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1 The Integers and the Euclidean Algorithm

1.1 Notation N := {1, 2, 3, . . .}, the natural numbers;
N0 := N ∪ {0};
Z := {. . . ,−2,−1, 0, 1, 2, . . .}, the integers.

1.2 Definition Let a, b ∈ Z. We say that a is a multiple of b (or also that b
divides a) if there exists q ∈ Z with bq = a. In this case we also write b | a.
Note that if a 6= 0 then also q 6= 0 and then |b| = b · 1 6 |b| · |q| = |bq| = |a|.
Thus, any non-zero number a has only finitely many divisors.

1.3 Lemma (Division with remainder) Let a ∈ Z and m ∈ N. There
exist unique elements r, q ∈ Z satisfying

a = qm+ r and r ∈ {0, . . . ,m− 1} . (1.3.a)

The number r is called the remainder of a modulo m.

Proof Existence: Let q be the integer with the property q 6 a
m
< q+ 1 and

define r := a− qm. Then q, r ∈ Z and (1.3.a) holds.

Uniqueness: Assume also q′ and r′ are integers satisfying (1.3.a). Then
m > |r − r′| = |q − q′| · m. This implies that m divides |r − r′| and that
|r − r′| = 0. Thus, r = r′ and then also q = q′.

1.4 Example For a = −8 and m = 3 we have a = (−3) ·m+ 1, so q = −3
and r = 1.

For a = 8 and m = 3 we have a = 2 ·m+ 2, so q = 2 and r = 2.

1.5 Remark Let a ∈ Z, m ∈ N and let r be the remainder of a modulo m.
Then we have m | a if and only if r = 0.

1.6 Definition Let a, b ∈ Z, not both zero. The greatest common divisor
of a and b is the largest number d ∈ N with d | a and d | b. We write
gcd(a, b) = d.

1.7 Remark We immediately have the following rules for the greatest com-
mon divisor. Let a, b ∈ Z, not both zero.

(a) gcd(a, b) = gcd(b, a).
(b) If a 6= 0 then gcd(a, 0) = |a|.
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(c) If a | b then gcd(a, b) = |a|.
(d) If m ∈ Z is non-zero then gcd(am, bm) = gcd(a, b) · |m|.
(e) gcd(a, b) = gcd(|a|, |b|).
(f) If a 6= 0 6= b then gcd(a, b) ∈ {1, . . . ,min{|a|, |b|}}.

1.8 Example gcd(−9, 15) = 3.

The following algorithm gives a fast recipe to compute the greatest com-
mon divisor of any two integers a and b (not both 0). Note that by the rules
in the above remark we can restrict ourselves to the case that a, b ∈ N, b < a
and b - a.

1.9 Theorem (Euclidean Algorithm) Let a, b ∈ N with b < a and b - a.
According to Lemma 1.3 there exist

n ∈ N, q1, . . . , qn+1 ∈ N, r1, . . . , rn ∈ N

such that

a = q1b+ r1 with 0 < r1 < b (1)

b = q2r1 + r2 with 0 < r2 < r1 (2)

r1 = q3r2 + r3 with 0 < r3 < r2 (3)

...
...

rn−3 = qn−1rn−2 + rn−1 with 0 < rn−1 < rn−2 (n− 1)

rn−2 = qnrn−1 + rn with 0 < rn < rn−1 (n)

rn−1 = qn+1rn (n+ 1)

One has rn = gcd(a, b).

Proof Equation (n+ 1) implies rn | rn−1.
This and equation (n) implies rn | rn−2.
The above and equation (n− 1) imply rn | rn−3.
...
The above and equation (4) imply rn | r2.
The above and equation (3) imply rn | r1.
The above and equation (2) imply rn | b.
The above and equation (1) imply rn | a.
Thus, rn is a common divisor of a and b.
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Now, assume that d ∈ N is a common divisor of a and b.
Then, equation (1) implies d | r1.
This and equation (2) implies d | r2.
The above and equation (3) imply d | r3.
...
The above and equation (n− 1) imply d | rn−1.
The above and equation (n) imply d | rn.
Thus, d 6 rn. This shows that rn is the greatest common divisor of a

and b.

1.10 Example We compute gcd(1001, 1339).
1339 = 1 · 1001 + 338,
1001 = 2 · 338 + 325,
338 = 1 · 325 + 13,
325 = 25 · 13.
Thus, gcd(1001, 1339) = 13.

1.11 Theorem Let a, b ∈ N, n, r1, . . . , rn, q1, . . . , qn+1 ∈ N be as in Theo-
rem 1.9. Then, rn = gcd(a, b) is an integral linear combination of a and b,
i.e., there exist u, v ∈ Z such that

gcd(a, b) = ua+ vb .

More precisely, if we set

u0 := 0, v0 := 1, u1 := 1, v1 := −q1,

and define recursively

ui := ui−2 − qiui−1 and vi := vi−2 − qivi−1 , for i = 2, . . . , n,

then
ri = uia+ vib for i = 1, . . . , n. (1.11.a)

In particular,
gcd(a, b) = rn = una+ vnb .
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Proof It suffices to prove equation (1.11.a) for i = 1, . . . , n. We do this
by induction on i. Equation (1) from Theorem 1.9 implies r1 = a − q1b =
u1a+ v1b. Equation (2) implies

r2 = b− q2r1 = b− q2(u1a+ v1b) = (−q2u1)a+ (1− q2v1)b
= u2a+ v2b .

Thus, equation (1.11.a) is proved for i = 1 and i = 2. Now let i ∈ {3, . . . , n}
and assume that equation (1.11.a) holds for i−1 and i−2. Then equation (i)
from Theorem 1.9 implies

ri = ri−2 − qiri−1 = ui−2a+ vi−2b− qi(ui−1a+ vi−1b)

= (ui−2 − qiui−1)a+ (vi−2 − qivi−1)b = uia+ vib

and the proof is complete.

1.12 Remark Using Remark 1.7 we can easily see that, for arbitrary a, b ∈
Z, not both zero, one can write gcd(a, b) = ua+ vb for some u, v ∈ Z.

1.13 Example Let a = 1339, b = 1001 as in Example 1.10.

qi ui vi
i = 0 : 0 1
i = 1 : 1339 = 1 · 1001 + 338 1 1 −1
i = 2 : 1001 = 2 · 338 + 325 2 −2 3
i = 3 : 338 = 1 · 325 + 13 1 3 −4
i = 4 : 325 = 25 · 13

It follows from the last theorem that gcd(1001, 1339) = 13 = 3 ·1339 + (−4) ·
1001.

1.14 Definition A natural number p is called a prime number or short a
prime if p has precisely two different positive divisors, namely 1 and p. (So,
1 is not a prime. The primes are 2, 3, 5, 7, 11, 13, 17, 19, . . ..)

1.15 Theorem Every 2 6 a ∈ N can be written as a product of primes.

Proof Induction on a. For a = 2 this is clear (we use one factor). So let
a > 2 and assume that every natural number between 2 and a − 1 can be
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written as a product of primes. If a is prime then a can be written as a
product with one factor. If a is not a prime then a can be written as a = bc
with b, c ∈ {2, . . . , a−1}. By induction, we know that b and c can be written
as products of prime numbers. It follows that also a = bc can be written as
a product of primes. This completes the proof.

1.16 Theorem (Euclid) There exist infinitely many primes.

Proof Assume that there exist only finitely many primes p1, . . . , pn. Con-
sider the natural number

a := p1 · p2 · · · pn + 1 .

By Theorem 1.15 we can write a as a product of primes. So, pi | a for some
i = 1, . . . , n and we can write a = pib. Now, pib = a = p1 · · · pn + 1 implies
that

1 = pi(b− p1 · · · pi−1pi+1 · · · pn)

But this is a contradiction, since pi > 1.

1.17 Proposition Let a, b ∈ Z and let p be a prime. If p divides ab then p
also divides a or b.

Proof If a = b = 0 then the statement is clearly true, since every integer
divides 0. So assume that a and b are not both 0. If p | a we are done.
So assume that p - a. Then gcd(p, a) = 1 and by the Remark following
Theorem 1.11 we can write 1 = up+ va for some u, v ∈ Z. Also, there exists
c ∈ Z with ab = pc. Multiplying the equation 1 = up + va by b we obtain
b = upb+ vab = upb+ vcp = (ub+ vc)p and p | b.

1.18 Theorem (Unique prime factorization) Let a ∈ N with a > 2.
Then a can be written as

a = p1 · · · pr (1.18.a)

with unique primes p1 6 p2 6 · · · 6 pr.

Proof We already know from Theorem 1.15 that a can be written as a
product as in equation (1.18.a). We only have to show that if a = p1 · · · pr =
q1 · · · qs with primes p1 6 · · · 6 pr and q1 6 · · · 6 qs then r = s and pi = qi
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for i = 1, . . . , r. We prove this by induction on a. If a is a prime this is
obviously true, so it is true for a = 2. Fix a > 2 and assume that the
uniqueness statement holds for all integers in {2, . . . , a− 1}. If a is a prime
we are done. So, we can assume that a is not a prime. Then we have r > 2
and s > 2. Let p be the largest prime that divides a. Since also p1, . . . , pr
and q1, . . . , qs are primes that divide a, we have pr 6 p and qs 6 p. By
repeated application of Proposition 1.17 we obtain p | pi and p | qj for some
i ∈ {1, . . . , r} and some j ∈ {1, . . . , s}. This implies p 6 pi 6 pr 6 p and
p 6 qj 6 qs 6 p. It follows that pr = p and qs = p. We can write a = bp
with b ∈ N and obtain b = p1 · · · pr−1 and b = q1 · · · qs−1. Since 2 6 b < a,
induction yields r− 1 = s− 1 and pi = qi for i = 1, . . . , r− 1. This concludes
the proof.

1.19 Definition (a) Two non-zero integers a and b are called coprime or
relatively prime if gcd(a, b) = 1.

(b) The Euler φ-function (also called Euler’s totient function) is the func-
tion

φ : N→ N , n 7→ |{a ∈ {1, . . . , n} | gcd(a, n) = 1}| .

1.20 Proposition (a) φ(1) = 1.
(b) For every prime p and every k ∈ N one has φ(pk) = (p − 1)pk−1. In

particular, φ(p) = p− 1.

Proof The statemtent in (a) is clear. In order to prove part (b) we count
all elements a ∈ {1, . . . , pk} with the property that gcd(a, pk) 6= 1. This last
condition is equivalent to p | a. But the number of elements a ∈ {1, . . . , pk}
which are divisible by p is precisely pk−1. Thus, φ(pk) = pk − pk−1 = (p −
1)pk−1.
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Exercises for Section 1

1. Write a computer program that uses the Euclidean Algorithm to compute
the greatest common divisor d of two natural numbers a and b and also integers
u and v such that d = ua + vb. Use the program to compute d, u, v for (a, b) =
(2458437443, 903827662).

2. Let (a, b) = (153680, 79269). Compute by hand d := gcd(a, b) and deter-
mine u, v ∈ Z satisfying d = ua+ vb.

3. Show that for a, b ∈ N and for d ∈ N the following are equivalent:
(i) d = gcd(a, b).
(ii) d is a common divisor of a and b, and every other common divisor of a and

b divides d.

4. Let a and b be natural numbers, set d := gcd(a, b), and let u0 and v0 be
integers such that d = u0a+v0b. Show that the set of pairs (u, v) ∈ Z×Z satisfying
d = ua+ vb is given as {(u0, v0) + t(r,−s) | t ∈ Z}, where r := b/d and s := a/d.

5. Let p be a prime number and let a1, . . . , an ∈ Z. Show that if p|a1 · · · an
then p|ai for some i ∈ {1, . . . , n}.

6. Let a, b ∈ Z, not both equal to 0, and let d := gcd(a, b). Show that

{ua+ vb | u, v ∈ Z} = {qd | q ∈ Z} .

7. Compute φ(36). Compare it with φ(4) and φ(9). Formulate a general

conjecture and verify it in some cases.
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2 Rings and Fields

2.1 Definition A ring is a set R equipped with two operations, called ad-
dition and multiplication, which satisfy the ring axioms.

Addition is a function R×R→ R, denoted by (r, s) 7→ r + s and multi-
plication is a function R× R→ R, denoted by (r, s) 7→ r · s or just rs. The
following axiom (a)–(c) are required to hold. The ring R is called commuta-
tive if additionally axiom (d) holds.

(a) (i) (r + s) + t = r + (s+ t) for all r, s, t ∈ R. (Associativity of addition)
(ii) r + s = s+ r for all r, s ∈ R. (Commutativity of addition)
(iii) There exists an element z ∈ R such that z + r = r = r + z for all

r ∈ R. (There can only be one such element: If also z′ has the property then
z = z + z′ = z′.) This element is usually denoted by 0 and is called the zero
element.

(iv) For every r ∈ R there exists an element s ∈ R such that r + s =
0 = s + r. (For given r there can only be one such element: If also s′ has
the property then s = s + 0 = s + (r + s′) = (s + r) + s′ = 0 + s′ = s′.)
This element is usually denoted by −r and is called the additive inverse of
r. (Thus, by definition r + (−r) = 0 = (−r) + r.)

(b) (i) (r · s) · t = r · (s · t) for all r, s, t ∈ R. (Associativity of multiplication)
(ii) There exists an element e ∈ R such that r · e = r = e · r for all r ∈ R.

(There can only be one such element: If also e′ ∈ R has the property then
e = e · e′ = e′.) This element is usually denoted by 1 and is called the one
element or the identity element of R.

(c) r · (s+ t) = (r · s) + (r · t) and (r+ s) · t = (r · t) + (s · t) for all r, s, t ∈ R.
(Distributivity)

(d) r · s = s · r for all r, s ∈ R.

2.2 Remark When working with rings one usually has the following con-
ventions.

(a) r − s := r + (−s) for all r, s ∈ R.
(b) In order to save parentheses, one gives priority to multiplication over

addition. For example rs+ t means (rs) + s but not r(s+ t).

2.3 Remark For a ring (R,+, ·) one can derive the following rules easily
from the axioms:

(a) 0 · r = 0 = r · 0.
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(b) −(r + s) = −r − s.
(c) (−r) · s = −(r · s) = r · (−s).
(d) (−1) · (−1) = 1.
(e) −r = (−1) · r.

2.4 Examples (a) Z, Q, R and C are commutative rings with the usual
addition and multiplication.

(b) Every set R with just one element equipped with the only possible
addition and multiplication is a ring. Every such ring is called a trivial ring
or ”the” zero ring. In a trivial ring we have 0 = 1. Conversely, if R is a ring
in which 0 = 1, then R is a trivial ring (verify!).(

(c) The polynomial ring R[X] with real coefficients is a commutative
ring. More generally, if R is any ring, one can form the polynomial ring
R[X] with coefficients in R. Its elements are formal polynomials f(X) =
anX

n +an−1X
n−1 + · · ·+a1X+a0, with an, . . . , a0 ∈ R and we use the usual

addition and multiplication of polynomials. If R is commutative then also
R[X] is commutative. (Warning: We do not define polynomials as function!
This is an important difference. For instance, if R has only finitely many
elements then there are only finitely many functions from R to R, but there
are still infinitely many polynomials if R is not the trivial ring.)

(d) For any ring R and n ∈ N we define Mn(R) as the set of all square
n × n-matrices with entries in R. The usual matrix addition and matrix
multiplication satisfy the axioms (a)–(c) in Definition 2.1. The zero matrix
and the identity matrix are the respective zero and identity element ofMn(R).
Note that if R is not the zero-ring, then Mn(R) is not commutative whenever
n > 2, even if R is commutative.

