' \leq Z(G)$, every commutator is central in G, and every triple commutator is trivial. Moreover, for every $x \in G$, the function $G \to G$, $y \mapsto [x, y]$, is a homomorphism. In fact, $[x, y z] = [x, y] \cdot [x, z] = [x, y][x, z]$ for $x, y, z \in G$. Similarly, $[x y, z] = [x, z][y, z]$. We have

$$x + (y + z) = x + [y, z]^n z y = [x, [y, z]^n z y]^n \cdot [y, z]^n z y x$$

$$= ([x, [y, z]^n] [x, z][x, y])^n [y, z]^n z y x$$

$$= ([x, [y, z]^n] [x, z][x, y])^n [y, z]^n z y x$$

$$= [x, y]^n [x, z]^n [y, z]^n z y x$$

and similarly

$$(x + y) + z = [x, y]^n y x + z = [[x, y]^n y x, z]^n \cdot z [x, y]^n y x$$

$$= [x, y]^n [x, z]^n [y, z]^n z y x$$

Thus, + is associative and $(G, +)$ is an abelian group with identity element 1 and $-x = x^{-1}$. This shows (i).

To see (iii), note that (a) implies $n \cdot x = x^n$ for all positive integers n (by induction on n) and that additive and multiplicative identity coincide.

Finally, let $f \in \text{Aut}(G)$. Then

$$f(x + y) = f([x, y]^n y x) = f([x, y]^n f(y) f(x)) = [f(x), f(y)]^n f(y) f(x)$$

$$= f(x) + f(y)$$

and (iv) follows. This completes the proof. □
13.10 Theorem Let \(p \) be an odd prime. Assume that \(G \) is a \(p \)-group and that \(A \) is a \(p' \)-group. If \(A \) fixes every element of order \(p \) in \(G \) then \(A \) acts trivially on \(G \).

Proof We prove the theorem by induction on \(|G| \). If \(|G| = 1 \) then certainly \(A \) acts trivially on \(G \). So assume from now on that \(|G| > 1 \). By induction, \(A \) acts trivially on every \(A \)-invariant proper subgroup \(H \) of \(G \). In particular, if \([A,G] < G\) then \(A \) acts trivially on \([A,G]\) so that \([A,A,G] = 1\). But by Lemma 13.2 we have \([A,G] = [A,A,G] = 1\) and \(A \) acts trivially on \(G \). Therefore, we can assume from now on that \([A,G] = G\). Since \(G \) is a non-trivial \(p \)-group we have \(G' < G \). Moreover, since \(G' \) is characteristic in \(G \), it is also \(A \)-invariant. We obtain, by induction, that \([A,G'] = 1\). In particular we have \([G,A,G'] = 1\). Moreover, since \(G' \) is normal in \(G \), we have \([G,G'] \leq G'\), which implies \([A,G',G'] = [A,G,G'] \leq [A,G'] = 1\). By the 3 subgroup lemma, we have \([G',G,A] = 1\). But since we assumed that \([A,G] = G\), we obtain \([G',G] = 1\). In other words, \(G' \leq Z(G) \). By Lemma 13.9, \(G \) carries an abelian group structure \((G,+))\) satisfying conditions (i)–(iv) in the Lemma. By (iv), the action of \(A \) on \(G \) is also an action on \((G,+))\) via group automorphisms. By (iii), every element of \((G,+))\) of order \(p \) is fixed by \(A \). Thus, by Corollary 13.8, \(A \) acts trivially on \((G,+))\) and on \(G \). \(\square\)

13.11 Theorem Let \(p \) be an odd prime. Assume that \(A = PQ \), where \(P \) is a \(p \)-subgroup of \(A \) and \(Q \) is a normal \(p' \)-subgroup of \(A \), and assume that \(G \) is a \(p \)-group. If \(G^P \leq G^Q \) then \(G^Q = G \).

Proof First note that, since \(A \) normalizes \(G \) and \(Q \), the subgroup \([Q,G]\) of \(G \) is \(A \)-invariant.

