Solutions to Practice Midterm, Version 1 (showing all the work)

1. (a) $\int_{-1}^{1} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{-1} ^{1}=\frac{1}{4}-\frac{1}{4}=0$.
(b) $\int_{-\pi}^{\pi} \cos (\theta) d \theta=\left.\sin (\theta)\right|_{-\pi} ^{\pi}=\sin (\pi)-\sin (-\pi)=0-0=0$.
(c) Use the substitution $u(t)=\sqrt{t}$. Then $u^{\prime}(t)=1 / 2 \sqrt{t}$ and we obtain

$$
\int_{1}^{2} \frac{e^{\sqrt{t}}}{\sqrt{t}} d t=2 \int_{1}^{2} e^{u(t)} u^{\prime}(t) d t=2 \int_{\sqrt{1}}^{\sqrt{2}} e^{u} d u=\left.2 e^{u}\right|_{1} ^{\sqrt{2}}=2 e^{\sqrt{2}}-2 e
$$

2. Sketch of the curves:

Intersection of curves $y=e^{x}$ and $y=2: e^{x}=2 \Longleftrightarrow x=\ln 2$. Thus, only one intersection at $(\ln 2,2)$.

Intersection of curves $y=e^{x}$ and $y=1-x: e^{x}=1-x$ holds for $x=0$ and for no other x (for $x>0$ we have $e^{x}>1$ and $1-x<1$, and for $x<0$ we have $e^{x}<1$ and $1-x>1)$. Thus, only one intersection at $(0,1)$.

Intersection of curves $y=2$ and $y=1-x: 2=1-x$ has only one solution, namely $x=-1$. Only one intersection at $(-1,2)$.

The area between of the region is

$$
\begin{aligned}
& \int_{-1}^{0}(2-(1-x)) d x+\int_{0}^{\ln 2}\left(2-e^{x}\right) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{\ln 2}\left(2-e^{x}\right) d x \\
= & \left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(2 x-e^{x}\right)\right|_{0} ^{\ln 2}=-\left(-1+\frac{1}{2}\right)+(2 \ln 2-2)-(0-1)=-\frac{1}{2}+2 \ln 2 .
\end{aligned}
$$

3. By the fundamental theorem of calculus one has $A^{\prime}(x)=e^{x^{2}}$.
4. Use substitution $u(x)=x^{2}$. Then $u^{\prime}(x)=2 x$ and

$$
\int x \tan \left(x^{2}\right) d x=\frac{1}{2} \int u^{\prime}(x) \tan (u(x)) d x=\frac{1}{2} \int \tan (u) d u .
$$

If you know the antiderivative of $\tan (u)$ you can use it.
If not continue as follows: Write $\tan (u)=\sin (u) / \cos (u)$ and use the substitution $v(u)=\cos (u)$ with $v^{\prime}(u)=-\sin (u)$. then

$$
\int \frac{\sin (u)}{\cos (u)} d(u)=-\int \frac{1}{v} d v=-\ln |v|+C=\ln |\cos (u)|+C
$$

Altogether:

$$
\int x \tan \left(x^{2}\right) d x=-\frac{1}{2} \ln |v|+C=-\frac{1}{2} \ln \left|\cos \left(x^{2}\right)\right|+C .
$$

Solutions to Practice Midterm, Version 2 (result only)

1. $\pi / 2$.
2. $4 \pi R^{3} / 3$ (with disc or shell method).
3. $\int \frac{t}{\sqrt{4-t^{2}}} d t=-\sqrt{4-t^{2}}+C$ (with substitution $u(t)=4-t^{2}$).
4. $F(x)=x \sin (x)+\cos (x)$ (integrating by parts).

Solutions to Practice Midterm, Version 3 (result only)

1. $2 / 3$.
2. $\pi / 4$.
3. 8π.
4. $\left(x^{2}-2 x-2\right) e^{x}+C$ (integration by parts twice).