2.5 Definition Let R and S be rings.
(a) A function f : R→ S is called a ring homomorphism if

f(r1+r2) = f(r2)+f(r2) and f(r1 ·r2) = f(r1)·f(r2) , for all r1, r2 ∈ R,

and
f(1) = 1 .

(b) An element u ∈ R is called a unit (or invertible) if there exists an
element v ∈ R such that uv = 1 = vu. In this case v is uniquely determined
(if also v′u = 1 = uv′ then v = v(uv′) = (vu)v′ = v′) and we call v the
(multiplicative) inverse of u and denote it by v = u−1. The set of units of R
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is denoted by R×. If u, u1, u2 are units of R then also u−1 and u1u2 are units
of R with inverses (u−1)−1 = u and (u1u2)

−1 = u−12 u−11 . Note that 1 ∈ R×
with 1−1 = 1.

(c) The ring R is called a field if R is commutative, 1 6= 0, and R× =
Rr {0}. (For instance, Q, R and C are fields, Z is not a field.)

2.6 Lemma Let R be a commutative ring. Then

M2(R)× = {
(
a b
c d

)
| ad− bc ∈ R×} .

Proof For A =

(
a b
c d

)
∈ M2(R) we write det(A) := ad − bc. It is easy to

verify that, for A,B ∈M2(R), one has det(AB) = det(A) det(B).
Let A ∈M2(R)×. Then there exists B ∈M2(R) such that AB = 1 = BA.

Applying determinants we obtain det(A) det(B) = det(AB) = det(1) = 1.

This implies that det(A) ∈ R×. Conversely, assume that A =

(
a b
c d

)
∈

M2(R) and that det(A) = ad−bc ∈ R×. Set v := det(A)−1 ∈ R and consider

B =

(
dv −bv
−cv av

)
then

AB =

(
a b
c d

)(
dv −bv
−cv av

)
=

(
(ad− bc)v 0

0 (ad− bc)v

)
= 1 ∈M2(R)

and

BA =

(
dv −bv
−cv av

)(
a b
c d

)
=

(
(ad− bc)v 0

0 (ad− bc)v

)
= 1 ∈M2(R) .

This implies that A ∈M2(R)× and A−1 = B.
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Exercises for Section 2

1. Prove the statements in Remark 2.3.

2. Let S and T be rings and let R := S × T .

(a) Show that R is again a ring if one defines (s1, t1)+(s2, t2) := (s1+s2, t1+t2)
and (s1, t1) · (s2, t2) := (s1 · s2, t1 · t2) for s1, s2 ∈ S and t1, t2 ∈ T . What is the
zero-element and what is the one-element of R?

(b) Show that R× = S× × T×.

3. Let R and S be rings and let f : R→ S be a ring homomorphism.

(a) Show that f(0) = 0 and that f(−r) = −f(r) for all r ∈ R.

(b) Show that if u ∈ R×, then f(u) ∈ S× and f(u)−1 = f(u−1).

4. Let R be a commutative ring. Show that the function

det : M2(R)→ R ,

(
a b
c d

)
7→ ad− bc ,

satisfies det(AB) = det(A) det(B) for all A,B ∈ M2(R). Is this still true if one
drops the commutativity assumption on R?

5. Determine the set R× of units of the following rings R:

(a) R = Z.

(b) R = R[X].

(c) R = {a + bi | a, b ∈ Z}, the so-called ring of Gaussian integers (here i is
the complex number with the property i2 = −1.)
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3 Congruences and the Ring Z/mZ
3.1 Definition Let m ∈ N and let a, b ∈ Z. We write

a ≡ b mod m (and say a is congruent to b modulo m)

if m | a − b. This is equivalent to a and b having the same remainder after
division by m. Therefore, ‘being congruent modulo m’ is an equivalence
relation on Z. We write Z/mZ (Z modulo mZ) for the set of equivalence
classes. The equivalence class of a is given by a + mZ := {a + mk | k ∈ Z}.
It is also called the congruence class or residue class of a modulo m. We have

Z/mZ = {0 +mZ, 1 +mZ, . . . , (m− 1) +mZ}

and Z/mZ has m elements. If we pick one element from each of the m
congruence classes we call the resulting set a complete set of residues modulo
m. Note that

a ≡ b mod m ⇐⇒ m | a− b ⇐⇒ a+mZ = b+mZ
⇐⇒ a and b have the same remainder after division by m.

3.2 Example For m = 5 we have

3 ≡ −2 ≡ 8 mod 5 and 3 + 5Z = −2 + 5Z = 8 + 5Z .

Obviously, {0, 1, 2, 3, 4} is a complete set of residues modulo 5. But also
{5,−4, 7, 18,−11} is one.

3.3 Remark The following rules for congruences are immediate from the
definitions.

(a) If a ≡ b mod m and c ≡ d mod m then

a+ c ≡ b+ d mod m, ac ≡ bd mod m, a− c ≡ b− d mod m.

So we can add, multiply and subtract congruences.

(b) The set Z/mZ with addition and multiplication given by

(a+mZ) + (b+mZ) = (a+ b) +mZ , (a+mZ) · (b+mZ) = (ab) +mZ ,

is a commutative ring. (It follows from (a) that addition and multiplication
is well-defined, i.e., not dependent on the choice of a and b in its residue
class.) The zero element is 0 +mZ = mZ, the 1-element is 1 +mZ.
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(c) If a ≡ b mod m and d | m then a ≡ b mod d.

(d) If a ≡ b mod m and a ≡ b mod n with gcd(m,n) = 1 then a ≡ b
mod mn.

3.4 Notation If u is an element a ring R the symbol un has a meaning for
all n ∈ N0. If n > 0, it is just equal to u · · ·u, the product with n factors. If
n = 0 we set un = 1. If u is a unit with inverse v ∈ R we can also define u−n

for n ∈ N by u−n := vn. Thus, if u ∈ R×, un is defined for all n ∈ Z and we
have um+n = umun and (um)n = umn for all m,n ∈ Z.

3.5 Proposition Let m ∈ N and let a ∈ Z. The residue class a + mZ is
invertible in Z/mZ if and only if gcd(a,m) = 1. In particular φ(m) is the
number of units in Z/mZ.

Proof ”⇒”: Assume that there exists b ∈ Z with (a+mZ)(b+mZ) = 1+mZ.
Then ab + mZ = 1 + mZ and there exists q ∈ Z with ab − 1 = qm or
1 = ab − qm. It follows that gcd(a,m) is a divisor of ab − qm = 1. This
implies gcd(a,m) = 1.

”⇐”: If gcd(a,m) = 1 then there exist u, v ∈ Z with 1 = ua+ vm. This
implies 1 ≡ ua mod m and 1 +mZ = ua+mZ = (u+mZ)(a+mZ) so that
a+mZ is invertible in Z/mZ.

3.6 Corollary Let m ∈ N. Then Z/mZ is a field if and only if m is a prime.

Proof First, if m = 1 then m is not a prime and Z/mZ is the trivial ring
and therefore not a field. So assume from now on that m > 2. In this case
we have 0 +mZ 6= 1 +mZ. And it remains to be shown that every non-zero
element a+mZ is invertible in Z/mZ if and only if m is a prime. First, if m
is a prime then gcd(a,m) = 1 for all a = 1, . . . ,m− 1 and by Proposition 3.5
every such element a + mZ is invertible. Conversely, if m is not a prime
then we can write m = ab with a, b ∈ N and 2 6 a, b 6 m − 1. Thus,
a + mZ is not the zero element and also not invertible by Proposition 3.5,
since gcd(a,m) = a. It follows that Z/mZ is not a field.

3.7 Corollary Let m ∈ N, let a, b ∈ Z and let d := gcd(a,m).
(a) The congruence ax ≡ b mod m has a solution x ∈ Z if and only if

d | b.
(b) If ax ≡ b mod m has a sloution x0 ∈ Z then the set of all solutions

is given by x0 + (m/d)Z.
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Proof (a) ”⇒”: If ax0 ≡ b mod m for some x0 ∈ Z then d | m | ax0 − b
and also d | a | ax0. This implies d | b.

”⇐”: Since gcd(a,m) = d, there exist u, v ∈ Z such that d = ua + vm.
Multiplication with b/d yields b = d(b/d) = (ub/d)a+ (vb/d)m with integers
ub/d and (vb/d). This implies that x0 := ub/d solves the congruence.

(b) Assume that x0 ∈ Z is a solution of the above congruence and let
x ∈ Z be arbitrary. Then, with a′ := a/d, b′ := b/d,m′ := m/d ∈ Z we have

ax ≡ b mod m ⇐⇒ m | ax− b ⇐⇒ m | (ax− b)− (ax0 − b)
⇐⇒ m | a(x− x0) ⇐⇒ m′ | a′(x− x0)
⇐⇒ m′ | x− x0 ⇐⇒ x ∈ x0 +m′Z .

3.8 Proposition (Fermat’s Little Theorem) Let p be a prime and let
a ∈ Z. Then ap ≡ a mod p. Moreover, if p - a then ap−1 ≡ 1 mod p. In
particular, if a+ pZ 6= 0 + pZ then (a+ pZ)−1 = (a+ pZ)p−2.

Proof If p | a then a ≡ 0 mod p and ap ≡ 0 mod p. Therefore, we can
assume from now on that p - a. It suffices to show that ap−1 ≡ a mod p,
since then, multiplying by a we also obtain ap ≡ a mod p.

Consider the p numbers 0 · a, 1 · a, . . . , (p − 1) · a. They form again a
complete set of residues modulo p. In fact, if ia ≡ ja mod p for 0 6 i 6
j 6 p − 1 then p | (j − i)a. Since p - a, we have p | j − i. But j − i ∈
{0, . . . , p−1} and we can conclude that i = j. So we know that the elements
a + pZ, 2a + pZ, . . . , (p − 1)a + pZ of Z/pZ are the same as the elements
1 + pZ, 2 + pZ, (p − 1) + pZ, just possibly in a different order. Multiplying
them together in the ring Z/pZ yields (p − 1)! · ap−1 + pZ = (p − 1)! + pZ.
Since p - (p − 1)!, the element (p − 1)! + pZ is invertible and multiplying
the last equation with this element’s inverse yields ap−1 + pZ = 1 + pZ (or,
equivalently, ap−1 ≡ 1 mod p).

3.9 Corollary If p is a prime, a ∈ Z with p - a, and m,n ∈ Z are such that
n ≡ m mod p− 1 then am ≡ an mod p.

Proof Since n ≡ m mod p− 1, we have m = n+ k(p− 1) for some k ∈ Z.
Moreover, since p - a, Proposition 3.8 implies

am = an+k(p−1) = an(ap−1)k ≡ an1k = an mod p
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and the corollary is proven.

3.10 Theorem (Chinese Remainder Theorem) Let m1, . . . ,mr ∈ N be
pairwise coprime (i.e., gcd(mi,mj) = 1 for i 6= j in {1, . . . , r}) and set
m := m1m2 · · ·mr. For any choice of a1, . . . , ar ∈ Z there exists a solution
x ∈ Z to the system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ar mod mr

Moreover, if x0 is a solution then the set of all solutions is equal to x0 +mZ.

Proof Existence: Set ni := m/mi for i = 1, . . . , r. Then gcd(ni,mi) = 1
and there exist bi ∈ Z with bini ≡ 1 mod mi for all i = 1, . . . , r. Set
x := a1b1n1 + · · · arbrnr. Then, for each i = 1, . . . , r we have x ≡ aibini ≡ ai
mod mi since nj ≡ 0 mod mi for all j 6= i.

Uniqueness: Assume that x and x′ in Z are solutions to the above system
of congruences. Then x ≡ ai ≡ x′ mod mi for all i = 1, . . . , r. In other
words, mi | x−x′ for all i = 1, . . . , r. Since m1, . . . ,mr are pairwise coprime,
we obtain m | x − x′. Conversely, if x0 is a solution and k ∈ Z then also
x0 + km is a solution, since mi | m | x0 − ai for all i = 1, . . . , r implies
mi | x0 + km− ai for all i = 1, . . . , r.

3.11 Example Find all numbers x ∈ Z such that

x ≡ 3 mod 7 ,

x ≡ 5 mod 11 ,

and x ≡ −1 mod 13 .

We follow the construction of a solution in the proof of the Chinese Remain-
der Theorem. m1 = 7, m2 = 11, m3 = 13 and m = 7 ·11 ·13 = 1001. Further,
n1 = 11 · 13 = 143, n2 = 7 · 13 = 91, n3 = 7 · 11 = 77. We find b1 = −2,
b2 = 4, b3 = −1 as possible solutions to bini ≡ 1 mod mi, for i = 1, 2, 3.
Thus, x0 := 3 ·(−2) ·143+5 ·4 ·91+(−1) ·(−1) ·77 = −858+1820+77 = 1039
is a solution, and the set of solutions is 1039 + 1001Z = 38 + 1001Z.
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3.12 Corollary Let m1, . . . ,mr and m be as in Theorem 3.10. Then the
function

ρ : Z/mZ→ Z/m1Z× · · · × Z/mrZ
a+mZ 7→ (a+m1Z, . . . , a+mrZ)

is a bijective ring homomorphism (i.e., injective and surjective, or a one-to-
one correspondence). Moreover, φ(m) = φ(m1) · · ·φ(mr).

Proof Well-defined (ρ is a function): If a ≡ b mod m then also a ≡ b
mod mi for all i = 1, . . . , r.

ρ is a ring homomorphism: For a, b ∈ Z we have

ρ((a+mZ) + (b+mZ)) = ρ((a+ b) +mZ) =
(
(a+ b) +m1Z, . . . , (a+ b) +mrZ

)
=
(
a+m1Z) + (b+m1Z), . . . , (a+mrZ) + (b+mrZ)

)
=
(
a+m1Z, . . . , a+mrZ

)
+
(
b+m1Z, . . . , b+mrZ

)
= ρ(a+mZ) + ρ(b+mZ) .

Similarly, we obtain ρ((a+mZ)(b+mZ)) = ρ(a+mZ) +ρ(b+mZ). Finally,

ρ(1 +mZ) = (1 +m1Z, . . . , 1 +mrZ)

which is the 1-element in the product ring.

ρ is surjective: This follows immediately from the existence statement in
the Chinese Remainder Theorem.

ρ is injective: This follows immediately from the uniqueness statement in
the Chinese Remainder Theorem.

Formula for φ(m): The ring isomorphism ρ and its inverse ρ−1 restrict to
inverse bijections between the sets of units. But(

Z/m1Z× · · · × Z/mrZ
)×

= (Z/m1Z)× · · · × (Z/mrZ)× .

Now we obtain φ(m) = φ(m1) · · ·φ(mr) immediately from Proposition 3.5.

3.13 Corollary Let m = pe11 · · · perr be the prime factorization of m ∈ N.
Then

ϕ(m) = ϕ(pe11 ) · · ·ϕ(perr ) = pe1−11 · · · per−1r (p1 − 1) · · · (pr − 1)

= m(1− 1

p1
) · · · (1− 1

pr
) .
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Proof This is clear from Corollary 3.12 and Proposition 1.20.

3.14 Example φ(99) = φ(9)φ(11) = 6 · 10 = 60 and φ(1001) =
φ(7)φ(11)φ(13) = 6 · 10 · 12 = 720.

3.15 Remark Assume that n ∈ N is given together with the information
that n = pq is the product of two unknown prime numbers p < q. The follow-
ing arguments will show that knowledge of the primes p and q is equivalent
to knowledge of φ(n).

(a) If p and q are known then φ(n) can be computed as above: φ(n) =
(p− 1)(q − 1).