 Our next goal is to prove the theorem in the case that \(G \) is abelian. In this case, by Fitting’s Theorem, we have \(G = G^Q \times [Q,G] \). Assume that \([Q,G] > 1\). Lemma 13.4 implies that \([Q,G]^P > 1\). But then the hypothesis of the theorem implies \([Q,G]^Q \geq [Q,G]^P > 1\). This implies \([Q,G] \cap G^Q = 1\), in contradiction to \(G = G^Q \times [Q,G] \).

 Now we prove the theorem for general \(G \) by induction on \(|G| \). We can assume that \(|G| > 1 \). Note that if \(H \) is a proper \(A \)-invariant subgroup of \(G \) then \(H \) satisfies the hypothesis of the theorem and, by induction, \(Q \) acts trivially on \(H \). We apply this to \([Q,G]\). So, if \([Q,G] < G\) then \([A,Q,G] = 1\). In particular, \([Q,Q,G] = 1\) and by Lemma 13.2 we obtain \([Q,G] = [Q,Q,G] = 1\) and we are done. So we can assume from now on that \([Q,G] =
Consider the proper A-invariant subgroup G' of G. By the above we obtain $[Q, G'] = 1$ and in particular $[G, Q, G'] = 1$ and $[Q, G', G] \leq [Q, G'] = 1$. The 3 subgroup lemma implies $[G', Q, G] = 1$ and since $[Q, G] = G$, we obtain $[G', G] = 1$. In other words, $G' \leq Z(G)$. Now we can again apply Baer’s trick to see that Q acts trivially on G, since we have already proved the theorem in the case that G is abelian. \qed
14 The Transfer Map

Throughout this section, G denotes a finite group.

14.1 Definition Let H and K be subgroups of G with $H' \leq K \leq H \leq G$ (in particular, H/K is abelian) and let $\mathcal{R} \subseteq G$ be a set of representatives for G/H. Then, for each $g \in G$ there exist unique elements $\rho(g) \in \mathcal{R}$ and $\eta(g) \in H$ such that $g = \rho(g)\eta(g)$. The function

$$V_{H/K}^G : G \to H/K, \quad g \mapsto \prod_{r \in \mathcal{R}} \eta(gr)K,$$

is called the transfer map from G to H/K (with respect to \mathcal{R}).

14.2 Proposition Using the notation of Definition 14.1, the function $V_{H/K}^G$ is a group homomorphism which does not depend on the choice of \mathcal{R}.

Proof Let \mathcal{R}' be another set of representatives of G/H and let $\rho' : G \to \mathcal{R}'$ and $\eta' : G \to H$ be such that $g = \rho'(g)\eta'(g)$ for all $g \in G$. Then there exists for each $r \in \mathcal{R}$ a unique $r' \in \mathcal{R}'$ such that $rH = r'H$ and also a unique $h_r \in H$ such that $r' = rh_r$. For any $x \in G$ we therefore have $\rho'(x) = \rho(x)h_{\rho(x)}$. This implies

$$\eta'(gr') = \rho'(gr')^{-1}gr' = \rho'(gr')^{-1}grh_r = h_{\rho(gr)}^{-1}\rho(gr)^{-1}grh_r = h_{\rho(gr)}^{-1}\eta(gr)h_r,$$

for all $g \in G$ and $r' \in \mathcal{R}'$. Therefore,

$$\prod_{r' \in \mathcal{R}'} \eta'(gr')K = \prod_{r \in \mathcal{R}} h_{\rho(gr)}^{-1}\eta(gr)h_rK$$

$$= \left(\prod_{r \in \mathcal{R}} \eta(gr)K \right) \left(\prod_{r \in \mathcal{R}} h_{\rho(gr)}K \right)^{-1} \left(\prod_{r \in \mathcal{R}} h_rK \right)$$

$$= \prod_{r \in \mathcal{R}} \eta(gr)K,$$

for all $g \in G$, since with r also $\rho(gr)$ runs through \mathcal{R}. This shows that $V_{H/K}^G$ does not depend on the choice of \mathcal{R}.

