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Abstract

So far there exist three independent constructions of two different
canonical versions of Brauer’s induction theorem for complex characters
due to V. Snaith, P. Symonds, and the author (see [23],[27],[2]). ‘Canon-
ical’ in this context means functorial with respect to restrictions along
group homomorphisms. In this article we axiomatize the situation in
which the above canonical induction formulae are constructed. Mackey
functors and related structures arise in this way naturally as a convenient
language. This approach allows to construct canonical induction formulae
for arbitrary Mackey functor. In particular we obtain canonical induction
formulae for the Brauer character ring, the group of projective characters,
the ring of trivial source modules, and the ring of linear source modules.
In most cases, it is not difficult to construct such formulae over the ra-
tional numbers. A much more subtle question is whether the constructed
formula comes from a canonical induction formula defined over the inte-
gers. We give a sufficient condition in the general framework of Mackey
functors for a canonical induction formula to be integral. As an appli-
cation we show how canonical induction formulae allow the construction
of functorial maps on representation rings in terms of functorial maps on
subrings, as for example the span of linear characters in the case of the
canonical Brauer induction formula. This will be used in a subsequent
article in the case of Adams operations and Chern classes.

Introduction

It is always very pleasant if a question about some higher dimensional object
can be reduced to one-dimensional objects, as it is the case with the splitting
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principle for vector bundles (cf. [18, 17.5]) or with Brauer’s induction theorem
for character rings of a finite group (cf. [8]). In both cases one knows that for
each higher dimensional object there exists a family of one-dimensional objects
by which the object itself or at least its interesting invariants are determined.
These existence theorems have already fundamental consequences. In the case
of Brauer’s theorem (and this was Brauer’s incentive) one deduces easily from
the classically known facts for one-dimensional representations that the Artin
L-function of an arbitrary complex Galois representation of a number field is
meromorphically extendible to the whole complex plane and satisfies a func-
tional equation. For this kind of qualitative questions the existence statement
in Brauer’s theorem is sufficient. If one wants to study more detailed proper-
ties, as for example Artin’s conjecture, stating that the Artin L-function of a
non-trivial irreducible representation is holomorphic, a more explicit version of
this theorem would be desirable.

Another important area in number theory is the conjectured Langlands cor-
respondence between Galois representations of a local field K and represen-
tations of GL,(K) for varying n € N. In this case again, one has a corre-
spondence with all the required properties for the subsets of one-dimensional
Galois representations and representations of GL; (K) via local class field the-
ory. By Brauer’s theorem one can associate to each Galois representation a
family of one-dimensional Galois representations on finite extension fields; this
determines via class field theory a family of representations of the unit groups
of these extension fields, and one would like to have an induction process which
associates to this family a (virtual) representation of GL, (K) for some n € N.
Let us assume for the moment that there is such a notion of induction. Then
still one has the problem that Brauer’s theorem is only an existence theorem,
and one has to show that a construction as indicated above would not depend
on the special choice of a family of one-dimensional representations.

Surprisingly there are canonical choices for Brauer’s induction theorem, as
Snaith proved in [23] by topological methods. Independently, using an algebraic
approach the author introduced another canonical choice (cf. [2]). Both choices
share the property of functoriality with respect to group homomorphisms. How-
ever, while the topological formula is not additive but gives a topological inter-
pretation to the multiplicities of the occurring one-dimensional representations
in terms of Euler characteristics (showing a priori that they are integers), the
algebraic formula is additive but produces a priori only multiplicities in Q. In
[2] we gave a proof for the integrality of these coefficients which made heavy
use of the fact that we are dealing with complex characters, in contrast to the
construction of the coefficients which was quite formal and invited to general-
ization. There is also a geometric interpretation of the algebraic formula due to
Symonds, cf. [27], but like the topological approach this method seems not to
be apt to generalize to repesentations over other rings than C or R.

There exists already a variety of applications of these canonical Brauer in-
duction formulae, cf. [5], [24], [25], [26], and [27], and one would certainly like
to have similar constructions for various other representation rings besides the
character ring. The aim of this paper is to introduce the basic constructions,
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notions and results about a very general approach, producing canonical choices
of induction formulae for many sorts of representation rings. We consider this
article as a reference for future examples and applications. Therefore some parts
are kept in a more general framework than necessary for the five examples of
canonical induction formulae we already introduce here (see Examples 1.8 and
6.13), namely for the classical case of the character ring, the ring of Brauer char-
acters, the Grothendieck group of projective modules for a finite group over a
complete discrete valuation ring O, and the representation rings of trivial source
modules and linear source modules over O.