(b) If φ(n) is known then p and q can be computed as follows: We first
check if n is even. If yes, then p = 2 and q = n/2. This was the trivial case.
So assume that n, p and q are odd. We have n = pq and φ(n) = (p−1)(q−1).
Substituting q = n/p in the second equation gives a quadratic equation in p
with known coefficients:

φ(n) = (p−1)(
n

p
−1) ⇐⇒ pφ(n) = (p−1)(n−p) ⇐⇒ p2+(φ(n)−n−1)p+n = 0 .

With a := φ(n)− n− 1 we obtain p = 1
2
(−a±

√
a2 − 4n).

3.16 Theorem (Euler’s Theorem) Let a ∈ Z and let m ∈ N with
gcd(a,m) = 1. Then

aφ(m) ≡ 1 mod m.

Proof The ring Z/mZ has φ(m) units. We enumerate them by b1 +
mZ, . . . , bφ(m)+mZ and set b+mZ := (b1+mZ) · · · (bφ(m)+mZ) which is again
a unit in Z/mZ. First we claim that if (a+mZ)(bi+mZ) = (a+mZ)(bj+mZ)
for i, j ∈ {1, . . . , φ(m)} then i = j. In fact, this follows immediately by
multiplication with the inverse of a + mZ. The φ(m) distinct elements
(a+mZ)(b1 +mZ), . . . , (amZ)(bφ(m) +mZ) are again units of Z/mZ. There-
fore, up to reordering, they are again the elements b1 +mZ, . . . , bφ(m) +mZ.
Thus, their product is also b+mZ. On the other hand their product is also
aφ(m)b+mZ. This implies b+mZ = aφ(m)b+mZ = (aφ(m) +mZ)(b+mZ).
Multiplication with the inverse of b + mZ yields 1 + mZ = aφ(m) + mZ and
aφ(m) ≡ 1 mod m.
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3.17 Corollary If a ∈ Z and m ∈ N with gcd(a,m) = 1 and if n, n′ ∈ N
with n ≡ n′ mod φ(m) then

an ≡ an
′

mod m.

Proof Same proof as for Corollary 3.9.

3.18 Remark Let m ∈ N and let m = pe1 · · · per be its prime factorization.
From the proof of Corollary 3.12 we have the bijection

ρ : (Z/mZ)× → (Z/pe11 Z)× × · · · × (Z/perr )×

a+mZ 7→ (a+ pe11 Z, . . . , a+ perr Z) ,

which is multiplicative (i.e., ρ((a + mZ)(b + mZ)) = ρ(a + mZ)ρ(b + mZ)).
This implies that already the natural number

e := lcm
(
pe11 (p1 − 1), . . . , perr (pr − 1)

)
has the property that

ae ≡ 1 mod m

for all a ∈ Z with gcd(a,m) = 1. Similarly, the previous corollary holds with
φ(m) replaced with e: If n, n′ are natural numbers with n ≡ n′ mod e then

an ≡ an
′

mod m

3.19 Examples (a) Let m = 15. Then φ(m) = φ(3)φ(5) = 2 · 4 = 8 and
we obtain a8 ≡ 1 mod 15 for all a ∈ Z with gcd(a, 15) = 1. But with
e = lcm(2, 4) = 4 we already have a4 ≡ 1 mod 15 for every a ∈ Z as before.

(b) We want to compute the remainder of 52009 after division by 99.
Thus, m = 99, a = 5 and n = 2009. Note that gcd(5, 99) = 1. We have
φ(m) = φ(9)φ(11) = 6 ·10 = 60 and e = lcm(6, 10) = 30. Therefore, we know
that (5 + 99Z)30 = 1 + 99Z. Moreover, 2009 ≡ 29 ≡ −1 mod 30. Therefore,
(5 + 99Z)2009 = (5 + 99Z)29 = (5 + 99Z)−1. We can compute (5 + 99Z)29 by
computing

(5 + 99Z)2 = 25 + 99Z ,
(5 + 99Z)4 = (25 + 99Z)2 = 625 + 99Z = 31 + 99Z ,
(5 + 99Z)8 = (31 + 99Z)2 = 961 + 99Z = −29 + 99Z ,

(5 + 99Z)16 = (−2 + 99Z)2 = 841 + 99Z = −50 + 99Z ,

18



and then noting that

(5 + 99Z)29 = (5 + 99Z)1+4+8+16 = (5 + 99Z)(31 + 99Z)(−29 + 99Z)(−50 + 99Z)

= (155 + 99Z)(1450 + 99Z) = (−43 + 99Z)(−35 + 99Z)

= (1505 + 99Z) = 20 + 99Z .

Thus the remainder of 52009 after division by 99 is 20.

Alternatively, we could have computed the inverse of 5 + 99Z with the
Euclidean Algorithm to obtain 20 + 99Z.

Another alternative is to compute (5+9Z)2009 and (5+11Z)2009 and then
use the Chinese Remainder Theorem: ...

3.20 Remark (Modular exponentiation) We can compute (a+mZ)n for
large n even when gcd(a,m) 6= 1 with the method in the last example. We
first write the exponent n in its binary form: n = d0 + 2d1 + 4d2 + · · ·+ 2kdk
with d0, d1, . . . , dk ∈ {0, 1} the digits of n in its binary expansion. Then we
compute (a+mZ)2

i
for i = 0, . . . , k and finally compute

(a+mZ)n = (a+mZ)d0 +((a+mZ)2)d1 +((a+mZ)4)d2 + · · ·+((a+mZ)2
k

)dk

as in the previous example. Note we never have to deal with numbers that
are larger than m2.

3.21 Proposition Let n ∈ N. Then
∑

0<d|n φ(d) = n. Here, the sum runs
over all positive divisors d of n.

Proof Induction on the number of different prime divisors of n.
If n is equal to 1 this is clear.
If n = pe for some prime p and some e ∈ N then

∑
d|n
φ(d) =

e∑
i=0

φ(pi) = 1 + (p− 1) + p(p− 1) + p2(p− 1) + pe−1(p− 1)

= 1 + (p− 1)(1 + p+ p2 + · · ·+ pe−1) = 1 + (p− 1)
pe − 1

p− 1
= pe

and the equation holds in this case.
Next we assume that n can be written as n = n1n2 with gcd(n1, n2) = 1

and that the equation already is proved for n1 and for n2. Note that we have
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a bijection

{(d1, d2) ∈ N× N | d1 | n1, d2 | n2} → {d ∈ N | d | n} ,
(d1, d2) 7→ d1d2 .

Using this we obtain∑
d|n
φ(d) =

∑
(d1,d2)

φ(d1d2) =
∑

(d1,d2)

φ(d1)φ(d2)

=
(∑
d1|n1

φ(d1)
)(∑

d2|n2

φ(d2)
)

= n1 · n2 = n

and the proposition is proved.

3.22 Proposition For all a ∈ Z and all n, d ∈ N one has

and − 1 = (ad − 1)(a(n−1)d + a(n−2)d + · · ·+ ad + 1)

Proof Easy verification.

3.23 Proposition Let m ∈ N and let a ∈ Z with gcd(a,m) = 1. Moreover
assume that r, s ∈ N satisfy ar ≡ 1 mod m and as ≡ 1 mod m. Then
ad ≡ 1 mod m where d = gcd(r, s).

Proof There exist u, v ∈ Z with d = ur + vs. This implies that

(a+mZ)d = (a+mZ)ur+vs = ((a+mZ)r)u · ((a+mZ)s)v

= (1 +mZ)u · (1 +mZ)v = 1 +mZ

which implies the desired congruence.

3.24 Proposition Assume that p is a prime dividing an− 1 for some n, a ∈
N. Then one of the two following must hold:

(a) p | ad − 1 for some divisor d of n which is smaller than n, or
(b) p ≡ 1 mod n.

Moreover, if p and n are odd and p ≡ 1 mod n then p ≡ 1 mod 2n.
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Proof Note that since p | an − 1 we have p - a. We have p | an − 1
and p | ap−1 − 1 by Fermat’s Little Theorem. Proposition 3.23 implies that
p | ad − 1 for d = gcd(p− 1, n).

If d < n then we are in case (a).
If d = n then n | p− 1 and we are in case (b).
The last statement is obvious, since 2 | p− 1.

3.25 Proposition Let a, n ∈ N and assume that n is odd. Then

an + 1 = (a+ 1)(an−1 − an−2 +− · · · − a+ 1) .

Proof Easy verification.

3.26 Remark The last propositions are useful when one tries to factor
numbers of the form an − 1 or an + 1 into primes. Primes of the form
2n + 1 are called Fermat primes and primes of the form 2n − 1 are called
Mersenne primes. Fermat primes: 2, 3, 5, 17, 257, . . .. Mersenne primes:
3, 7, 31, 127, . . .. It is unknown if there are infinitely many Fermat primes
or Mersenne primes.
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Exercises for Section 3

1. Prove the statements in Remark 3.3.

2. Determine the units of the ring Z/30Z and find their inverses.

3. For a = −286, 12,−5690, determine if the element a+ 12001Z is invertible
in Z/12001Z, and if yes, compute the inverse.

4. Decide if the matrix

A =

(
3 + 1001Z 120 + 1001Z
14 + 1001Z 73 + 1001Z

)
∈M2(Z/1001Z)

is invertible and if yes, determine its inverse.

5. Find x ∈ {0, . . . , 17016} such that the three congruences

x ≡ 3 mod 119

x ≡ −2 mod 11

x ≡ 8 mod 13

are simultaneously satisfied.

6. Let n = nk10k + · · · + n2100 + n110 + n0 with n0, . . . , nk ∈ {0, . . . , 9}.
Thus, n0, . . . , nk are the digits of n as decimal number. Show that

(a) n ≡ n0 + n1 + n2 + · · ·+ nk mod 9.
(b) 3 | n ⇐⇒ 3 | n0 + n1 + · · ·+ nk.
(c) 9 | n ⇐⇒ 9 | n0 + n1 + · · ·+ nk.
(d) n ≡ n0 − n1 + n2 −+ · · · mod 11.
(e) 11 | n ⇐⇒ 11 | n0 − n1 + n2 −+ · · · .

7. Compute 2893812 mod 121.

8. (a) Assume that p = 2n + 1 is a Fermat prime with n > 1. Show that
n = 2r for some r ∈ N0.

(b) Assume that p = 2n − 1 is a Mersenne prime with n > 2. Show that n is a
prime.

9. Let n > 2 be a natural number. Show that φ(n) is a power of 2 if and
only if n is a product of Fermat primes and each odd Fermat prime occurs at most
once in n. (One can show that a regular n-gon can be constructed with compass
and straight edge if and only if ϕ(n) is a power of 2.)
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4 First Simple Crypto Systems

4.1 (The basic setup and terminology) • Cryptography is the
study of disguising messages.

• A message in undisguised form is called a plain text.

• A message in disguised form is called a cipher text.

• Plain text and cipher text are written in some alphabet. The number
of letters is usually denoted by N .

• The process of converting plain text to cipher text is called enciphering,
the reverse process is called deciphering.

• Plain text and cipher text are usually broken up into message units. A
message unit could be a single letter, or a pair of letters (digraph), or
a triple of letters (trigraph), or a block of any number of letters. We
denote the set of message units of the plain text (resp. cipher text) P
(resp. C). An enciphering transformation is a function f : P → C. It is
usually bijective and its inverse f−1 : C → P is called the deciphering
transformation.

• A setup as above is called a crypto system. It is of advantage to trans-
late C and P into mathematical objects with rich structure that makes
the computation of f and f−1 easy and allows statements about the
security of the setup.

4.2 Example We can label the letters from A to Z and the ‘blank’ by the
elements of Z/27Z:

A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9

K L M N O P Q R S T
10 11 12 13 14 15 16 17 18 19

U V W X Y Z
20 21 22 23 24 25 26
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In this case, our alphabet consists of the elements in Z/27Z. We can use
single letter blocks and set P = C = Z/27Z. For instance, the letter 8 + 27Z
of the alphabet Z/27Z represents the usual letter ‘I’.

(a) Shift transformation: We can choose an element b ∈ Z/27Z and
use the bijective function

fb : Z/27Z→ Z/27Z , p 7→ p+ b ,

as enciphering transformation. The corresponding deciphering transforma-
tion is f−1b = f−b. We call b the key of this crypto system. For b = 3 + 27Z
we obtain

TOMORROW
fb7→WRPRUURZ .

(b) Affine transformation: We can choose two elements a ∈ (Z/27Z)×

and b ∈ Z/27Z and define the enciphering transformation

fa,b : Z/27Z→ Z/27Z , p 7→ ap+ b .

Note that fa,b is bijective, since a is invertible in the ring Z/27Z. The deci-
phering transformation f−1a,b is again of this form, namely

f−1a,b = fa−1,−a−1b .

We call the pair (a, b) the key of this crypto system, and the crypto system
itself is called the affine crypto system. Note that if a = 1 we obtain as a
special case the shift crypto system from part (a). If we choose a = 2 + 27Z
and b = 3 + 27Z then we obtain

TOMORROW
fa,b7→ OEAEKKEU .

We have a−1 = 14 + 27Z and can verify that

f14+27Z,12+27Z : OEAEKKEU 7→ TOMORROW .

4.3 Remark The study of breaking codes is called cryptanalysis. For the
above crypto systems (shift and affine), an easy way to find the key is fre-
quency analysis. In English language, of all the letters, the blank occurs most
often, then E, then T, etc.

For instance, if one knows that the crypto system used is an affine crypto
system with the ring R = Z/27Z, and if X is the most frequent letter and
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K the second most frequent in the cipher texts then we can assume that X
stands for the blank and K stands for E. This gives equations:

23 + 27Z = X = fa,b(blank) = a(−1 + 27Z) + b ,

10 + 27Z = K = fa,b(E) = a(4 + 27Z) + b .

These two equations simplify to

23 + 27Z = −a+ b and 10 + 27Z = (4 + 27Z)a+ b .

Subtraction gives 13+27Z = (−5+27Z)a. Finding (−5+27Z)−1 = 16+27Z
and multiplication by this element allows us to find a = (16 + 27Z)(13 +
27Z) = 21 + 27Z = −6 + 27Z. Then we can substitute into the first equation
to find b = (23 + 27Z) + a = 17 + 27Z = −10 + 27Z.

4.4 Example (Affine digraph crypto system) (a) We use the same al-
phabet as before and label the digraphs AA, AB, AC, . . . by the elements
0 + 729Z, 1 + 729Z, 2 + 729Z, . . .. Note that 729 = 272. Thus, DK is labeled
by (3 · 27 + 10) + 729Z, using that D is labeled by 3 and K is labeled by 10.
This way we have identified the sets P and C of message units (AA, AB, . . .)
with the ring Z/729Z.

Again we can use an affine enciphering transformation

fa,b : P → C , p 7→ ap+ b ,

for an enciphering key (a, b) ∈ (Z/729Z)× × Z/729Z.
For example, if a = 283 + 729Z and b = 500 + 729Z then

TOMORROW
fa,b7→ HHYHMT D .

In fact,

TO↔ (19 · 27 + 14) + 729Z = 527 + 729Z 7→ (283 · 527 + 500) + 729Z
= 196 + 729Z = (7 · 27 + 7) + 729Z↔ HH ,

and similarly for the other three digraphs.
As in the previous example f−1a,b is again of the form fa′,b′ with a′ = a−1

and b′ = −a−1b. In our case, with a = 283 + 729Z and b = 500 + 729Z we
obtain a′ = 322 + 729Z and b′ = 109 + 729Z.
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(b) In English language the three most frequent digraphs are ‘E ’, ‘S ’,
and ‘ T’, in this order. Assume that you have intercepted some cipher text
that you know was enciphered using the affine digraph crypto system above
with an unknown key (a, b). You conduct frequency analysis and find out
that the most frequent diagraphs in the cipher text are ‘YK’, then ‘ZK’, then
‘KR’. This gives you the following equations:

(24 · 27 + 10) + 729Z = a · ((4 · 27 + 26) + 729Z) + b

(25 · 27 + 10) + 729Z = a · ((18 · 27 + 26) + 729Z) + b

(10 · 27 + 17) + 729Z = a · ((26 · 27 + 19) + 729Z) + b

Simplifying, we obtain

658 + 729Z = (134 + 729Z)a+ b (1)

685 + 729Z = (512 + 729Z)a+ b (2)

287 + 729Z = (721 + 729Z)a+ b (3)

Subtracting Equation (1) from Equation (2) we obtain

27 + 729Z = (378 + 729Z)a (4) .