Next we show that $V_{H/K}^G$ is a homomorphism. Let $g_1, g_2 \in G$. Then, for every $r \in \mathcal{R}$ we have

$$\rho(g_1g_2r)H = g_1g_2rH = g_1\rho(g_2r)H = \rho(g_1\rho(g_2r))H,$$

74
and therefore, $\rho(g_1g_2r) = \rho(g_1\rho(g_2r))$. This implies

$$V_{H/K}^G(g_1g_2) = \prod_{r \in R} \rho(g_1g_2r)^{-1}g_1g_2rK = \prod_{r \in R} \rho(g_1\rho(g_2r))^{-1}g_1g_2rK$$

$$= \prod_{r \in R} \rho(g_1\rho(g_2r))^{-1}g_1\rho(g_2r)\rho(g_2r)^{-1}g_2rK = \prod_{r \in R} \eta(g_1\rho(g_2r))\eta(g_2r)K$$

$$= \left(\prod_{r \in R} \eta(g_1\rho(g_2r))K \right) \left(\prod_{r \in R} \eta(g_2r)K \right) = \left(\prod_{r \in R} \eta(g_1r)K \right) \left(\prod_{r \in R} \eta(g_2r)K \right)$$

$$= V_{H/K}^G(g_1)V_{H/K}^G(g_2),$$

and the proposition is proved. \qed

14.3 Remark Let $H' \leq K \trianglelefteq H \leq G$ be as in Definition 14.1. In order to calculate $V_{H/K}^G(g)$ for given $g \in G$, we can choose a set R of representatives which depends on g and makes the computation easier. Note that $\langle g \rangle$ acts on G/H by left translations. Let r_1H, \ldots, r_sH be a set of representatives of the $\langle g \rangle$-orbits and let d_i be the length of the orbit of r_iH, for $i = 1, \ldots, s$. Then

$$R := \{r_1, gr_1, \ldots, g^{d_1}r_1, r_2, gr_2, \ldots, r_s, gr_s, \ldots, g^{d_s}r_s\} \subseteq G$$

is a set of representatives of G/H, $g^{d_i}r_i \in r_iH$, $r_i^{-1}g^{d_i}r_i \in H$ for all $i = 1, \ldots, s$, and

$$V_{H/K}^G(g) = \prod_{i=1}^s r_i^{-1}g^{d_i}r_iK.$$

Note that $d_1 + \cdots + d_s = [G : H]$. If moreover, $r_i^{-1}g^{d_i}r_iK = g^{d_i}K$ for all $i = 1, \ldots, s$ (which holds for example if $g \in Z(G)$ or if $H \leq Z(G)$), then we obtain

$$V_{H/K}^G(g) = g^{[G:H]}K.$$

This implies that $G \rightarrow Z(G), g \mapsto g^{[G:Z(G)]}$, is a homomorphism.

14.4 Definition For $H \leq G$ we call the group

$$\text{Foc}_G(H) := \langle [g,h] | g \in G, h \in H \text{ such that } [g,h] \in H \rangle$$

the focal subgroup of H with respect of G.

75
14.5 Remark Let $H \leq G$ and set $F := \text{Foc}_G(H)$. Then it is clear that

$$H' \leq F \leq H \cap G' \leq H.$$

Therefore, $F \leq H$ and H/F is abelian. For $r \in G$ and $h \in H$ with $[r, h] \in H$ we have

$$rhr^{-1}F = rhr^{-1}h^{-1}Fh = [r, h]Fh = Fh = hF.$$

With Remark 14.3 we therefore have

$$V_{H/F}^G(h) = h^{[G:H]}F$$

for all $h \in H$.

14.6 Proposition Let $H \leq G$ and $F := \text{Foc}_G(H)$. If $[G : H]$ and $[H : F]$ are coprime, then the following assertions hold:

(a) $H \cap \ker(V_{H/F}^G) = H \cap G' = \text{Foc}_G(H)$.

(b) $H \ker(V_{H/F}^G) = G$.

(c) $G/G' \cong HG'/G' \times \ker(V_{H/F}^G)/G'$.

(d) $G/\ker(V_{H/F}^G) \cong H/F$.

Proof (a) Since H/F is abelian, also $G/\ker(V_{H/F}^G)$ is abelian by the Homomorphism Theorem. This implies $G' \leq \ker(V_{H/F}^G) =: N$ and $F \leq H \cap G' \leq H \cap N$. On the other hand, if $h \in H \cap N$, then $1 = V_{H/F}^G(h) = h^{[G:H]}F$ by Remark 10.5. Since also $h^{[H:F]}F = 1$ and $[G : H]$ and $[H : F]$ are coprime, we obtain $hF = F$ and $h \in F$.