The language of Mackey functors on a finite group G over a commutative
base ring k is perfectly suited to formulate our results and constructions, and
also motivates the idea of considering functorial choices of induction formulae.
The notion of a Mackey functor axiomatizes structures allowing induction, re-
striction, and conjugation maps, as for example character rings or cohomology
groups of G-modules.

We introduce Mackey functors and related structures (restriction functors
and conjugation functors) in Section 1, where we also provide the necessary
facts about them. Restriction functors and conjugation functors arise from
Mackey functors by forgetting the induction maps and then also the restriction
maps. In Section 2 we define basic functors between these three categories,
namely the consturctions —; and —* which arise from adjoints of the forgetful
functors. The functor —; generalizes the construction of the Burnside ring from
the constant restriction functor Z, and there is also a generalization of the mark
homomorphism on the Burnside ring. In Section 3 we motivate and define the
notion of a canonical induction formula as a morphism of restriction functors
a: M — A, which splits the induction morphism b: A, — M, for a Mackey
functor M and a restriction subfunctor A of M, where A, (G) is a quotient
of @y A(H) and b: AL (G) — M(G) is induced by the induction maps. If
M is the character ring Mackey functor and A C M is spanned by the linear
characters, we obtain as an example the canonical induction formula in [2].

Section 4 gives a glimpse of future applications by extending morphisms on
A to morphisms on M using a canonical induction formula. We will apply these
results in subsequent papers to constructions of Adams operations and Chern
classes on various representation rings different from the character ring.

In Section 5 we obtain for suitable base rings a parametrization of all mor-
phisms of restriction functors a: M — A, by the more convenient set of mor-
phisms p: M — A of conjugation functors. Section 6 is devoted to the situation
where the order of G is invertible in the base ring. Under this hypothesis we
obtain complete answers in terms of p to the questions, if a is a splitting for b, a
morphism of Mackey functors, or a ring homomorphism. In Section 7 we study
the effect of a change of base rings with respect to the functors —, and —%, in
order to be able to pass from results over ), which we proved in Section 7, to
result over Z, the case we are most interested in.

We place ourselves in a more specific situation in Section 8, where we work
with the base ring Z and impose in Hypothesis 8.1 conditions on M and A which
are satisfied in all the examples we are interested in. Crucial among them for
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what follows is the notion of a stable basis B of A, which, as for example the
set of one-dimensional characters, is a Z-basis which is stable under conjugation
maps and whose positive span is stable under restriction maps. For M, A,
p: M — A, and B as in Hypothesis 8.1 we may tensor all objects with Q over
Z in order to obtain an associated map a: Q @ M — Q ® A, by our previous
results. The most interesting question then is, whether q is integral, i.e. a maps
M to Ay. In Section 9 we transform an explicit alternating sum formula for a
in terms of p, in which the denominator |H| occurs for each subgroup H < G,
by refining the index set from the simplicial complex of chains of subgroups of
G to the simplicial chain complex of a poset associated to the stable basis B.
A further subtle refinement and rearrangement in this alternating sum makes
apparent that under some condition (x;) on M, A, p, and B (7 being a set
of primes) we obtain an alternating sum formula whose denominators divide
|G|x . This is the statement of Theorem 9.3 which provides a general tool for
integrality proofs. We show that (x.) is satisfied for the set 7 of all primes in
the cases of the character ring and the Brauer character ring, and for the set
7 of primes distinct from the prime characteristic I of the residue field of O
in the case of the Grothendieck group of projective OG-modules. In the first
two cases this completes the integrality proof, and in the third case we give an
argument which shows that the remaining I-power denominators also vanish.
An integrality proof using Theorem 9.3 for the introduced induction formulae
in the case of trivial source modules and linear source can be found in [4].

In Section 10 we adopt a global point of view by considering M and A to
be defined on all finite groups instead of only the subgroups of a given finite
group, and we show how our previous results can be extended to this point
of view. Moreover, we assume that there are restriction maps for all group
homomorphisms, not only the subgroup inclusions, and show that the canonical
induction formulae also commute with these restriction maps.