Unfortunately, 378 and 729 are not coprime so that (378 + 729Z) does not
have an inverse. But dividing by gcd(378, 729) = 27 we still obtain 1+27Z =
(14+27Z)a1, where a1 ∈ Z/27Z arises from a as the image under the function

Z/729Z→ Z/27Z x+ 729Z 7→ x+ 27Z .

The equation 1 + 27Z = (14 + 27Z) · a1 now implies

a1 = 2 + 27Z . (5)

This leaves us with 27 possibilities for a, namely a = 2+729Z, a = 29+729Z,
a = 56 + 729Z, etc.

Instead of investigating each of these possibilities individually, we start
again with Equations (1)–(3) and this time we subtract Equation (3) from
Equation (2) to obtain

398 + 729Z = (−209 + 729Z)a = (520 + 729Z)a .
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Now we are lucky, since gcd(−209, 729) = 1. Using the Euclidean Algorithm
we find (520 + 729Z)−1 = −293 + 729Z and therefore

a = (−293 + 729Z)(398 + 729Z) = 26 + 729Z .

Obviously, this is not consistent with Equation (5). This means that there is
no solution for a that satisfies all three Equations (1)–(3). We probably had
the wrong match-up from our frequency analysis. One should try to match
up the most frequent digraphs in a different way and try again.

(c) Returning to our concrete choice of a and b in part (a), the digraphs
ON and NO are enciphered as

ON↔ (14 · 27 + 13) + 729Z = 391 + 729Z 7→ a · (391 + 729Z) + b

= 345 + 729Z↔ MV ,

NO↔ (13 · 27 + 14) + 729Z = 365 + 729Z 7→ a · (365 + 729Z) + b

= 277 + 729Z↔ KH .

Thus, in contrast to the single letter affine crypto system, one can not use
simple one letter frequency analysis.

However, also note that in

TO|MO|RR|OW 7→ HH|YH|MT| D

the first two O’s, both occurring in even positions, are both turned into H’s.
This is no coincidence, as a simple computation modulo 27 shows. Thus, one
can decipher by 1-letter frequency analysis of the even places all letters in
even places. Moreover, one can determine a and b modulo 27.

4.5 Remark Instead of digraphs one can also use message units of k letter,
interpret them as elements in the ring Z/NkZ (where N is the number of let-
ters in the alphabet that is used). Again, one can use affine transformations

fa,b : Z/NkZ→ Z/NkZ , p 7→ ap+ b ,

with a ∈ (Z/NkZ)× and b ∈ Z/NkZ. The principles are very similar to those
we have seen for k = 1 and k = 2.
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Exercises for Section 4

1. Assume the letters A-Z are labeled by 0, . . . , 25 and the blank is labeled
by 26. Encipher the message ”everything is ok” using the affine cryptosystem for
R = Z/27Z with the key (a, b) = (8, 13).

2. Assume that the following message is enciphered with the labeling of letters
and the blank as in Problem 1 using an affine cryptosystem for R = Z/27Z. Try to
find the key (a,b) using frequency analysis and decipher the message. The message
is:
15 8 1 17 13 9 17 10 11 1 9 10 22 2 7 17 21 1 24 22 7 12 17 10 1 21 25 24 11 1 2
17 1 17 8 3 22 26 17 3 1 26 19 11 5 1 11 26 22 1 19 8 16 22 21 9 15 11 19 2 7 17 1
23 25 15 7 19 11 19 17 24 1 1 15 1 10 17 24 11 7 17 24 24 1 19 21 15 18 19 8 15 11
19 22 8 1 15 8 3 1 15 1 9 15 11 19 17 8 11 1 9 17 10 11 19 8 15 16 19 11 0 1 1 5 22
26 15 10 3 1 26 1 17 12 17 24.

3. Assume you intercept the message ”PSQIUF” and you know it has been
enciphered using the affine digraph cryptosystem for the ring R = Z/729Z and the
labeling as in Example 4.4 with the key (a, b) = (320, 155). Decipher the message.
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5 Crypto Systems Using Matrices

5.1 Example (Affine matrix crypto system) Assume we use an alpha-

bet with N letters. We label a digraph by a column vector

(
x
y

)
∈ (Z/NZ)2

with x, y ∈ Z/NZ. A text a1b1a2b2a3b3 . . . anbn will be translated into a
matrix (

x1 x2 · · · xn
y1 y2 · · · yn

)
.

For instance, with N = 27 and the labeling from Section 4 we could translate
TOMORROW into (

19 12 17 14
14 14 17 22

)
, (5.1.a)

omitting the ‘+27Z’, but keeping in mind that we actually mean the classes of
these numbers as elements in the ring Z/27Z. As enciphering transformation
we might choose a matrix A ∈ Mat2(Z/NZ)× and define

fA : P = (Z/NZ)2 → (Z/NZ)2 = C ,
(
x
y

)
7→ A

(
x
y

)
.

The deciphering transformation is of the same form, namely (fA)−1 = fA−1 .
Recall that A is invertible if and only if detA is a unit in Z/NZ. A is
called the key of this crypto system. Note that instead of multiplying A

consecutively to

(
x1
y1

)
,

(
x2
y2

)
, . . .,

(
xn
yn

)
, one can instead multiply A to the

matrix in (5.1.a).
Slightly more generally one can additionally choose a vector B ∈ (Z/NZ)2

and use the enciphering transformation

fA,B : (Z/NZ)2 → (Z/NZ)2 , P 7→ AP +B .

Its inverse is again of the same form: (fA,B)−1 = fA−1,−A−1B and (A,B)
(resp. (A−1,−A−1B)) is called the enciphering (resp. deciphering) key of this
affine matrix crypto system.

5.2 Example We use N = 27 as in Section 4 and choose the key (A,B)
with

A =

(
23 + 27Z −1 + 27Z
4 + 27Z 12 + 27Z

)
and B =

(
3 + 27Z
19 + 27Z

)
.
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We encipher

TOMORROW↔
(

19 12 17 14
14 14 17 22

)
fA,B7→

(
21 22 26 6
20 19 21 15

)
↔ VUWT VGP .

We compute the deciphering key: det(A) = 10 + 27Z and det(A)−1 = 19 +
27Z = −8 + 27Z. Thus,

A−1 =

(
12 19
5 5

)
and − A−1B =

(
8
−2

)
,

again omitting the ‘+27Z’. Now we can verify that the deciphering transfor-
mation indeed returns our original message ‘TOMORROW’.

5.3 Remark (a) The affine matrix crypto system does not have the same
flaw as the affine crypto system for digraphs used in Section 4. In fact, in the
previous example we saw that ‘TO’ and ‘MO’ were enciphered into ‘VU’ and
‘WT’, respectively. Although both plaintext digraphs ‘TO’ and ‘MO’ end in
‘O’, the enciphered digraphs end in different letters, namely ‘U’ and ‘T’.

(b) One can easily attack the affine matrix crypto system with digraph
frequency analysis. However, instead of using 2 × 2-matrices we could use
k × k-matrices with entries in Z/NZ and message units of k letters, for any
k ∈ N we want. For large k, this crypto system would have none of the
disadvantages we found with the previous systems.

5.4 Example Assume you intercepted an enciphered message beginning
with

CU |.T |G |CG|NF |CG|.?|BK

and assume you know from some source that the corresponding plain text
message starts with GI|V E| M |E and that it was created by affine matrix
encryption for the alphabet A–Z, the blank, and the punctuations ‘,’, ‘.’ and

‘?’ with N = 30 letters. Also assume that you know that B =

(
0
0

)
in the

key (A,B).
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From this information we can derive equations(
2
20

)
= A

(
6
8

)
(1)(

28
19

)
= A

(
21
4

)
(2)(

6
26

)
= A

(
26
12

)
. (3)

We can combine equations (1) and (2) to obtain(
2 28
20 19

)
= A

(
6 21
8 4

)
.

But

det

(
6 21
8 4

)
= 24− 168 = −144 ≡ 6 mod 30

which is not good, since it is not invertible modulo 30. If the determinant
were invertible, we could compute the inverse of the matrix and solve for A.
Similarly, combining equations (2) and (3) lead to(

28 6
19 26

)
= A

(
21 26
4 12

)
(4)

with

det

(
21 26
4 12

)
= 252− 104 = 148 ≡ −2 mod 30 (5)

and combining equations (1) and (3) lead to(
2 6
20 26

)
= A

(
6 26
8 12

)

with

det

(
6 −4
8 12

)
= 72 + 32 = 104 ≡ 14 mod 30 .

We will work with the equations (4) and (5) in Z/30Z and view them as
equations in Z/15Z: (

−2 6
4 −4

)
= A′

(
6 −4
4 −3

)
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with A′ ∈ Mat2(Z/15Z) arising from A by viewing the entries of A modulo
15. Again,

det

(
6 −4
4 −3

)
= −2 + 15Z.

Thus, the matrix

(
6 −4
4 −3

)
is invertible in Mat2(Z/15Z), its determinant has

inverse 7 + 15Z and its inverse is given by(
6 −4
4 −3

)−1
= 7

(
−3 4
−4 6

)
=

(
−21 28
−28 42

)
=

(
−6 −2
2 −3

)

as matrix with entries in Z/15Z. This implies that

A′ =

(
−2 6
4 −4

)(
−6 −2
2 −3

)
=

(
24 −14
−32 4

)
=

(
9 1
13 4

)

as matrix with entries in Z/15Z. Using this result for A′, we are left with 16
possibilities for A:

A =

(
9 + 15ε1 1 + 15ε2
13 + 15ε3 4 + 15ε4

)
with ε1, ε2, ε3, ε4 ∈ {0, 1}.

We will investigate each of these 16 cases:

Case (ε1, ε2, ε3, ε4) = (0, 0, 0, 0):

A =

(
9 1
13 4

)
, detA = 36− 13 = 23 ≡ −7 mod 30 .

This leads to

A−1 = (−13)

(
4 −1
−13 9

)
=

(
−52 13
169 −117

)
=

(
8 13
19 3

)

and to the deciphered message beginning with

GIV E ME TWE . . .

which doesn’t make sense.
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Case (ε1, ε2, ε3, ε4) = (0, 0, 0, 1):

A =

(
9 1
13 19

)
, detA is even .

This is impossible, since detA must be invertible in Z/30Z.

Case (ε1, ε2, ε3, ε4) = (0, 0, 1, 0):

A =

(
9 1
−2 4

)
, detA is even .

Again, this is not possible.

Case (ε1, ε2, ε3, ε4) = (0, 0, 1, 1):

A =

(
9 1
−2 −11

)
, detA = −99 + 2 = −97 ≡ −7 mod 30 .

This leads to

A−1 = (−13)

(
−11 −1

2 9

)
=

(
143 13
−26 −117

)
=

(
−7 13
4 3

)

and to the deciphered message beginning with

GIV E ME EHE BX

which doesn’t make sense.

Case (ε1, ε2, ε3, ε4) = (0, 1, 0, 0):

A =

(
9 16
13 4

)
, detA is even .

This is not possible.
...
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Exercises for Section 5

1. Let N = 30 and use the labeling of the alphabet A-Z, ” ”, ”,”, ”.”, ”?” as
in Example 5.4. Use the affine matrix crypto system with key (A,B), where

A =

(
1 + 30Z −1 + 30Z
3 + 30Z −2 + 30Z

)
and B =

(
4 + 30Z
1 + 30Z

)
.

Encipher the message ”COLLUSION?” and compute the key for the deciphering
transformation.

2. You intercepted the message

”U?DIPPWKCKIKFBWZERRXTV AXN,FG.SAYCHY”
”VTMIMBG.LHTV KCPEAF?.FSGGZ.YOQMZQL.D”
”WKLHYCHIVT,REEKQMJSLEAFXWWVFMKQQUQEW”
”OQHI .BOG.UN.JGNIZQYESRMOQGNWMTVZHF,”
”OKQYZQBLVNQ.MJSLMKQQUQRXKMJEG.ZH WRM”
”.HYNDV,REE,RGBJR.F?NFHMHGHSFMKTZPDKA”
”?EVJEM W?T MDOYU.FSFYCKWSHKNGEG.LH?N”
”FHMHGHSFOQCCESRM?N,RZBE,.HZZQLIHWWCZ”
”.KHIIJOWIHW..HQQUQUNRMJR.F?TWANUEGSE”
”GTSHFXWZGHDOOQGNVFMKWE,MBFE,.H,XOQWK”
”ZBOTRZON.ECJQLWZFXWZQQUQ.GMZCIG.VZKW”
”V.Q.NXVTG.QQUQ.USFMKBOBFEM WYCHIVTJR”
”.FJLVZGNMJSL?Z QIOWCESRMSFSWSEYRWK”

Assume that an affine matrix crypto system was used and that the underlying
alphabet consists of the thirty letters A-Z, ” ”, ”,”, ”.”, ”?”, labeled by the elements
in Z/30Z. Assume that you further know that the plaintext message ends with

the four letters ”LES ” and that B =

(
0
0

)
in the enciphering key (A,B). Find

the matrix A of the enciphering key, compute the deciphering key and decipher
the first 8 letters of the message.

3. Decipher the full message in Exercise 2 using a computer. (Bonus points)

4. Finish Example 5.4 from class: Find the correct matrix A and decipher
the beginning of the message.
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6 Public Key Crypto Systems

6.1 Definition (Public key crypto system) A large list of persons
shares the same sets P of plain text message units and C of cipher text
message units. Each person X publishes an enciphering key kX,e in a phone
book. This key allows everybody to compute an enciphering transformation
fX : P → C. This transformation is used to send messages to person X. The
characteristic property of a public key crypto system is that even knowing
kX,e (and fX) it is impossible to compute the deciphering key kX,d or the
deciphering transformation f−1X : C → P in reasonable time. Such functions
fX are also called one way functions or trap functions.

If person A wants to send a message to person B, he/she looks up the
key kB,e in the phone book under B’s name, computes the enciphering trans-
formation fB : P → C, enciphers the plain text message P as fB(P ) and
sends this to B. Only B has knowledge of the deciphering key kB,d and the
deciphering transformation f−1B .

6.2 Remark Public key crypto systems have the following advantages:

(a) One can have a large network of people communicating with each
other. If x is the number of people in the network then one only needs x keys
to allow to communicate everybody with everybody else. In contrast to the
previous system, every pair of persons in the network would have to choose
a key that only is used among those two. This leads to x(x − 1)/2 ∼ x2/2
keys. Each person would have to keep track of as many deciphering keys as
there are persons he/she wants to communicate with.