(b) By (a) we have

$$|G/N| \geq |HN/N| = |H/H \cap N| = |H/F| \geq |G/N|.$$

Therefore, we have equality everywhere and $HN = G$.

(c) By (b) we have $G/G' = (HG'/G')(N/G')$ and by (a) we have $N \cap HG' = (N \cap H)G' = FG' = G'$.

(d) From the proof of (b) we see that $V_{H/F}^G$ is surjective.

14.7 Definition Let $H \leq G$. We set $H_0 := H$ and $H_i := \text{Foc}_G(H_{i-1})$ for $i \in \mathbb{N}$. If $H_n = 1$ for some $n \in \mathbb{N}_0$, then we say that H is hyperfocal in G.

76
14.8 Remark (a) If $H \leq G$ is hyperfocal in G and $K \leq H$, then also K is hyperfocal in G. In fact, this follows immediately from $\text{Foc}_G(U) \leq \text{Foc}_G(V)$, whenever $U \leq V \leq G$. Moreover, if $H \leq U \leq G$ and H is hyperfocal in G, then H is also hyperfocal in U. This follows immediately from $\text{Foc}_U(V) \leq \text{Foc}_G(V)$, whenever $V \leq U \leq G$.

(b) Assume the notation from Definition 14.7. Then $H_{i+1} \leq H_i$ for all $i \in \mathbb{N}_0$, where $H_{i+1} = [H, H, \ldots, H]$ with $i + 1$ entries equal to H. In fact, $H^1 = H = H_0$ and if $i > 0$, then by induction and Part (a) we have

$$H^{i+1} = [H, H^i] = \langle \{[h, x] \mid h \in H, x \in H^i \} \rangle \leq \langle \{[g, x] \mid g \in G, x \in H^i \text{ such that } [g, x] \in H^i \} \rangle = \text{Foc}_G(H^1) \leq \text{Foc}_G(H_{i-1}) = H_i.$$

In particular, if H is hyperfocal in G then H is nilpotent.

14.9 Theorem If $H \leq G$ is a hyperfocal Hall subgroup of G, then H has a normal complement in G.

Proof We proof the assertion by induction on G. If $G = 1$, this is obvious. Therefore, we assume that $G > 1$. We may assume that $H > 1$. Since H is hyperfocal in G, $F := \text{Foc}_G(H) < H$. Using Proposition 14.6, this implies $G/N \cong H/F > 1$ with $N := \text{ker}(V^G_{H/F})$ and therefore, $N < G$. The subgroup $H \cap N$ is again a Hall subgroup of N (by Remark 10.2(g)) and hyperfocal in N (by Remark 14.8). By induction, there exists a normal complement K of $H \cap N$ in N. As a normal Hall subgroup of N, K is characteristic in N and therefore normal in G. Moreover, $H \cap K = H \cap N \cap K = 1$, and finally, by Proposition 14.6, $HK = H(H \cap N)K = HN = G$.

14.10 Theorem Let H be a nilpotent Hall subgroup of G. Assume that any two elements of H which are conjugate in G are also conjugate in H. Then H has a normal complement in G.

Proof We set $H_0 := H$ and $H_i := \text{Foc}_G(H_{i-1})$ for $i \in \mathbb{N}$. By Theorem 14.9, it suffices to show that $H_i = H^{i+1}$ for all $i \in \mathbb{N}_0$. We prove this by induction on i. For $i = 0$, this is clear. So let $i > 0$. By Remark 14.8(b), we have $H^{i+1} \leq H_i$. Conversely, if $g \in G$ and $h \in H_{i-1}$ such that $[g, h] \in H_{i-1}$, then $ghg^{-1} \in H_{i-1} \leq H$. By the hypothesis in the theorem there exists $k \in H$ such that $ghg^{-1} = khh^{-1}$. From this we obtain

$$[g, h] = ghg^{-1}h^{-1} = khh^{-1}h^{-1} = [k, h] \in [H, H_{i-1}] = [H, Z_{i-1}(H)] = Z_i(H),$$
and the result follows.