Finally, in Section 11 we give a method of computing a canonical induction
formula a: M — A, in the standard situation of Hypothesis 8.1 by giving a
matrix equation I' - a(m) = B(m) for the coefficients a(m) of ag(m) € A, (G),
m € M(G), with respect to a special basis in Ay (G), where I is an upper
triangular quadratic matrix with coefficients in Z which is independent of m.

Notation

Let G be a finite group, ¢ € G, and K, H < G be subgroups of G. We set
9H = gHg™ ' and H9 = g~ 'Hg, write H < G if H is a proper subgroup of G,
and K =¢ H if K and H are conjugate under G. For a set 7 of primes we denote
by g, the element of < g > whose order is precisely the m-part of the order of
g. The exponent of G is denoted by exp(G) and the set of complex irreducible
characters of G by Irr(G). For a G-set S we denote by S the set of G-fixed
points. If k is a commutative ring, kG denotes the group ring and I(kG) the
augmentation ideal of kG, i.e. the k-submodule of kG generated by the elements
g—1, g € G. All rings and algebras are unitary, and homomorphisms of rings
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and algebras always preserve unities. For a ring R its group of units is denoted
by R*, the category of R-modules by R—Mod, and the full subcategory of
finitely generated R-modules by R—mod. For the rank of a free R-module
M € R—mod we write rkr M. Unadorned tensor products are taken over Z.

1 Mackey functors and related structures

Throughout this section G denotes a finite group and &k a commutative ring,.

1.1 Definition (a) A k-conjugation-functor (resp. k-algebra conju-
gation functor) on G is a pair (X, ¢) consisting of a family of k-modules (resp.
k-algebras) X(H), H < G, and a family of k-module (resp. k-algebra) homo-
morphisms ¢4, m: X(H) — X(9H), the conjugation maps, for H < G and
g € G, satisfying the axioms

(C].) Ch,H = ldX(H) (Tr1v1ahty),

(C2) cyg,m =cy oy 0 cqu (Transitivity),
forallhe H< G and g,9' € G.

(b) A k-restriction functor (resp. k-algebra restriction functor) on G
is a triple (A, c,res) consisting of a k-conjugation (resp. k-algebra conjugation)
functor (A,c¢) on G together with a family of k-module (resp. k-algebra) ho-
momorphisms rest: A(H) — A(K), the restriction maps, for K < H < G,
satisfying the axioms

(R1) resf} =ida(m) (Triviality),

(R2) resX oresfl =resl! (Transitivity),

(R3) ¢,k oresil =res Zg o ¢y n (G-equivariance),
foral LX< K<H<Gandge€@qG.

(c) A k-Mackey functor on G is a quadruple (M, c,res,ind) consisting
of a k-restriction functor (M, ¢,res) and a family of k-module homomorphisms
indgz M(K) - M(H), the induction maps, for K < H < G, satisfying the
axioms

(M1) ind}f = idprmy (Triviality),

M2) ind¥ oindf = ind# (Transitivity),

(M3) ¢, moindf =ind Zﬁ o ¢g,k (G-equivariance),

(M4) resf oindft = 3 indgﬁ h © res;ﬁ by © Ch,K (Mackey-formula),
heU\H/K

forall L< K< H<G,U<H, and g € G, where in (M4), h runs through a
set of representatives in H for the double cosets U\H/K.

A k-Green functor on G is a k-Mackey functor (M, ¢, res, ind) on G such
that each M(H), H < G, is a k-algebra, the conjugation and restriction maps
are k-algebra homomorphisms and the axioms

(M5)  z-indf (y) = indf (res (z) - ),
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indf (y) - ¢ = indf (y - resf (2)), (Frobenius axioms)

are satisfied for all K < H < G, z € M(H), and y € M(K).

(d) A morphism f: X — Y of k-conjugation (resp. k-restriction, resp. k-
Mackey functors) X and Y on G (by abuse of notation we often write X instead
of (X,¢), etc.) is a family of k-module homomorphisms fr: X(H) — Y (H),
H < G, commuting with conjugation maps (resp. conjugation and restriction
maps, resp. conjugation, restriction, and induction maps). For a morphism of k-
algebra conjugation functors (resp. k-algebra restriction functors, resp. k-Green
functors) on G we require additionally that fg is a k-algebra homomorphism
for all H < G.