(b) Authentication: If Alice (A for short) wants to send a message
to Bob (B for short), she can use the following trick to make sure that Bob
knows the message can only come from her. She can include a so-called
signature:

P=Plain text message: Blablabla

S=Signature: Alice, April 30, 2009, some random meaningful text

She sends fB(P ) and appends fB(f−1A (S)). Bob can read the message using
f−1B and verify the signature using fA in addition to the last part. Since
only Alice knows f−1A , the message must come from her. But there is still
a problem: Someone who obtained a message from Alice before can use
her signature f−1A (S). A remedy would be to include a precise time in the
signature.
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(c) Hash functions: One can also make sure that nobody intercepts the
message, changes the message part and keeps Alice’s signature in place. This
is done through so-called hash-functions h : Pr → Ps. Such a function is pub-
licly known and r is large compared to s. Now, Alice adds to her signature the
part h(P ), so altogether she sends fB(P ), fB(f−1A (S)), fB(f−1A (h(P ))). Bob
can verify that no one has changed the message part fB(P ) by deciphering
the message part, computing h(P ) and comparing it with the deciphered
second part of the signature.

(d) Key exchange: It lies in the nature of public key crypto systems
that enciphering and deciphering messages takes longer than for ‘private
crypto systems’. If speed is essential one can still use a public crypto system
to exchange keys for a private crypto system.
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7 The RSA Crypto System

This crypto system is name after its inventors Rivest, Shamir and Adleman
(∼1978).

7.1 Definition (RSA crypto system) Each person X chooses two large
primes pX < qX (about 100 decimal digits) and computes nX := pXqX .
Person X keeps pX and qX secret. Next, person X computes φ(nX) and
chooses some number eX ∈ {1, . . . , φ(nX)} with gcd(eX , φ(nX)) = 1. Per-
son X publishes her/his enciphering key (nX , eX) in a list under her name.
Only person X can compute the inverse dX of eX modulo φ(nX), since only
person X knows φ(nX) (or equivalently pX and qX , cf. Remark 3.15). To
encipher a message you want to send to person X, you use the enciphering
transformation

fX : Z/nXZ→ Z/nXZ , a+ nXZ 7→ aeX + nXZ .

Using her deciphering key (nX , dX), Person X can decipher the message by
the transformation

f−1X : Z/nXZ→ Z/nXZ , b+ nXZ 7→ bdX + nXZ .

We need to show that no matter what a is, we have

(aeX )dX ≡ a mod nX . (7.1.a)

For that we first show that pX | a − aeXdX . If pX | a, this is clear, and if
pX - a this follows from the corollary to Fermat’s Theorem, since eXdX ≡ 1
mod φ(nX). Similarly, we can see that qX | a − aeXdX , and therefore nX |
a− aeXdX , which means the congruence in (7.1.a) holds.

7.2 Remark In the above definition it seems that C and P are equal to
Z/nXZ and depend on the person X. We can make P and C independent of
X by the following slight modification. Assume we use an alphabet with N
letters. Choose natural numbers k < l and require that everybody chooses
nX satisfying

Nk < nX < N l .

We will use plain text message units consisting of blocks of k letters and
cipher text message units consisting of blocks of l letters. Thus, |P| = Nk
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and |C| = N l. If, for instance, k = 3 we translate the plain text message unit
‘CAT’ into the number a := 2 ·N2 + 0 ·N + 19. This number is smaller than
nX , we take its class modulo nX and apply the enciphering transformation
fX : Z/nXZ → Z/nXZ to obtain a number b < nX . Thus, b < N l and we
can translate b into a block of l-letters, i.e. into a cipher text message unit.
Deciphering just reverses this process: Person X translates the block of of
l-letters again into the number b. This number is smaller than nX . Person X
computes the remainder of bdX modulo nX and obtains the original number
a which was smaller than Nk, and translates it into a block of k letters.

7.3 Example Alice choses pA = 167 and qA = 281. Then nA = pAqA =
46, 927 and φ(nA) = (pA − 1)(qA − 1) = 46, 480. Alice chooses eA = 39, 423
and makes sure that gcd(39, 423 , 46, 480) = 1. Then Alice computes dA =
26, 767. She publishes (46, 927 , 39, 423) and keeps φ(nA) and dA (along with
pA and qA secret).

Next assume that we only use the letters A-Z as our alphabet, i.e., N =
26, and that we choose k = 3 and l = 4. (Note that N3 = 17, 576 < nA <
456, 976 = N4). To send the message ‘YES’ to Alice we proceed as follows:

Y ES ↔ 24 · 262 + 4 · 26 + 18 = 16, 346(modnAZ) ,

16, 346(mod nAZ)
fA7→ 16, 34639,423(mod 46, 927) = 21, 166 ,

21, 166 = 1 · 263 + 5 · 262 + 8 · 26 + 2↔ BFIC .

Now Alice obtains this message, translates it into the number 21, 166, com-
putes the remainder of 21, 16626,767 modulo 46, 927 and obtains 16, 346 which
she translates into ‘YES’.

For the exponentiation one can use the the repeated squaring method.

7.4 Remark Assume the situation of Remark 7.2: Everyone has chosen
primes pX , qX such that Nk < nX < N l. If A wants to send a message to
B and wants to apply fBf

−1
A to her signature, this only works if nA < nB.

In the other case she must use f−1A fB. This should be a common rule for all
participants.

7.5 Remark We will show that, for a participant of the RSA crypto system,
it is not a good idea to choose p < q with large gcd(p − 1, q − 1). In this
case r := lcm(p − 1, q − 1) is a small multiple of q − 1 and p − 1, therefore
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small compared to φ(n) = (p− 1)(q − 1) and to n = pq. If f is an inverse of
e modulo r then we have for every a ∈ Z with gcd(a, n) = 1:

aef−1 = atr = a(p−1)s ≡ 1 mod p

with t, s ∈ N. Therefore p | aef−1 − 1. Similarly, we obtain q | aef−1 − 1.
Thus, n = pq | aef−1 − 1 | aef − a and

(ae)f ≡ a mod n , for all a ∈ Z with gcd(a, n) = 1, (7.5.a)

and a relatively small number f . Since most of the numbers a are coprime
to n, one can decipher the cipher text message unit ae easily by raising it
to the f -th power, although f might be different from d. Just by trial and
error, one might find a small number f with that property.

Next we will show that if we have found a number f satisfying (7.5.a) we
can even find the primes p and q. Set m := ef − 1. Then

am ≡ 1 mod n for all a ∈ Z with gcd(a, n) = 1. (7.5.b)

Note that m must be even since otherwise (−1)m ≡ (−1) 6≡ 1 mod n. We
check if also m′ := m/2 has the property in (7.5.b) by choosing random
elements a which are coprime to n. If m′ does not have this property for
all a, then the test will fail for at least 50 percent of all a’s (this will be
shown later using group theory, see Corollary 8.4(c)). So, if m′ passes this
test for r independently chosen elements a, the chance that m′ does not have
the property for all a is less than 1/2r. So after enough tests (say r = 20),
one can basically decide if m′ has property (7.5.b). Now, m′ has to be even
(use also a = −1 as additional test) and we continue the same way with
m′′ = m′/2. Since these numbers will become smaller and smaller, at some
point this test will fail and we have a number m such that (7.5.b) holds for
m but not for m/2. This implies that m/2 is not a multiple of both p − 1
and q − 1 (by the first paragraph in this remark).

Now we distinguish two cases:

(i) m/2 is a multiple of one of the numbers p − 1 and q − 1 but not of
the other. Say m/2 is a multiple of p− 1 but not of q− 1 (the opposite case
is handled symmetrically). Then am/2 ≡ 1 mod p for all a with gcd(a, n) =
1, but am/2 ≡ ±1 mod q with each case occurring exactly 50 percent of
the time (justification with group theory later, see Corollary 8.14(i),(ii) and
Corollary 8.4(c)).
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(ii) m/2 is not a multiple of either p − 1 or q − 1. Then we have 4 pos-
sibilities, namely am/2 ≡ ±1 mod p and am/2 ≡ ±1 mod q, each occurring
precisely 25 percent of the time (justification with group theory later, see
Corollary 8.14(iii) and Corollary 8.4(c)).

Therefore, in any case, by trying random a′s, coprime to n, the chance
that am/2 − 1 is divisible by exactly one of the primes p and q but not by
the other is precisely 50 percent. If a has this property then gcd(am/2− 1, n)
is equal to the prime dividing am/2 − 1. Computing gcd(am/2 − 1, n) for
randomly chosen a will produce p or q with probability 1− 1

2r
after r steps.

40



Exercises for Section 7

1. Find primes p, q for yourself such that n := pq is in the range between
N3 = 27, 000 and N4 = 810, 000 (where N = 30). Find a possible e for the RSA
cryptosystem and compute the deciphering exponent d.

This part is voluntary: If you feel comfortable with giving away your email
address to others in this class, indicate it on your homework together with your
email address and key (n, e). We will publish the resulting phone book for the
RSA crypto system to those participating and you can use it to communicate.

2. Assume that with the RSA cryptosystem somebody’s phone book entry is
(n, e) = (11247661, 268729) and assume you found out that it is very likely that
a7169e ≡ a mod n for all a ∈ {0, . . . , n − 1}. Find the prime decomposition of n
using this information and the deciphering key (n, d) from this information.
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8 Groups

8.1 Definition (a) A group is a set G together with a binary operation

G×G→ G , (a, b) 7→ ab , (or a · b or a ∗ b or a ◦ b, etc.)

containing an element e such that

(i) (ab)c = a(bc) for all a, b, c ∈ G;

(ii) ae = a = ea for all a ∈ G;

(iii) For all a ∈ G there exists an element b ∈ G with ab = e = ba.

The cardinality |G| is called the order of G. The element e is uniquely
determined by the property in (ii). It is called the identity element of G and
is often denoted by 1G or just 1. Also, for given a ∈ G, the element b from
(iii) is uniquely determined by a. It is called the inverse and is denoted by
a−1. For a ∈ G and k ∈ Z we set ak to be the k-fold product of a if k > 0,
we set ak = 1G if k = 0 and we set ak := (a−1)|k| if k < 0.

(b) Assume that G and H are groups. A function f : G → H is called a
group homomorphism if it satisfies f(ab) = f(a)f(b) for all a, b ∈ G. Note
that this implies f(1G) = 1H . If additionally f is bijective we call f an
isomorphism. The group G and H are called isomorphic (notation G ∼= H)
if there exists an isomorphism f : G→ H.

(c) If f : G→ H is a group homomorphism then the kernel of f is defined
as

ker(f) := {a ∈ G | f(a) = 1H}

and the image of f is defined as

im(f) := {f(a) | a ∈ G} .

(d) For two subsets X, Y ⊆ G of a group G we define

XY := {xy | x ∈ X, y ∈ Y } .

which is again a subset of G.

8.2 Example If R is a ring then R× together with the ring multiplication
is a group. Also, R together with addition is a group.
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8.3 Lemma Let G and H be groups and let f : G→ H be group homomor-
phism.

(a) Let h ∈ im(f) and let g ∈ G with f(g) = h. Then

{a ∈ G | f(a) = h} = g ker(f) .

(b) If G is finite then |gker(f)| = |ker(f)| and |G| = |im(f)| · |ker(f)|.
(c) Assume that G is finite and that h ∈ im(f). Then the probability

that f sends a random element a of G to h is

|ker(f)|
|G|

=
1

|im(f)|
.

Proof (a) Let a ∈ G with f(a) = h. Then f(a) = h = f(g) and multiplica-
tion from the left by f(g)−1 yields 1G = f(g)−1f(a) = f(g−1)f(a) = f(g−1a),
so that g−1a ∈ ker(f). Therefore, a = g(g−1a) ∈ gker(f). Conversely, let
a ∈ gker(f). Then there exists x ∈ ker(f) with a = gx and f(a) = f(gx) =
f(g)f(x) = f(g)1H = f(g).

(b) The function φ : ker(f)→ gker(f), x 7→ gx is surjective by definition
of gker(f) and injective, since gx = gy implies x = y for x, y ∈ ker(f).
Therefore |ker(f)| = |gker(f)|.

The relation a ∼ b if and only of f(a) = f(b) defines an equivalence rela-
tion on G. Each equivalence class is characterized by the element h ∈ im(f)
to which its elements are mapped to. Therefore, the number of equivalence
class is |im(f)|. Moreover, by (a), the equivalence class of an element g in G
is equal to gker(f). Therefore |G| = |im(f)| · |ker(f)|.

(c) Now let h ∈ im(f). The probability that a random element a ∈ G is
mapped to h via f is |{a ∈ G | f(a) = h}|/|G|. Now (a) and (b) imply the
rest.

8.4 Corollary Let n ∈ N and let m ∈ N be even such that

am/2 6≡ 1 mod n for at least one a ∈ Z with gcd(a, n) = 1.

Then, among all the elements a ∈ {1, . . . , n} with gcd(a, n) = 1, at least 50%
have the property am/2 6≡ 1 mod n.
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Proof Note that (Z/nZ)× is a group under multiplication (called the unit
group of the ring Z/nZ). Consider the function

f : (Z/nZ)× → (Z/nZ)× , a+ nZ 7→ (a+ nZ)m/2 = am/2 + nZ .

It is easy to check that f is a group homomorphism:

f((a+ nZ)(b+ nZ)) = f(ab+ nZ) = (ab)m/2 + nZ = am/2bm/2 + nZ
= (am/2 + nZ)(bm/2 + nZ) = f(a+ nZ)f(b+ nZ) ,

for a + nZ, b + nZ ∈ (Z/nZ)×. By our hypothesis we have |im(f)| > 2.
Now, Lemma 8.3(c), the probability for an element a + nZ ∈ (Z/nZ)× that
am/2 ≡ 1 mod n is equal to 1/|im(f)| 6 1/2.

8.5 Definition Let G be a group.

(a) A non-empty subset H of G is called a subgroup of G (notation:
H 6 G) if for any two elements h1, h2 ∈ H also h1h2 ∈ H, and for every
element h ∈ H also h−1 ∈ H.

(b) For any element g we set 〈g〉 := {gk | k ∈ Z}. This is a subgroup of
G and it is called the subgroup generated by g.

(c) Let g ∈ G. The smallest n ∈ N (if it exists) such that gn = 1 is called
the order of g. It is denoted by ord(g). If gn 6= 1 for all n ∈ N then we set
ord(g) :=∞.

(d) G is called a cyclic group if there exists an element g ∈ G such that
G = 〈g〉. In this case the element g is called a generator of G.

8.6 Remark Let G be a group.

(a) If g ∈ G and ord(g) = n ∈ N then 1 = g0, g1, g2, . . . , gn−1 are n
distinct elements. In fact, if gi = gj for some 0 6 i < j 6 n − 1 then
1 = gj−i, a contradiction. Moreover, for k, l ∈ Z one has:

gk = gl ⇐⇒ gk−l = 1 ⇐⇒ k ≡ l mod n .

In fact, the first equivalence comes from multiplying the first equation by
g−l (or in backwards direction by gl). To see the second equivalence, write
k − l = qn + r with q ∈ Z and r ∈ {0, . . . , n − 1}. Then gk−l = gqn+r =
(gn)qgr = gr. Now, by the first statement, gr = 1 if and only if r = 0.
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(b) If G is finite and H 6 G then |H| divides |G| (Lagrange’s Theorem).
In fact, the relation

g1 ∼ g2 :⇐⇒ ∃h ∈ H : g1h = g2

is an equivalence relation on G. Moreover, the equivalence class of g is given
by gH. The latter is in bijection with H under H → gH, h 7→ gh. Therefore,
each equivalence class has size |H| and their disjoint union is G. If there are
n equivalence classes, then |G| = n · |H|.

(c) For any g ∈ G, the set 〈g〉 is a subgroup of G and ord(g) = |〈g〉| by
Part (a). In particular, if G is finite then ord(g) divides |G|.

(d) Let g ∈ G and suppose ord(g) = n ∈ N. For any k ∈ Z one has
〈gk〉 6 〈g〉. Therefore, ord(gk) | ord(g). Moreover, one has

〈gk〉 = 〈g〉 ⇐⇒ ∃l ∈ Z : gkl = g
(a)⇐⇒ ∃l ∈ Z : kl ≡ 1 mod n

⇐⇒ k + nZ ∈ (Z/nZ)× ⇐⇒ gcd(k, n) = 1 .