14.11 Lemma Let P be a Sylow p-subgroup of G and let $A, B \subseteq P$ be subsets such that $xAx^{-1} = A$ and $xBx^{-1} = B$ for all $x \in P$. If there exists $g \in G$ such that $gAg^{-1} = B$, then there also exists $n \in N_G(P)$ such that $nAn^{-1} = B$.

Proof Let $g \in G$ with $gAg^{-1} = B$. Then $P \leq N_G(A) = \{x \in G \mid xAx^{-1} = A\} \leq G$ and $P \leq N_G(B) = N_G(gAg^{-1}) = gN_G(A)g^{-1} \leq G$. Therefore, P and $g^{-1}Pg$ are Sylow p-subgroups of $N_G(A)$ and there exists $y \in N_G(A)$ with $yg^{-1}Pgy^{-1} = P$. Therefore, $n := gy^{-1} \in N_G(P)$ and $nAn^{-1} = gy^{-1}Agy^{-1} = gAg^{-1} = B$.

14.12 Theorem (Burnside) Let P be a Sylow p-subgroup of G such that $N_G(P) = C_G(P)$ (in other words that $P \leq Z(N_G(P))$). Then P has a normal complement in G. In particular, G is not simple, unless $P = 1$ or $|G| = p$.

Proof Since $P \leq N_G(P) = C_G(P)$, P is abelian. By Lemma 14.11, any two elements $x, y \in P$ which are conjugate in G are also conjugate in $N_G(P) = C_G(P)$ and therefore equal. Now Theorem 14.10 implies the assertion.

14.13 Theorem If p is the smallest prime divisor of $|G|$ and if a Sylow p-subgroup P of G is cyclic, then P has a normal complement in G.

Proof If P is cyclic of order p^n, then $|\text{Aut}(P)| = p^{n-1}(p-1)$. The homomorphism $N_G(P) \to \text{Aut}(P)$, mapping $n \in N_G(P)$ to the conjugation with n, induces a monomorphism $N_G(P)/C_G(P) \to \text{Aut}(P)$. Since p is the smallest prime divisor of G, this implies that $N_G(P)/C_G(P)$ is a p-group. On the other hand, $P \leq C_G(P)$, since P is abelian, and $N_G(P)/C_G(P)$ is a p'-group. This implies $N_G(P) = C_G(P)$ and Theorem 14.12 completes the proof.

14.14 Remark (a) If G has a cyclic Sylow 2-subgroup $P > 1$, then P has a normal complement K in G. In particular, G is not simple, unless $|G| = 2$. Since K has odd order, it is solvable by the Odd-Order-Theorem. Therefore, with $G/K \cong P$ also G is solvable. Using representation theory, one can also show that a finite group with a generalized quaternion Sylow 2-subgroup is not simple.
(b) Theorem 14.13 implies that every group of order $2n$, with n odd, has a normal subgroup of order n.

14.15 Theorem If all Sylow subgroups of G are cyclic, then G is solvable.

Proof We prove the theorem by induction on $|G|$. The case $|G| = 1$ is trivial and we may assume that $|G| > 1$. Let p be the smallest prime divisor of $|G|$ and let P be a Sylow p-subgroup of G. Then P has a normal complement K by Theorem 14.13. Again, every Sylow subgroup of K is cyclic, and by induction K is solvable. Therefore, with $G/K \cong P$, also G is solvable.

14.16 Corollary If G is a group of square free order (i.e., $|G| = p_1 \cdots p_r$ with pairwise distinct primes p_1, \ldots, p_r), then G is solvable.

Proof This is immediate with Theorem 14.15.

14.17 Theorem If G is a non-abelian simple group and p is the smallest prime divisor of $|G|$. Then $|G|$ is divisible by 12 or by p^3.