1.2 Remark (a) From Definition 1.1 we obtain categories k—Con(G),
k—Con,(G), k—Res(G), k—Resa (G), k—Mack(G), and k—Mack,i;(G).
In each of these six categories we have an obvious notion of subfunctors.
Injectivity (resp. surjectivity) of a morphism f: X — Y means injectiv-
ity (resp. surjectivity) of all fi: X(H) — Y(H), H < G. The categories
k—Con(G), k—Res(G), and k—Mack(G) are abelian. For any map of commu-
tative rings k — k' there are scalar extension functors

k¥ ®; —: k—Con(G) = k¥'—Con(G), ... ,
k—Mack,i (G) = k'—Mack,iy (G).

(b) Let X be an object in one of the six categories in part (a). Then the ax-
ioms (C1) and (C2) imply that the conjugation maps are isomorphisms and that
they provide each X (H), H < G, with a module structure over the group ring
kNg(H)/H. In the sequel we will often write % instead of ¢4, (2) for g € G,
H < G,and z € X(H). If Rg denotes a set of representatives for the conjugacy

classes of subgroups of G, then clearly k—Con(G) = [] kNg(H)/H —Mod.
HeRg

1.3 Example (a) The Burnside rings Q(H) and the cohomology groups
H"(H,V), H < G, for fixed n € Ny and V € ZG—Mod, are examples of Z-
Mackey functors on G (even of a Z-Green functor in the Burnside ring case).
We refer to [12, §80] for the notation and basic results concerning the Burnside
ring,.

(b) There is a constant k-algebra restriction functor k with k(H) = k for
all H < G, and with all conjugation and restriction maps being the identity.
Obviously k is an initial object in the category k—Res,i(G). In Section 2 we
will see that the Burnside ring Green functor k ® ( arises from k by a functor

-

1.4 Definition (cf. [15], [31], [28])
(a) Let X,Y,Z € k—Mack(G). A pairing X ®, Y — Z is a family of
k-module homomorphisms

XH)erY(H) > Z(H), zQ®ry—z-y,
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satisfying the axioms

(P1) Y= -y) = % - % (G-equivariance),

(P2) resil(z-y) =resil(z) - resi(y) (compatibility with restrictions),

(P3) indf(a)-b=indE(a-resi(b)),

a - indf (') = ind% (rest (a’) - '), (Frobenius axioms),
for K<H<LG,geG, d,z2e X(H),bycY(H),ae X(K),V e Y(K).

(b) Let A be a k-Green functor on G. A k-Mackey functor M on G together
with a pairing A®; M — M is called an A-module, if A(H)®, M(H) - M(H)
provides each M(H), H < G, with an A(H)-module structure.

If A(H) is commutative for all H < G, then an A-algebra is a k-Green

functor B on G together with a morphism i: A — B of k-Green functors such
that each B(H), H < G, is an A(H)-algebra via iy.

For a finite left G-set S we denote the class of S in the Burnside ring by
[S] € Q(G). The elements [G/H] € Q(G), where H runs through a set of
representatives for the conjugacy classes of subgroups of G, form a Z-basis of
Q(G) and also a k-basis of k ® Q(G). The following proposition (whose proof is
left to the reader) points out the distinguished role the Burnside ring functor k®
Q) € k—Mack,,(G) plays for the categories k—Mack(G) and k—Mack,;(G),
namely the same role that Z plays for the categories of abelian groups (i.e. Z-
modules) and the categories of rings (i.e. Z-algebras).