Therefore, if G = 〈g〉 with ord(g) = n then G has exactly φ(n) generators
(i.e., elements of order n), namely ga, where a ∈ {1, . . . , n} with gcd(a, n) =
1.

8.7 Lemma Let G be a finite group of order n and assume that for every
d | n one has

|{g ∈ G | gd = 1}| 6 d .

Then G is cyclic.

Proof For d | n we set

Xd := {g ∈ G | gd = 1} and Yd := {g ∈ G | ord(g) = d} .

Obviously, G equals the disjoint union
⋃
d|n Yd and Yd ⊆ Xd.

We show next that |Yd| is either 0 or φ(d). In fact, assume that Yd 6= ∅
and let x ∈ Yd. Then 〈x〉 ⊆ Xd and we obtain d = |〈x〉| 6 |Xd| 6 d by our
hypothesis. This implies Xd = 〈x〉 and, since Yd ⊆ Xd, also that Yd is the
set of generators of 〈x〉. Note that there are precisely φ(d) generators, by
Remark 8.6(d), so that |Yd| = φ(d). This proves that |Yd| either 0 or φ(d).

Assume that |Yn| = 0. Then we obtain the contradiction

n = |G| =
∑
d|n
|Yd| <

∑
d|n
φ(d)

3.21
= n .
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Therefore Yn 6= ∅ and G has an element g of order n. Thus G = 〈g〉 and G
is cyclic.

8.8 Remark (Division with remainder in the polynomial ring) Let
F be a field.

(a) Let f(X), g(X) ∈ F [X]. We write f(X) | g(X) if f(X) divides g(X),
i.e., if there exists q(X) ∈ F [X] such that g(X) = f(X)q(X). Note that if
0 6= α ∈ F then f(X) | g(X) if and only if αf(X) | g(X) and if and only if
f(X) | αg(X). Thus, when considering divisibility properties we may freely
multiply polynomials with non-zero constants.

(b) For two polynomials f(X), g(X) ∈ F [X] with f(X) 6= 0 we can divide
g(X) by f(X) with remainder and obtain polynimials q(X), r(X) ∈ F [X]
with

g(X) = q(X)f(X) + r(X) and deg(r) < deg(g) .

Here we have the convention that the zero polynomial has degree −∞. As
for integers, we can show that q(X) and r(X) are uniquely determined. We
define the greatest common divisor of f(X) and g(X) as the polynomial
d(X) ∈ F [X] of highest possible degree which is monic (i.e., has leading coef-
ficient 1) and divides both f(X) and g(X). It is denoted by gcd(f(X), g(X)).
Using division with remainder, one can apply the Euclidean algorithm as for
integers to find d(X) = gcd(f(X), g(X)) and again, it can be expressed as
linear combination

d(X) = u(X)f(X) + v(X)g(X)

for polynomials u(X), v(X) ∈ F [X].
For example, if f(X) = X3 − 3X2 + X + 2 and g(X) = X2 − 4 in Q[X]

we obtain

f(X) = g(X)(X − 3) + (5X − 10)

g(X) = (5X − 10)(
1

5
X − 2

5
) .

This shows that d(X) = gcd(f(X), g(X)) = X − 2 and we can express d(X)
as

X−2 =
1

5
(5X−10) =

1

5

(
f(X)−(X−3)g(X)

)
=

1

5
·f(X)+(−1

5
X+

3

5
)·g(X) .
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8.9 Proposition Let F be a field and let 0 6= f ∈ F [X] have degree n.
Then f has at most n zeroes in F .

Proof We prove this by induction on n: If n = 0 then f = a is constant for
some a ∈ F with a 6= 0. Thus, f has no zeroes. If n = 1 then f = aX + b
with a, b ∈ F and a 6= 0. In this case, f has precisely one zero, namely
−ba−1. Now assume that n > 1 and the the proposition holds for all values
smaller than n. If f has no zero, we are done. If f has a zero a ∈ F we can
divide f by X − a and obtain f = q · (X − a) + r with a constant polynomial
r. Evaluating the equation at a we obtain r = 0. Thus, f = q · (X−a) and q
is a polynomial of degree n− 1. By induction, q has at most n− 1 zeroes. If
b ∈ F is a zero f then 0 = f(b) = q(b)(X − b). Since F is a field this implies
that b is a zero of q or b = a. Thus, f has at most n zeroes.

8.10 Theorem Every finite subgroup of the unit group F× = F r {0} of a
field F is cyclic. In particular, (Z/pZ)× is a cyclic group with p−1 elements.

Proof Let U 6 F× with |U | = n. According to Lemma 8.7 it suffices to
show that |{u ∈ U | ud = 1}| 6 d for all d | n. But {u ∈ U | ud = 1} is
contained in the set of zeroes of the polynomial Xd − 1 ∈ F [X] of degree d.
Now Proposition 8.9 finishes the proof.

8.11 Definition Let p be a prime number. An integer a is called a primitive
root modulo p if a+pZ is a generator of (Z/pZ)×. For example, 2 is a primitive
root modulo 5: 22 ≡ 4, 23 ≡ 3, 24 ≡ 1 mod 5, and therefore 2 + 5Z generates
the group (Z/5Z)× of order 4.

8.12 Remark It is an open famous conjecture (by E. Artin) if the number
2 is a primitive root for infinitely many primes.

8.13 Corollary Let p be a prime and let m ∈ Z. Then

am ≡ 1 mod p for all a ∈ {1, . . . , p− 1} ⇐⇒ (p− 1) | m.

Proof ⇒: Let r ∈ {1, . . . , p − 1} be a primitive root modulo p. Then
ord(r + pZ) = p− 1 and by our hypothesis we have rm + pZ = 1 + pZ. Now
Remark 8.6(a) implies that m ≡ 0 mod p− 1.
⇐: This follows from Fermat’s Little Theorem.
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8.14 Corollary Assume that n = pq for two odd primes p < q and assume
that m ∈ N is even and has the property that

am ≡ 1 mod n for all a ∈ Z with gcd(a, n) = 1

but
am/2 6≡ 1 mod n for at least one a ∈ Z with gcd(a, n) = 1.

Then, the group homomorphism

f : (Z/nZ)× → (Z/pZ)× × (Z/qZ)×

a+ nZ 7→ (am/2 + pZ, am/2 + qZ)

is not trivial and one has (p− 1) - m
2

or (q − 1) - m
2

. Moreover:
(i) If (p − 1) | m

2
and (q − 1) - m

2
then im(f) = {(1 + pZ, 1 + qZ), (1 +

pZ,−1 + qZ)}.
(ii) If (p− 1) - m

2
and (q − 1) | m

2
then im(f) = {(1 + pZ, 1 + qZ), (−1 +

pZ, 1 + qZ)}.
(iii) If (p − 1) - m

2
and (q − 1) - m

2
then im(f) consists of the 4 elements

(±1 + pZ,±1 + qZ).

Proof Clearly, f is a group homomorphism. It is not trivial, since there
exists some a0 + nZ ∈ (Z/nZ) with a

m/2
0 + nZ 6= 1 + nZ. This element

corresponds under the bijective function in the Chinese Remainder theorem
to the element (a

m/2
0 + pZ, am/20 + qZ). This implies that a

m/2
0 + pZ 6= 1 + pZ

or a
m/2
0 + qZ 6= 1 + qZ, or both. By Fermat’s little Theorem this implies that

(p − 1) - m
2

or (q − 1) - m
2

. Now the result follows from Corollary 8.13, the
fact that X2 = 1 has only the solutions x = ±1 in any field (e.g. in Z/pZ
and Z/qZ).
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Exercises for Section 8

1. Show that if f : G → H is a group homomorphism then f(1G) = 1H and
f(g−1) = f(g)−1 for all g ∈ G.

2. Show that for every ring R, the set R× of invertible elements forms a group
under multiplication.

3. Let G and G′ be groups and let f : G→ G′ be a group homomorphism.

(a) Show that if H 6 G and H ′ 6 G′, then f(H) := {f(h) | h ∈ H} 6 G′ and
f−1(H ′) := {g ∈ G | f(g) ∈ H ′} 6 G.

(b) Show that ker(f) 6 G and im(f) 6 G′.

4. Assume that G = 〈x〉 and that ord(x) = n ∈ N. Moreover, let k ∈ Z and
set y := xk. Show that ord(y) = n/ gcd(n, k)

5. Compute the greatest common divisor of the polynomials 2̄X5 + 3̄X4 +
X2 + 4̄ and X4 + 2̄X3 +X+ 3̄ in the polynomial ring F [X] with F = Z/5Z, where
the ‘bar’ means taking the class in Z/5Z (e.g., 2̄ = 2 + 5Z).

6. (a) Find a generator of the group G = (Z/17Z)×.

(b) Find all primitive roots modulo 13.

(c) Is the group (Z/16Z)× cyclic?

(d) Is the group (Z/27Z)× cyclic?
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9 Finite Fields

Throughout this section F denotes a field.

9.1 Definition Let f(X) ∈ F [X]. For two polynomials g(X) and h(X) in
F [X] we define

g(X) ≡ h(X) mod f(X) : ⇐⇒ f(X) | g(X)− h(X) .

This defines an equivalence relation on F [X]. The class of g(X) is called the
residue class of g(X) modulo f(X) and is equal to g(X)+f(X)F [X]. We will
often abbreviate f(X)F [X] by (f(X)). The set of equivalence classes will
be denoted by F [X]/(f(X)). The set F [X]/(f(X)) is again a commutative
ring with addition and multiplication defined by

(g(X) + (f(X))) + (h(X) + (f(X))) := (g(X) + h(X)) + (f(X))

and

(g(X) + (f(X))) · (h(X) + (f(X))) := (g(X) · h(X)) + (f(X)) .

The 0-element is 0 + (f(X)) = f(X)F [X] and the identity element is 1 +
(f(X)).

9.2 Proposition Let f(X) ∈ F [X] with deg f(X) = n > 1. Then the
polynomials of degree < n form a complete set of representatives of the
congruence classes of F [X] modulo f(X).

Proof Let g(X) ∈ F [X] be arbitrary. Dividing g(X) by f(X) with remain-
der, we obtain g(X) = q(X)f(X) + r(X) with deg r(X) < n. Therefore,
g(X) ≡ r(X) mod f(X) and the congruence class of g(X) contains the
polynomial r(X) of degree < n.

Now assume that r(X) and s(X) are polynomials in F [X] of degree < n
and that r(X) ≡ s(X) mod f(X). Then there exists q(X) ∈ F (X) such
that r(X) − s(X) = q(X)f(X). But, if q(X) 6= 0 then deg q(X)f(X) > n,
while deg r(X) − s(X) < n. This is impossible. Therefore, q(X) = 0 and
r(X) = s(X).

9.3 Definition A polynomial f(X) ∈ F [X] is called irreducible if
deg f(X) > 1 and if f(X) cannot be written as a product f(X) = a(X)b(X)
with polynomials a(X), b(X) ∈ F [X] of degree > 1.
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9.4 Remark (a) If f(X) has degree 1 then f(X) is irreducible.

(b) If f(X) has degree 2 or 3 then we have the following irreducibility
criterion:

f(X) is irreducible if and only if f(X) has not root in F .

In fact, every decomposition of f(X) into a product with non-constant factors
must involve a factor of degree 1 and every polynomial of degree 1 has a root.

(c) If f(X) is irreducible then also αf(X) is irreducible for every 0 6= α ∈
F .

9.5 Theorem Let f(X) ∈ F [X] be irreducible. Then F [X]/(f(X)) is a
field. In particular, if F = Z/pZ for a prime p and f(X) has degree n then,
by Proposition 9.2, F [X]/(f(X)) is a field with pn elements.

Proof Let g(X) ∈ F [X] with g(X) + (f(X)) 6= 0 + (f(X)), i.e., with f(X) -
g(X). We need to show that g(X) + (f(X)) has an inverse in F [X]/(f(X)).
For this it suffices to show that there exists a polynomial u(X) ∈ F [X] such
that g(X)u(X) ≡ 1 mod f(X). But, since f(X) is irreducible and g(X)
is not a multiple of f(X), every common divisor of f(X) and g(X) must
have degree 0. This implies that the constant polynomial 1 is a greatest
common divisor of f(X) and g(X). By Remark 8.8 we find polynomials
u(X) and v(X) in F [X] such that 1 = u(X)g(X) + v(X)f(X). This implies
that u(X)g(X) ≡ 1 mod f(X) and that g(X) + (f(X)) is invertible in
F [X]/(f(X)).

9.6 Example Let F = Z/3Z. We write the elements in F as 0̄, 1̄ and 2̄.
Let f(X) = X3 + 2̄X + 2̄ ∈ F [X]. We have f(0̄) = 2̄, f(1̄) = 2̄ and f(2̄) = 2̄.
Since f(X) has degree 3 and no roots in F , we know from Remark 9.4(b)
that f(X) is irreducible in F [X]. The resulting field E = F [X]/(f(X))
has 27 elements. The elements of E can be represented by the polynomials
aX2 + bX + c with a, b, c ∈ F . If we want to find out what the product of
the two elements represented by X2 + 2̄ and X2 + 1̄ is, we can proceed as
follows. First multiply as usual in F [X]:

(X2 + 2̄)(X2 + 1̄) = X4 + 2̄ .
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Then divide X4 + 2̄ by f(X) with remainder. The remainder r(X) is in the
same class as X4 + 2̄:

X4 + 2̄ = X · (X3 + 2̄X + 2̄X︸ ︷︷ ︸
f(X)

) +X2 +X + 2̄︸ ︷︷ ︸
r(X)

.

Thus,

(X2 + 2̄ + (f(X))) · (X2 + 1̄ + (f(X))) = X2 +X + 2̄ + (f(X)) .

9.7 Remark (a) One can show that for every prime p and every n ∈ N there
exists an irreducible polynomial f(X) ∈ Z/pZ[X] of degree n. Therefore,
there exists a finite field with pn elements for every prime p and every n ∈ N.

(b) It is not difficult to show that every finite field F must have pn ele-
ments for some prime p and some n ∈ N. This is done by showing that F
must contain a subfield isomorphic to Z/pZ for some prime p, namely the
set {0, 1, 1 + 1, 1 + 1 + 1, . . .}. Then one verifies that the field F is a vector
space over this subfield using the multiplication in F as scalar multiplication.
Finally, if n is the dimension of F over this subfield then F has pn elements.

(c) It can also be shown that any two finite fields F and F ′ with the same
number of elements are isomorphic, i.e., there exists a ring isomorphism
f : F → F ′.

(d) Recall from Theorem 8.10 that the multiplicative group F× = Fr{0}
of a finite field F with q elements is cyclic of order q − 1.
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Exercises for Section 9

1. Determine all irreducible polynomials in (Z/2Z)[X] of degree 2,3, and 4.

2. Is X4 + 3̄X2 − 2̄X + 1̄ irreducible in (Z/5Z)[X]?

3. Let F = Z/3Z. Compute an inverse of the polynomial X2 +X+1̄ in F [X]
modulo the polynomial X3 +X2 +X + 2̄.

4. Let F = Z/3Z.

(a) Show that f(X) = X2 +X + 2̄ is irreducible in F [X].

(b) Consider the multiplicative group G of units of the field F [X]/(f(X)).
What is the order of G? Find an element that generates G. How many generators
does G have?
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10 Discrete Logarithms

10.1 Definition Let G be a finite group and let g ∈ G. If x ∈ 〈g〉 then any
integer k ∈ Z such that x = gk is called a discrete logarithm of x to the base
g. If ord(g) = n and k is a discrete logarithm of x to the base g then the set
of all discrete logarithms of x to the base g is equal to k + nZ.