Proof Let P be a Sylow p-subgroup of G. By Theorem 10.13, P is not cyclic. Therefore, $|P| \geq p^2$. If $|P| \geq p^3$ we are done. Therefore we assume from now on that $|P| = p^2$. Since P is not cyclic, P is elementary abelian. Therefore, Aut(P) \cong GL$_2$($\mathbb{Z}/p\mathbb{Z}$) and $|N_G(P)/C_G(P)|$ divides $|\text{Aut}(P)| = p(p-1)^2(p+1)$. From Theorem 14.12 we know that $|N_G(P)/C_G(P)| > 1$. Since p is the smallest prime dividing $|G|$ and since $P \leq C_G(P)$, we obtain that $|N_G(P)/C_G(P)|$ divides $p + 1$. Since p is the smallest prime dividing $|G|$, also $p + 1$ has to be prime and we obtain $p = 2$ and $|N_G(P)/C_G(P)| = 3$. This implies that $|G|$ is divisible by 12.
15 \(p \)-Nilpotent Groups

15.1 Definition Let \(p \) be a prime. A finite group \(G \) is called \(p \)-nilpotent, if a Sylow \(p \)-subgroup of \(G \) has a normal complement.

15.2 Remark Let \(G \) be a finite group and let \(p \) be a prime.

(a) We have

\[
G \text{ is nilpotent } \implies G \text{ } p\text{-nilpotent} \\
\implies G \text{ is solvable } \implies G \text{ } p\text{-solvable}
\]

(b) Obviously the following statements are equivalent:
 (i) \(G \) is \(p \)-nilpotent.
 (ii) Each Sylow \(p \)-subgroup of \(G \) has a normal complement.
 (iii) \(G \) has a normal Hall \(p' \)-subgroup.
 (iv) \(G/O'_p(G) \) is a \(p \)-group.
 (v) \(G \) has a normal \(p' \)-subgroup \(K \) such that \(G/K \) is a \(p \)-group.

(c) If \(G \) is \(p \)-nilpotent, then \(O'_p(G) \) is a normal complement of every Sylow \(p \)-subgroup of \(G \).

(d) If \(G \) is \(p \)-nilpotent for every prime \(p \) dividing \(|G|\), then \(G \) is nilpotent.

In fact, the homomorphism

\[
G \to \prod_{p \mid |G|} G/O'_p(G), \quad g \mapsto \left(gO'_p(G)\right)_{p \mid |G|},
\]

has kernel \(\bigcap_{p \mid |G|} O'_p(G) = 1 \), and since both groups have the same order, it is an isomorphism.

(e) If \(G \) is \(p \)-nilpotent, then every subgroup and every factor group of \(G \) is \(p \)-nilpotent (Homework).

15.3 Theorem (Frobenius) Let \(p \) be a prime, let \(G \) be a finite group, and let \(P \) be a Sylow \(p \)-subgroup of \(G \). Then the following statements are equivalent:

(i) \(G \) is \(p \)-nilpotent.

(ii) For each \(p \)-subgroup \(Q > 1 \) of \(G \), the normalizer \(N_G(Q) \) is \(p \)-nilpotent.

(iii) For each \(p \)-subgroup \(Q > 1 \) of \(G \), the quotient \(N_G(Q)/C_G(Q) \) is a \(p \)-group.

(iv) For each \(p \)-subgroup \(Q > 1 \) of \(G \) and each Sylow \(p \)-subgroup \(R \) of \(N_G(Q) \), one has \(N_G(Q) = C_G(Q)R \).
(v) For each subgroup Q of P and each $g \in G$ with $gQg^{-1} \leq P$, there exist $c \in C_G(Q)$ and $x \in P$ such that $g = xc$.

(vi) For any two elements $x, y \in P$ and each element $g \in G$ with $y = gxg^{-1}$, there exists an element $u \in P$ such that $y = u xu^{-1}$.

Proof We may assume that $p \mid |G|$.

(i) \implies (ii): This follows from Remark 15.2(e).

(ii) \implies (iii): Let $Q > 1$ be a p-subgroup of G and set $K := O_p(N_G(Q))$. Then, by (ii), $N_G(Q)/K$ is a p-group. In order to prove (iii), it suffices to show that $K \leq C_G(Q)$. But for $k \in K$ and $x \in Q$ one has $[k, x] = kxk^{-1}x^{-1} \in K \cap Q = 1$ and therefore, $K \leq C_G(Q)$.

(iii) \implies (iv): Let $Q > 1$ be a p-subgroup of G and let R be a Sylow p-subgroup of $N_G(Q)$. Then $R \cdot C_G(Q)/C_G(Q)$ is a Sylow p-subgroup of $N_G(Q)/C_G(Q)$ by Remark 10.2(g). This implies $N_G(Q)/C_G(Q) = R \cdot C_G(Q)/C_G(Q)$, since $N_G(Q)/C_G(Q)$ is a p-group.