1.5 Proposition ([15, Prop. 4.2], [31, Ex. 2.11], [28, Prop. 6.1])
(i) Every k-Mackey functor M on G has a unique structure of a k®Q-module,
namely

(k@ Q(H)) ®r M(H) - M(H), [H/K]®m — indg(resi(m)),

for K< H<G aendme M(H).
(ii) For every k-Green functor A on G there is a unique morphism i: k®Q —
A of k-Green functors on G, namely

in: k@QH) — AH), [H/K]~ indf(1a)),

for K < H <G, i.e. k®Q is an initial object in k—Mack,i,(G). In particular,
A has a unique k® Q-algebra structure. Moreover, ig induces the unique k® Q-
module structure of A. 0

1.6 For a k-Mackey functor M on G and H < G we define the k-submodule
I(M)(H):= Y indg(M(K)) = ) im(ind: M(K) - M(H))
K<H K<H

of M(H). Axiom (M3) implies that Z(M) is a k-conjugation subfunctor of M
on . Since morphisms of k-Mackey functors commute with induction maps,
these submodules are preserved under such morphisms, and we obtain a functor

I: k—Mack(G) — k—Con(G).
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Note that if M € k—Mackaz(G), then Z(M)(H) is an ideal of M (H) for H < G
by the Frobenius axiom (M5).

Following Thévenaz (cf. [28]), we call a subgroup H of G primordial for
M, if Z(M)(H) # M(H), i.e. if there is an element in M (H) which can not
be obtained as a sum of properly induced elements. We denote the set of
primordial subgroup for M by P(M). Note that for H < G one has M(H) =

ZKSH,KEP(M) indg (M (K)).
1.7 Dually to 1.6 we define for A € k—Res(G) and H < G the k-submodule

K(A)(H) :== [ ker(resg: A(H) - A(K))
K<H

of A(H). These submodules form a k-conjugation subfunctor of A and they are
preserved under morphisms of restriction functors on G. Hence, we obtain a
functor

K: k—Res(G) = k—Con(G).

Note that if A € k—Res,z(G), then K(A)(H) is an ideal in A(H), since the
restriction maps are k-algebra homomorphisms.

A subgroup H < G is called coprimordial for A, if K(A)(H) # 0, i.e. if
the elements in A(H) are not uniquely determined by proper restriction maps.
We denote the set of coprimordial subgroups for A by C(A). Note that for
H < G two elements z,y € A(H) are equal if and only if rest(z) = resi(y)
for all K < H with K € C(A). More about coprimordial subgroups and the
connection to primordial subgroups can be found in [1, IT1.1.11-1.18].

1.8 Example For a ring A and a group H we set H(A) := Hom(H, A*),
and regard it as a multiplicative abelian group in the case that A is commutative.
In this paper we will mainly be interested in the following examples.

(a) The character rings R(H), H < G, i.e. the free abelian groups on the
sets Irr(H) of complex irreducible characters of H, form a Z-Green functor on
G with the usual conjugation, restriction and induction maps. For H < G let
R*(H) C R(H) denote the Z-span of the subset H := H(C) C Irr(H) of linear
characters. Then R®® with the inherited conjugation and restriction maps is a
Z-algebra restriction functor on G. Note that, since an induced linear character
may have non-linear constituents, R C R is not a Mackey subfunctor. The
set C(R) of coprimordial subgroups for R consists of the cyclic subgroups and
the set P(R) of primordial subgroups consists of the elementary subgroups of
G.

(b) Let F be an algebraically closed field of prime characteristic [ > 0 .
The Grothendieck rings Rp(H) of FH — mod, H < G, with respect to short
exact sequences, which we identify with the free abelian group on the set of
isomorphism classes [V] of irreducible FH-modules V, form a Z-Green functor
on G, and the subrings R2*(H), H < G, generated by the isomorphism classes
[V] of FH-modules V' with dimp V = 1 form a Z-algebra restriction subfunctor
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of Rp. For a homomorphism ¢: H — F'* we denote by F,, the F-vector space
F endowed with the H-action h-a = ¢(h)a for h € H, a € F. For ¢ =1 we
write F instead of #7. Then the map ¢ — F,, induces a bijection between H (F)
and the set of isomorphism classes of one-dimensional F'H-modules, and we will
often identify ¢ with [F,], thus considering H(F) as Z-basis of R3’(H). From
the theory of Brauer characters it follows that the set C(Rg) of coprimordial
subgroups is the set of cyclic I’-subgroups.