The discrete logarithm problem: Given x ∈ 〈g〉, find a discrete logarithm
of x to the base g. Of course, one cannot expect to find a general algorithm
that solves the discrete logarithm problem for all G and g. But, depending
on G, e.g., unit groups of finite fields or of finite rings one can try more
specific things.

10.2 Definition Let G be a finite group and let g ∈ G. We say that the
Diffie-Hellman assumption holds for G and g if the following is true: Given
g and two powers ga and gb (without knowing a and b) it is unfeasible to
compute gab. This is related to the discrete logarithm problem: If one can
solve the discrete logarithm problem then the Diffie-Hellman assumption does
not hold. It is conjectured that the converse is also true.

10.3 Remark (Diffie-Hellman key exchange system) Assume we
have a finite group G and an element g ∈ G of order n, both publicly known,
satisfying the Diffie-Hellman assumption. Assume that two parties A and
B want to use a private key crypto system (as for example the k-graph
matrix crypto system) and assume that one has a publicly known translation
function t : 〈g〉 → K to the set of all possible keys. In order to agree on a key,
A and B can do the following: A chooses a random number a between 0 and
n− 1 and keeps it secret. Similarly, B chooses a random number b between
0 and n− 1 and keeps it secret. A computes ga and publishes it. Similarly,
B computes gb and publishes it (and so does everybody else participating
in the network). Then both are able to compute gab = (ga)b = (gb)a (since
A knows a and B knows b). But a third party cannot compute gab from
the knowledge of ga and gb. Now, A and B use the key t(gab) for their
communication. This is safer than transmitting the key itself.

10.4 Example Assume one uses single letter shift encryption and a 26-letter
alphabet:

C = P + (k + 26Z),

where k ∈ {0, 1, . . . , 25} is the key (previously called b). Suppose a field
with at least 26 units, say F53, and a generator of F×53, say 2, is chosen and is
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publicly known. Alice chooses a = 29 and looks up Bob’s entry 2b = 12 ∈ F53

(without knowing b). She computes 1229 = 21 in F53. So, she uses the key
k = 21 when communicating with Bob. Meanwhile, Alice publishes 229 =
45 ∈ F53 and Bob (who has chosen b = 19) computes k = 4519 = 21 ∈ F53

and uses the same key when communicating with Alice.
Of course in this simple example it would be easy to crack the system

and also the Diffie-Hellman assumption does not hold for such a small order
n = 52. The example was chosen for the sake of simplicity of calculation.

10.5 Remark (Massey-Omura crypto system) In this crypto system
one works with a publicly known field Fq with q elements. Plain text message
units are labeled by certain elements in P ∈ F×q .

Every participant A randomly chooses eA ∈ {1, . . . , q−1} with gcd(eA, q−
1) = 1 and computes dA ∈ {1, . . . , q−1} with eAdA ≡ 1 mod q−1. A keeps
eA and dA secret.

If A wants to send a message P to B then this is done in 3 steps:

A
P eA−→B

P eAeB−→ A
P eAeBdA−→ B .

Note that P eAeBdA = P eB . Therefore, B can compute P eBdB = P . One must
use a good authentication system to prevent C from sending back P eAeC to
A after the first step. No exchange of keys is necessary. It is essential that
the discrete logarithm problem cannot be solved.

10.6 Remark (El Gamal crypto system) For this crypto system one
works with a publicly known field Fq with q elements and a publicly known
generator g of F×q . Plain text messages are labeled by certain elements
P ∈ F×q . Every user X chooses a number aX ∈ {1, . . . , q − 2}, keeps it
secret, computes gaX and publishes it.

Person A sends a message unit P ∈ Fq to person B by choosing some
integer k and sending the pair (gk, gaBkP ) of elements in F×q to B. The
first entry gk is called the clue and the part gaBk of the second entry is
called the mask. Now, B computes (gk)aB = gaBk and and then computes
(gk)q−1−aB · gaBkP = P .

Again, one doesn’t need a key exchange. It is essential that the Diffie-
Hellman assumption holds.
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Exercises for Section 10

For both exercises below we use the 31-letter alphabet A-Z (labeled by the
numbers 0-25) together with the ’blank’, ’period’, ?, !, and ’apostrophe’, labeled
by 26-30.

1. You and your friend communicate using affine enciphering transformations
p 7→ ap + b, where a, b ∈ F31 = Z/31Z. Consider the field F312 = F961 realized as
F := F31[X]/(X2 + 1). The key (a, b) for the enciphering transformation is viewed
as the class of a + bX in F . You exchange keys using the Diffie-Hellman system
with the group F× and g = 4 +X + (X2 + 1) ∈ F×. As your secret exponent you
choose a = 209. Your friend sends you her gb = 1 + 19X + (X2 + 1) ∈ F .

(a) Find the element in F× that describes your common enciphering key.

(b) What is the element ga ∈ F× you send your friend, so she also can compute
the enciphering.

(c) What is the key (a, b) that both of you are using for the affine single letter
crypto system?

(d) Read the message ‘BUVCFIWOUJTZ!H.” from your friend.

2. Let p be the Fermat prime p = 65537, use the field F = Z/pZ and let
g = 5 + pZ ∈ F×. You receive the message (29095, 23846), which your friend
composed using the ElGamal cryptosystem in F×, using your public key ga. Your
secret exponent a is 13908. For message units you use the alphabet from the top
of this page and trigraphs. You translate them into elements in F by AAA = 0,
AAB = 1, . . ., ′′′ = 29790 = 313−1, similar to Example 4.4. Decipher the message.
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11 The Knapsack Crypto System

11.1 Definition (a) Let k ∈ N0, v0, v1, . . . , vk−1 ∈ N and let V ∈ N.
The knapsack problem is to determine if it is possible to find a subset
I ⊆ {0, . . . , k − 1} such that

∑
i∈I vi = V , and if possible to find such an

I. V is interpreted as the volume of the knapsack and v0, . . . , vk−1 are the
volumes of items one might pack in to fill the knapsack completely. Note
that the existence of such a subset I is equivalent to the existence of a base
2 number (εk−1, . . . , ε1, ε0)2 with digits εi ∈ {0, 1} such that V =

∑k−1
i=0 εivi.

(b) A sequence v0, . . . , vk−1 as above is called superincreasing if vi >
v0 + v1 + · · ·+ vi−1 for all i = 1, . . . , k − 1.

11.2 Example (a) Let (v0, . . . , v4) = (3, 4, 1, 12, 9) and let V = 17. Then
one has the solutions (1, 0, 1, 1, 1) and (0, 1, 1, 1, 0) to the corresponding knap-
sack problem. But there is no solution if V = 2, V = 6 or V = 23.

(b) The sequence (1, 3, 6, 12, 25) is superincreasing. For V = 17 there is
no solution. For V = 19 there is the unique solution (1, 0, 1, 1, 0).

11.3 Proposition Let (v0, . . . , vk−1) be superincreasing and let V ∈ N. then
there exists at most one solution to the knapsack problem. The following
algorithm decides if there is a solution and finds the solution if it exists:

(0) Start with I := ∅.
(1) Find the largest index i ∈ {0, . . . , k−1} such that vi 6 V and include

i into I. Then go to (2). If there is no such i then stop.

(2) Redefine k as i, V as V − vi and go back to (1).

If at the end one has V =
∑
i∈I vi, then I is the only solution. If V 6= ∑

i∈I vi
then there is no solution.

Proof Clear with some thinking. The only chance to fill the knapsack
completely, is to take the largest vi which fits into it and then proceed with
the remaining volume and v0, . . . , vi−1 to fill the remaining volume.

11.4 Remark (Knapsack crypto system) It is conjectured that the gen-
eral knapsack problem cannot be solved in polynomial time in k, log V and
log vi, although for special classes, like superincreasing sequences, the prob-
lem can be solved very quickly as the previous proposition shows. This
motivated the knapsack crypto system:
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Assume that message units are labeled by base 2 numbers
(εk−1, . . . , ε1, ε0)2 of length k. Every participant X chooses a superincreasing
sequence (v0, . . . , vk−1) of length k, a number m ∈ N with m > v0+· · ·+vk−1,
a number a ∈ {1, . . . ,m − 1} with gcd(a,m) = 1, and then determines
b ∈ {1, . . . ,m − 1} with ab ≡ 1 mod m. Next, X computes w0, . . . , wk−1 ∈
{1, . . . ,m − 1} such that wi ≡ avi mod m and publishes the sequence
w0, . . . , wk−1. The numbers v0, . . . , vk−1,m, a, b are kept secret.

If A wants to send a message unit P = (εk−1, . . . , ε1, ε0)2 to X, she
computes C :=

∑k−1
i=0 εiwi and sends it to X. Since the knapsack problem is

difficult to solve, knowledge of C and (w0, . . . , wk−1) is not enough to compute
(εk−1, . . . , ε1, ε0). But X can compute V ∈ {0, . . . ,m− 1} such that V ≡ bC
mod m. Then

V ≡ bC =
k−1∑
i=0

bεiwi ≡
k−1∑
i=0

bεiavi ≡
k−1∑
i=0

εivi mod m.

Since the first and last expression in this equation are both contained in
{1, . . . ,m− 1} one has

V =
k−1∑
i=0

εivi ,

and since (v0, . . . , vk−1) is superincreasing, X can easily find (εk−1, . . . , ε1, ε0)2
from V and (v0, . . . , vk−1).

11.5 Example Suppose that plain text message units are single letters A−
Z, labeled by (00000)2 = 0 through (11001)2 = 25 (so k = 5). Assume
that B chooses the sequence (vi) = (2, 3, 7, 15, 31), m = 61, and a = 17.
Then b = 18 and B publishes (wi) = (34, 51, 58, 11, 39). If A wants to
send the message ‘WHY’ to B she uses the base 2 numbers (10110)2 = 22,
(00111)2 = 7, (11000)2 = 24, computes the integers 39 + 58 + 51 = 148,
58 + 51 + 34 = 143, 39 + 11 = 50 and sends 148, 143, 50 to B. Because
the sequence (34, 51, 58, 11, 39) is not superincreasing, it is difficult for an
interceptor to reconstruct how the knapsack volumes 148, 143 and 50 were
filled by small item volumes from this sequence.

Now, B multiplies 148, 143, and 50 by 18, reduces mod 61 to obtain 41,
12, and 46. Then, B solves the knapsack problem for (2, 3, 7, 15, 31) and
these volumes to obtain (10110), (00111) and (11000).

11.6 Remark In 1982, Shamir found a polynomial time algorithm to solve
the knapsack problem C = ε0w0 + · · · + εk−1wk−1 (with the notation from
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Remark 11.4). This was based on the fact that w0, . . . , wk−1 is not an ar-
bitrary sequence, but a multiple of a superincreasing sequence (modulo m).
This led to modifications of the original knapsack crypto system which are
still safe (see [K] pp. 114–115).
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Exercises for Section 11

1. Assume you use the knapsack cryptosystem and that you have chosen
(v0, . . . , v4) = (3, 4, 10, 19, 40), m = 100, and a = 19.

(a) What do you publish?

(b) Assume that another person wants to send the message ”YESTERDAY” to
you, using 5 digit base-2 numbers to label the letters A-Z. What does that person
send?

(c) You get the message (166, 227, 227, 133). What does it mean?

60



12 Pseudoprimes

Recall that Fermat’s Little Theorem says that if p is a prime and a ∈ Z with
p - a then ap−1 ≡ 1 mod p. We want to investigate if this can be used for a
primality test.

12.1 Definition Let 1 < n ∈ N be odd and composite (i.e., not a prime)
and let b ∈ Z with gcd(b, n) = 1. The number n is called a pseudoprime to
the base b if

bn−1 ≡ 1 mod n . (12.1.a)

If (12.1.a) holds for b, then also for all b′ ∈ Z with b′ ≡ b mod n.

12.2 Example The number n = 7.13 = 91 is a pseudoprime to the base
b = 3: We compute 390 = 364 · 316 · 38 · 32 using the repeated squaring
method.

32 ≡ 9 mod 91

34 ≡ 81 ≡ −10 mod 91

38 ≡ 100 ≡ 9 mod 91

316 ≡ 81 ≡ −10 mod 91

332 ≡ 100 ≡ 9 mod 91

364 ≡ 81 ≡ −10 mod 91

This yields 390 ∼= (−10) · (−10) · 9 · 9 = (−90) · (−90) ∼= 1 · 1 = 1 mod 91.

However, n = 91 is not a pseudoprime to the base b = 2:

22 ≡ 4 mod 91

24 ≡ 16 mod 91

28 ≡ 74 ≡ −17 mod 91

216 ≡ 16 mod 91

232 ≡ −17 mod 91

264 ≡ 16 mod 91

and 290 = 264 · 216 · 28 · 22 ≡ 16 · 16 · (−17) · 4 ≡ 64 mod 91.

12.3 Proposition Let 1 < n ∈ N.
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(a) For every b ∈ Z with gcd(b, n) = 1 one has: bn−1 ≡ 1 mod n if, and
only if, the order of b+ nZ in the group (Z/nZ)× divides n− 1.

(b) The elements b+ nZ ∈ (Z/nZ)× such that n is a pseudoprime to the
base b form a subgroup of (Z/nZ)×.

(c) If (12.1.a) fails for one b ∈ {1, . . . , n − 1} with gcd(b, n) = 1 then it
fails for at least 50% of all b ∈ {1, . . . , n− 1} with gcd(b, n) = 1.

Proof (a) This is immediate from Remark 8.6.

(b) Clearly 1 +nZ satisfies (12.1.a). Assume that b1, b2 ∈ Z are such that
bn−11 ≡ 1 ≡ bn−12 mod n. Multiplying these congruences yields (b1b2)

n−1 ≡ 1
mod n. Finally, if b ∈ Z is such that b+ nZ satisfies (12.1.a) and a ∈ Z with
ab ≡ 1 mod n then an−1 ≡ an−1bn−1 = (ab)n−1 ≡ 1n−1 = 1 mod n.

(c) Let G = (Z/nZ)× and let H be the subset of G consisting of those
b + nZ with bn−1 ≡ 1 mod n. By Part (b), H is a subgroup of G, and by
Remark 8.6(b), we have |G| = |H| · k for some k ∈ N. Since H is not equal

to G, we have k > 2. The statement follows now from |GrH|
|G| = |G|−|H|

|G| =

1− |H||G| = 1− 1
k
> 1− 1

2
= 1

2
.

12.4 Remark Let 1 < n ∈ N. By Proposition 12.3(c) we can conclude:
If n passes the test (12.1.a) for k random elements b ∈ {1, . . . , n − 1} with
gcd(b, n) = 1, then the chance that n does not pass it for all such b is 6 1

2k
.

12.5 Definition Let 1 < n ∈ N be odd and composite. If n is a pseudoprime
to the base b for all b ∈ {1, . . . , n − 1} with gcd(b, n) = 1 then n is called
a Carmichael number. At this point we don’t know if Carmichael numbers
exist.

We will write ordG(g) for the order of a group element g in a group G, if
G is not immediate from the context.

The next proposition gives a criterion that will help to find Carmichael
numbers.

12.6 Proposition Let 1 < n ∈ N be odd.

(a) If p2 | n for some prime p then n is not a Carmichael number.

