Final Exam, Math100, December 16, 2014

(R. Boltje)

Show all your work. No calculator, cell phones, electronic devices, textbooks, or notes allowed.

Maximum score: 50 points

Time: 3 hours

1. (7 points) Suppose that I and J are sets. Suppose further that, for each element $i \in I$, one has a set A_{i} and, for each $j \in J$, one has a set B_{j}. Show that

$$
\left(\bigcup_{i \in I} A_{i}\right) \cap\left(\bigcup_{j \in J} B_{j}\right)=\bigcup_{(i, j) \in I \times J}\left(A_{i} \cap B_{j}\right) .
$$

2. (5 points) Give a precise definition of the following notions:
(a) $a \equiv b(\bmod n)$ for $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.
(b) A function $f: A \rightarrow B$.
(c) Injectivity of a function $f: A \rightarrow B$.
(d) An equivalence relation on a set A ?
(e) A set A is countably infinite.
3. (7 points) Show that $1^{2}+2^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6$ for all natural numbers n.
4. (8 points) Show that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then $a c \equiv b d(\bmod n)$.
5. (8 points) Prove that there exist infinitely many prime numbers.
6. (8 points) Let $f: A \rightarrow B$ be a function.
(a) Show that $X \subseteq f^{-1}(f(X))$ for all subsets X of A.
(b) Show that $f\left(f^{-1}(Y)\right) \subseteq Y$ for all subsets Y of B.
7. (7 points) Prove or disprove: If a relation is transitive and symmetric then it is reflexive.