(c) Let O be a complete discrete valuation ring of characterstic zero con-
taining a primitive exp(G)-th root of unity and assume that the residue field
O/rad(O) is of positive characteristic I and algebrically closed. A linear source
OG-module M is an OG-module, free of finite rank as O-module, such that the
source of any of its indecomposable direct summands is a module of O-rank
one. Equivalently, M is isomorphic to a direct summand of a monomial OG-
module, i.e. a direct sum of modules of the form indg(Ow) for some H < G
and ¢ € H(O). Still equivalent is the condition that res@ (M) is a monomial
OP-module for all l-subgroups (or equivalently for a Sylow l-subgroup) P of
G. These equivalences can be proved like the analogous statements on trivial
source modules in [10]. Together with the usual conjugation, restriction, and
induction maps, the Grothendieck rings Lo (H) with respect to direct sums of
the categories OH —lin of linear source O H-modules, H < G, form a Z-Green
functor on G. Since direct summands of linear source modules are again linear
source modules, Ly (G) is free on the isomorphism classes of indecomposable
linear source OG-modules. R

Note that, as in (b), the map ¢ — O, for ¢ € G(O), induces a bijection
between G (O) and the set of isomorphism classes of linear source OG-modules
of O-rank one. For H < G we denote the span of [O0,] € Lo(H), ¢ € H(0),
by L& (H), and obtain a Z-algebra restriction subfunctor L& C Le. For more
on linear source modules, i.e. a proof of the semisimplicity of C ® Lo (G) and
the determination of its species, i.e. algebra homomorphisms C ® Lo (G) — C,
see [4].

(d) Let O be as in (¢). There is a full subcategory OG—triv C OG—lin
of trivial source OG-modules, i.e. linear source OG-modules, all of whose
indecomposable summands have trivial source. For H < G the Grothendieck
ring To(H) of OH—triv is a subring of Lp(H), and they form a Z-Green
subfunctor Tp of Lp. It is easy to see that an OH-module of the form O,
poeH (0), is a trivial source module, if and only if H/ker(y) is an I'-group. We
define T3P(H) C L2’(H) as the span of the elements [O,], ¢ € H(O)y. Clearly,
T3P is a Z-algebra restriction subfunctor of Te.

Note that in the literature trivial source OG-modules are often called I-
permutation modules, since they are exactly those OG-modules M whose re-
striction res§(M) is a permutation module for all I-subgroups (or equivalently
for a Sylow l-subgroup) P of G. Also equivalent is the condition that M is
isomorphic to a direct summand of a permutation module. Since a direct sum-
mand of a trivial source module is again a trivial source module, Tn(G) is a
free abelian group on the set of isomorphism classes of indecomposable trivial
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source OG-modules.

We remark that for a field F of characteristic ! as in (b), the similarly defined
Green functor Tr is isomorphic to Tp, and Tg" is isomorphic to T3P, cf. [10].
In fact, reduction modulo rad(O) induces an isomorphism To 2 T /raq(0)-

Since To(H) and Lo(H) are Z-free for all H < G, we have equalities
C(To)=C(Q®Tp) and C(Lp) =C(Q® Lp). Moreover, in Proposition 6.2 we
will show that C(Q®Te) = C(Q® Le), since To C Le is an inclusion of Green
functors. From Conlon’s induction theorem (cf. [12, Cor. 81.32]) it follows that
C(Q®Tp) is the set of I-hypo-elementary subgroups, i.e. subgroups H, whose
biggest normal [-subgroup has a cyclic I’-group as factor group, i.e. H/O,(H) is
cyclic.

(e) Let O be as in (c¢) and let OG—proj be the category of finitely gen-
erated projective OG-modules. Since each projective OG-module is a direct
summand of a free module, OG—proj is a full subcategory of OG—triv. The
Grothendieck groups Po (H), of OH—proj, H < G, with respect to direct sums,
form a Mackey subfunctor Pop C Teo C Lo and are free abelian groups on the
isomorphism classes of indecomposable projective OH-modules. A rank-one
module O,, ¢ € H(O), H < G, is projective, if and only if H is an I'-group.
Hence, we set P3P(H) = T (H) = L¥(H) for I-subgroups H < G, and
P2P(H) = 0 otherwise, and obtain a Z-restriction subfunctor P&’ C Po.

Note again that if F' is a field of characteristic [ > 0 as in (b), then for
the similarly defined Mackey functor Pp and restriction functor P2 we have
Pr =2 Py and Pgb ~ P(%b.

Moreover, by [22, Théoremes 34, 36], the Mackey functor Pg is isomorphic
to the subfunctor of the character ring functor R consisting of those virtual
characters vanishing on [-singular elements, i.e. elements of order divisible by [.
This shows that C(Pr) = C(Pw) is the set of cyclic I’-subgroups of G.