(iv) \implies (v): Let $Q \leq P$ and let $g \in G$ such that $gQg^{-1} \leq P$. We may assume that $Q > 1$. By induction on $[P : Q]$ we will show that there exist $c \in C_G(Q)$ and $x \in P$ such that $g = xc$. If $[P : Q] = 1$, then $P = Q$ and $gQg^{-1} \leq P$ implies $gQg^{-1} = P$ so that $g \in N_G(P)$. But $N_G(P) = P \cdot C_G(P)$ by (iv) and we can write g in the desired way. From now on we assume that $Q < P$. Then also $gQg^{-1} < P$. For $R_1 := N_P(Q)$ and $R_2 := N_{g^{-1}P}g(Q)$ we then have $Q < R_1 \leq P$ and $Q < R_2 \leq g^{-1}Pg$. Let R be a Sylow p-subgroup of $N_G(Q)$ with $R_1 \leq R$. Since $N_G(Q) = C_G(Q)R = RC_G(Q)$ (by (iv)), there exists $c \in C_G(Q)$ such that $cR_2c^{-1} \leq R$. Let $y \in G$ such that $yR_1y^{-1} \leq P$. Then, by induction applied to $R_1 \leq P$ and $yR_1y^{-1} \leq P$, there exist $c_1 \in C_G(R_1)$ and $x_1 \in P$ such that $y = x_1c_1$. Similarly, for $gR_2g^{-1} \leq P$ and $ycR_2c^{-1}y^{-1} \leq yR_1y^{-1} \leq P$, there exist elements $c_2 \in C_G(gR_2g^{-1})$ and $x_2 \in P$ such that $ycg^{-1} = x_2c_2$. Since $C_G(gR_2g^{-1}) = gC_G(R_2)g^{-1}$, there exists $c_3 \in C_G(R_2)$ with $c_2 = gc_3g^{-1}$. This implies $ycg^{-1} = x_2gc_3g^{-1}$, thus $yc = x_2gc_3$, and finally $g = x_2^{-1}yc_3c_3^{-1} = x_2^{-1}x_1c_1c_3^{-1}$ with $x_2^{-1}x_1 \in P$ and $c_1c_3 \in C_G(Q)$.

(v) \implies (vi): Let $x, y \in P$ and let $g \in G$ such that $y = gxg^{-1}$. If we set $Q := \langle x \rangle$, then $Q \leq P$ and $gQg^{-1} = \langle y \rangle \leq P$. By (v), there exist $c \in C_G(Q) = C_G(x)$ and $u \in P$ such that $g = uc$, and we have $u xu^{-1} = ucxc^{-1}u^{-1} = gxg^{-1} = y$.

(vi) \implies (i): This follows from Theorem 14.10. □

15.4 Remark Let G be a finite group and let p be a prime.
(a) One says that a subgroup H of G controls the fusion of p-subgroups of G, if there exists a Sylow p-subgroup P of G such that

- $P \trianglelefteq H$ and
- for each $Q \trianglelefteq P$ and each $g \in G$ with $gQg^{-1} \trianglelefteq P$ there exist $h \in H$ and $c \in C_G(Q)$ such that $g = hc$.

In view of Frobenius’ Theorem, the p-nilpotent groups are exactly those, for which already the Sylow p-subgroups control the fusion of p-subgroups.

(b) If G has an abelian Sylow p-subgroup P then $N_G(P)$ controls the fusion of p-subgroups of G. (Homework)

(c) The rank of an abelian p-group is defined as the minimal number of generators. For an arbitrary p-group P one defines the Thompson subgroup $J(P)$ as the subgroup of P generated by all abelian subgroups of P of maximal rank.

Let p be odd and let P be a Sylow p-subgroup of G. J. Thompson showed that G is p-nilpotent if and only if $C_G(Z(P))$ and $N_G(J(P))$ are p-nilpotent.

References

[P] R. Boltje: Preliminaries; Class Notes Algebra I (Math200), Fall 2008, UCSC.