(b) n is a Carmichael number if and only if n = p1 · · · pr with pairwise
distinct primes p1, . . . , pr and r > 2 such that (pi − 1) | (n − 1) for all
i = 1, . . . , r.
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Proof (a) Assume that p2 | n. By Proposition 12.7 there exists g ∈ Z such
that g + p2Z is a generator of (Z/p2Z)×. Write n = pa · n′ with p - n′ and
2 6 a ∈ N. By the Chinese Remainder Theorem, there exists b ∈ Z with
b ≡ g mod pa and b ≡ 1 mod n′ (since gcd(pa, n′) = 1). Next we show
that gcd(b, n) = 1. Assume that b and n have a common prime divisor q.
Then either q = p or q divides n′. In the first case, p divides b and then
also divides g (which is impossible since g + p2Z ∈ (Z/p2Z)×), and in the
second case, q divides b and n′ (which is impossible because b ≡ 1 mod n′).
Therefore, gcd(b, n) = 1. Next we show that bn−1 6≡ 1 mod n. Assume that
bn−1 ≡ 1 mod n, which implies that bn−1 ≡ 1 mod p2. Since b ≡ g mod p2,
we have p(p−1) = ord(Z/p2Z)×(b+p2Z) | (n−1). This implies p | (n−1) and
n ≡ 1 mod p which is a contradiction to p | n. Therefore, we have shown
that bn−1 6≡ 1 mod n and gcd(b, n) = 1, which implies that n cannot be a
Carmichael number.

(b) First assume that n is a Carmichael number. By Part (a) this implies
that n = p1 . . . pr with pairwise distinct primes p1, . . . , pr and r > 2. Let
i ∈ {1, . . . , r}, let g ∈ Z such that g + piZ generates (Z/piZ)×, and write
n = pi · n′. By the Chinese Remainder Theorem there exists b ∈ Z such
that b ≡ g mod pi and b ≡ 1 mod n′ (since gcd(pi, n

′) = 1). Since pi - b
and b ≡ 1 mod n′ we have gcd(b, n) = 1. Since n is a Carmichael number
we obtain bn−1 ≡ 1 mod n, which implies bn−1 ≡ 1 mod pi and pi − 1 =
ord(Z/piZ)×(b+ piZ) | (n− 1).

Next assume that n = p1 · · · pr with pairwise distinct primes p1, . . . , pr
and r > 2 such that (pi − 1) | (n − 1) for all i = 1, . . . , r. Let b ∈ Z with
gcd(b, n) = 1. We will show that bn−1 ≡ 1 mod n. For each i = 1, . . . , r
we have gcd(b, pi) = 1 and by Fermat’s Little Theorem bpi−1 ≡ 1 mod pi.
Since (pi − 1) | (n− 1), we obtain bn−1 ≡ 1 mod pi and pi | bn−1 − 1. Thus,
n = p1 · · · pr | bn−1 − 1 and bn−1 ≡ 1 mod n.

12.7 Proposition Let p be an odd prime and let a ∈ N. Then the group
(Z/paZ)× is cyclic. More precisely, if g ∈ Z is a primitive root modulo p,
then g + paZ or (g + p) + paZ generates (Z/paZ).

Proof First note that with g also g + p is a primitive root modulo p.

Next we show that there exists h ∈ {g, g + p} such that hp−1 = 1 + h1p
with h1 ∈ Z and p - h1. Since gp−1 ≡ 1 mod p, we can write gp−1 = 1 + pg1
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with g1 ∈ Z. If p - g1, then we can take h = g and we are done. If p | g1 then

(g + p)p−1 = gp−1 +
p−1∑
i=1

(
p− 1

i

)
gp−1−ipi = 1 + pg1 + (p− 1)gp−2p+ f1p

2

= 1 + p(g1 − gp−2) + f2p
2

for some f1, f2 ∈ Z. Now choose h = g + p and h1 = g1 − gp−2 + f2p. Then
h1 ≡ gp−2 6≡ 0 mod p.

Choose h as in the previous paragraph and set k := ord(Z/paZ)×(h+ paZ).
Since |(Z/paZ)×| = φ(pa) = pa−1(p − 1), we have k | pa−1(p − 1). It suffices
to show that k = pa−1(p − 1). First we show that (p − 1) | k. Since hk ≡ 1
mod pa, we have hk ≡ 1 mod p, which implies (p− 1) = ord(Z/pZ)×(h+ pZ) |
(n− 1).

Now it suffices to show that pa−1 | k. By induction on j ∈ N0 we first
show that

(1 + h1p)
pj ≡ 1 + h1p

j+1 mod pj+2 . (12.7.a)

This is clear for j = 0. Moreover, for j = 1 we have

(1 + h1p)
p = 1 + ph1p+

p∑
j=2

(
p

j

)
hj1p

j ≡ 1 + h1p
2 mod p3 ,

since p |
(
p
j

)
for j = 2, . . . , p − 1 and p > 3. For the induction step assume

that (12.7.a) holds for some j > 1. Then there exists f ∈ Z such that

(1 + h1p)
pj+1

=
(
(1 + h1p)

pj
)p

=
(
1 + h1p

j+1 + fpj+2
)p

=
(
1 + pj+1(h1 + fp)

)p
= 1 + p · pj+1(h1 + fp) +

p∑
i=2

(
p

i

)
p(j+1)i(h1 + fp)i

= 1 + h1p
j+2 + f ′pj+3 ,

for some f ′ ∈ Z, since p |
(
p
i

)
and (j + 1)i+ 1 > j + 3 for i = 2 . . . , p− 1.

Since k | pa−1(p − 1) and (p − 1) | k, we already have k = pb(p − 1) for
some b ∈ {0, . . . , a− 1}, and it suffices to show that b = a− 1. Assume that
b < a− 1. Then

1 ≡ (hp−1)p
b

mod pa and (hp−1)p
b

= (1+h1p)
pb ≡ 1+h1p

b+1 mod pb+2 .
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Since b + 2 6 a, we obtain 1 ≡ 1 + h1p
b+1 mod pb+2 and h1p

b+1 ≡ 0
mod pb+2. But this implies p | h1, a contradiction. Thus, b = a − 1 and
the proof is complete.

12.8 Proposition Every Carmichael number is divisible by at least three
distinct primes.

Proof Let n be a Carmichael number. Then, by Proposition 12.6(b), we
know that n = p1 · · · pr for pairwise distinct odd primes p1, . . . , pr and that
r > 2. Therefore, we only have to rule out the case r = 2. So assume
that n = pq with primes p < q. Then Proposition 12.6(b) implies that
(p− 1) | (n− 1) and (q − 1) | (n− 1). Thus,

0 ≡ n− 1 = p(q − 1) + (p− 1) ≡ p− 1 mod q − 1

which implies (q − 1) | (p − 1). But this contradicts q − 1 > p − 1, and the
proof is complete.

12.9 Remark Using Propositions 12.6 and 12.8, it is easy to actually find
Carmichael numbers. For instance, n = 561 = 3 · 11 · 17 is a Carmichael
number. In fact, 2 | 560, 10 | 560, and 16 | 560. It is the smallest Carmichael
number. Alford, Granville, and Pomerance proved in 1992 that there are in-
finitely many Carmichael numbers. Unfortunately, the existence of infinitely
many Carmichael numbers forbids using (12.1.a) as a primality test for n in
conjunction with Proposition 12.3(c). We continue with another attempt for
a primality test, using a beautiful theory by Gauss about how to determine
if a number a ∈ {1, . . . , p− 1} is a a square modulo p, where p is a prime.

12.10 Definition Let p be an odd prime and let a ∈ Z. One defines the
Legendre symbol

(
a
p

)
∈ {−1, 0, 1} by

(
a

p

)
:=


0 if p | a,

1 if p - a and there exists b ∈ Z with a ≡ b2 mod p,

−1 if p - a and there exists no b ∈ Z with a ≡ b2 mod p.

If
(
a
p

)
= 1, then a is called quadratic residue modulo p.
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The following properties of the Legendre symbol follow relatively easy
from the definition, using that (Z/pZ)× is cyclic at some places.

12.11 Proposition Let p be a prime and let a, b ∈ Z.

(a) If a ≡ b mod p then
(
a
p

)
=
(
b
p

)
.

(b)
(
ab
p

)
=
(
a
p

)
·
(
b
p

)
.

(c) If p - a then
(
a2

p

)
= 1, in particular

(
1
p

)
= 1.

(d) If p - a then
(
a
p

)
≡ a(p−1)/2 mod p (Euler’s criterion).

(e)
(
−1
p

)
= (−1)(p−1)/2, i.e., if p ≡ 1 mod 4 then

(
−1
p

)
= 1, and if p ≡ 3

mod 4 then
(
−1
p

)
= −1.

(f)
(
2
p

)
= (−1)(p

2−1)/8, i.e.,
(
2
p

)
= 1 if p ≡ ±1 mod 8 and

(
2
p

)
= −1 if

p ≡ ±3 mod 8.

The following theorem is due to Gauss and a highlight of his career. See
[K, Proposition II.2.5] for a proof.

12.12 Theorem (Gauss’ quadratic reciprocity law) Let p and q be
distinct odd primes. Then

(
p

q

)
=

(
q

p

)
· (−1)

p−1
2
· q−1

2 =


(
q
p

)
if p ≡ 1 mod 4 or q ≡ 1 mod 4,

−
(
q
p

)
if p ≡ 3 mod 4 and q ≡ 3 mod 4.

12.13 Example Consider the prime p = 9283. Is a = 1002 a square modulo
p? We compute

(
a
p

)
to find the answer:

(
a

p

)
=
(

1002

9283

)
=
(

2 · 3 · 167

9283

)
=
(

2

9283

)
·
(

3

9203

)
·
(

167

9283

)
= (−1) ·

(
9283

3

)
· (−1) ·

(
9283

167

)
· (−1) = −

(
1

3

)
·
(

98

167

)
= −

(
72 · 2
167

)
= −

(
72

167

)
·
(

2

167

)
= −1 · 1 = −1 .

Therefore, there exists no x ∈ Z such that 1002 ≡ x2 mod 9283.
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12.14 Definition Let 3 6 n ∈ N be an odd number with prime decom-
position n = pe11 · · · perr and let a ∈ Z. One defines the Jacobi symbol(
a
n

)
∈ {−1, 0, 1} by

(
a

n

)
:=

(
a

p1

)e1
· · ·

(
a

pr

)er
,

using the Legendre symbols
(
a
pi

)
. Note that this extends the definition of the

Legendre symbol: if n = p is a prime then the Jacobi symbol
(
a
p

)
is equal

to the Legendre symbol
(
a
p

)
. However, the Jacobi symbol does not have the

same interpretation as the Legendre symbol about squares modulo n.

12.15 Proposition Let 3 6 m,n ∈ N be odd and a, b ∈ Z.

(a) If a ≡ b mod n then
(
a
n

)
=
(
b
n

)
.

(b)
(
ab
n

)
=
(
a
n

)
·
(
b
n

)
, and if gcd(m,n) = 1 then

(
a
mn

)
=
(
a
m

)
·
(
a
n

)
.

(c) If gcd(a, n) = 1 then
(
a2

n

)
= 1, in particular

(
1
n

)
= 1.

(d) If gcd(a, n) = 1 then
(
a
n

)
∈ {−1, 1} and if gcd(a, n) 6= 1 then

(
a
n

)
= 0.

(e)
(
−1
n

)
= (−1)(n−1)/2, i.e.,

(
−1
n

)
= 1 if n ≡ 1 mod 4 and

(
−1
n

)
= −1 if

n ≡ 3 mod 4.

(f)
(
2
n

)
= (−1)(n

2−1)/8, i.e.,
(
2
n

)
= 1 if n ≡ ±1 mod 8 and

(
2
n

)
= −1 if

n ≡ ±3 mod 8.

(g)
(
m
n

)
=
(
n
m

)
· (−1)

m−1
2
·n−1

2 , i.e., if n ≡ 1 mod 4 or m ≡ 1 mod 4 then(
m
n

)
=
(
n
m

)
, and if n ≡ 3 mod 4 and m ≡ 3 mod 4 then

(
m
n

)
= −

(
n
m

)
.

Proof All the statements can be reduced to the corresponding statements
about the Legendre symbol in Proposition 12.11.

12.16 Remark One can compute the Jacobi symbol
(
m
n

)
very quickly even

without knowing the prime decompositions of m and n, by applying division
with remainder and Proposition 12.15(g). This was not possible for the
Legendre symbol, because there ”denominator” had to be a prime and one
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first had to decompose the ”numerator” into primes. For instance:(
2724

4003

)
=
(

4

4003

)
·
(

681

4003

)
= 1 ·

(
681

4003

)
=
(

4003

681

)
=
(

598

681

)
=
(

2 · 299

681

)
=
(

2

681

)
·
(

299

681

)
= 1 ·

(
299

681

)
=
(

681

299

)
=
(

183

299

)
= −

(
299

183

)
= −

(
116

183

)
= −

(
4

183

)(
29

183

)
= −

(
29

183

)
= −

(
183

29

)
= −

(
9

29

)
= −1 .

12.17 Definition Let 3 6 n ∈ N be odd and composite, and let b ∈ Z be
such that gcd(b, n) = 1. The number n is called an Euler pseudoprime to the
base b, if

b(n−1)/2 ≡
(
b

n

)
mod n . (12.17.a)

12.18 Remark Let 3 6 n ∈ N be odd.

(a) If n = p is a prime then b(n−1)/2 ≡
(
b
n

)
mod n for all b ∈ Z with

gcd(b, n) = 1, by Euler’s Criterion, see Proposition 12.11(d).

(b) Let b ∈ Z with gcd(b, n) = 1. If n is an Euler pseudoprime to the base
b then n is a pseudoprime to the base b. In fact, squaring the congruence in
(12.17.a) yields the congruence in (12.1.a).

(c) It is easy to see that the elements b+nZ ∈ (Z/nZ)× such that (12.17.a)
holds form a subgroup of (Z/nZ)×. This implies that if (12.17.a) does not
hold for all b ∈ {1, . . . , n − 1} with gcd(b, n) = 1, then it holds for at most
50% of all b ∈ {1, . . . , n− 1} with gcd(b, n) = 1.

(d) If (12.17.a) holds for all b ∈ Z with gcd(b, n) = 1, then n is a prime. In
fact, assume that (12.17.a) holds for all b ∈ Z with gcd(b, n) = 1 and that n is
not a prime. Then n is a Carmichael number, by (b). By Proposition 12.6(b),
we can write n = p · n′ with p - n′. Let a ∈ Z be a primitive root modulo

p. Then
(
a
p

)
≡ a(p−1)/2 mod p, by Euler’s criterion (Proposition 12.11(d)).

Since a + pZ has order p − 1 in (Z/pZ)×, we obtain a(p−1)/2 ≡ −1 mod p

and
(
a
p

)
= −1. Now let b ∈ Z be such that b ≡ a mod p and b ≡ 1 mod n′.

Then gcd(b, n) = 1 and
(
b
n

)
=
(
b
p

)
·
(
b
n′

)
=
(
a
p

)
·
(

1
n′

)
= −1. Since (12.17.a)

holds for b, we obtain b(n−1)/2 ≡ −1 mod n. This implies b(n−1)/2 ≡ −1
mod n′. But, since b ≡ 1 mod n′, we also have b(n−1)/2 ≡ 1 mod n′. This
is a contradiction.
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(e) By (d), there does not exist the analogue of a Camichael number for
Euler pseudoprimes. Using (c), one obtains a very good primality test, called
the Solovay-Strassen test. This basic test can be refined to an even better
test, the Miller-Rabin test, see [K, pp. 129–131].
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Exercises for Section 12

1. Find a Carmichael number different from 561

2. Find a generator of the group (Z/625Z)×.

3. Consider the prime p = 123121 and the number a := 85734. Find out if
the congruence x2 ≡ a mod p has a solution.

4. Compute the Jacobi symbol
(
2018
4567

)
.

5. Find the next prime after the prime p = 123121 using the Solovay-Strassen
test.
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