2 The two plus-constructions and the mark mor-
phism
Let G and k be given as in Section 1. We are going to define two functors
—*: k—Con(G) — k—Mack(G)
and
—+: k—Res(G) - k—Mack(G)
together with a natural transformation
phi AL = AT

for every A € k—Res(G). These constructions generalize well-known features
of the Burnside ring. It will be obvious from the constructions that

k. 2keG) and k(@) =(]] K,
H<G
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where G acts by permuting the components in the last product according to the
conjugation action on the subgroups H < G, and that under these identifications
the map p% is just the classical mark homomorphism

pc: 0G) = ([[ 2)%, 181~ (15" D<o
H<G

The functor —7 is part of Thévenaz’ definition of the twin functor of a
Mackey functor (cf. [28, Sect. 4]). The functor —; was considered in special
cases by Deligne in [13] and also by Dress in [14].

2.1 For X € k—Con(G) we define (Xt,ct,rest,ind™) € k—Mack(G) by
H
x*+(H) = (][] x(x)
K<H

for H < G, where h € H acts on [], .y X(K) by the conjugation maps
(en,x)k<m. Each g € G induces for H < G a map

¢p= [ eor: (T X)) = (] X(QK))QH.
K<H K<H K<H

For K < H < G we define

restie: ([ x@)™ = (] x@)”
as the obvious projection map, and

ind+g = Z C};KI (H X(L))K = ( H X(L))H

heH/K L<K L<H

as the relative norm map, where we view the image of cz’ Kk as contained in
[1;<m X (L) filling up the additional components with zeros.
For a morphism f: X — Y in k—Con(G) we define

=1 fx: (] xE)" = (I v)”
K<H K<H K<H

for H < G. It is a straight forward verification to show that —T is a functor
from k—Con(G) to k—Mack(G) and that the same definitions yield a functor
—1: k—Comn,is (@) = k—Mack,;(G).

2.2 For (4, c,res) € k—Res(G) we define (A4, ¢4, resy,ind; ) € k—Mack(G)
as follows. For H < G let

Av(H) = (@ AK))

K<H
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where we view @, .y A(K) as a kH-module via the sum of the conjugation

maps cp,x: AK) — A("K), h € H, and where for a kH-module M the k-
module My of coinvariants is defined as M/N, N being the smallest K H-
submodule such that H acts trivially on M/N,i.e. N = I(kH)M, where I(kH)
is the augmentation ideal of kH. We will abbreviate the image of a € A(K),
K < H,in A, (H) by [K,a]g. Thus, if Ry is a set of representatives for the
conjugacy classes of subgroups of H, we can write each element z € A, (H) as

r= Z [K7 a’K]H
KeRu
for certain elements ax € A(K), K € Ry, with
Z (K, ak]n = Z (K, ak]m
KeRy KeRu

for elements af € A(K), K € Ry, if and only if there exist nxg € Ny (K) for
each K € Ry with ax = "*(a)y).
For K < H < G and g € G we define maps

Crom: Ar(H) = AL(*H), [U,ala = [, %a]sy,

h.
resy o Ay (H) = Ay (K), [Ualm= Y [KN0"Wres,” s (
heK\H/U

indy 7 : Ay (K) > Ay (H), [V,blk = [V,b]g,

ha')]K’

where U< H,V < K,a€ A(U),and b € A(V).
For a morphism f: A — B in k—Res(G) and H < G we set

frp: Av(H) = BL(H), [K,aln — [K, fk(a)]n,

where K < H and a € A(K). Then again, straight forward calculations show
that —y is a functor from k—Res(G) to k—Mack(G), and that the same defini-
tions yield a functor —; : k—Res,is(G) = k—Mack,z(G), where the k-algebra
structure on A, (H) for A € k—Res,z(G) and H < G is defined by

[U,alg - [V,blu := i %{/V [Un M, resgﬁ n, (@) res;‘; hv(hb)}H,
€

where U,V < H,a € A(U), and b € A(V). If each A(H), H < G, is commuta-
tive, so is each A, (H).
For A € k—Res(G) (resp. A € k—Res,3(G)) and H < G we define the map

4 A(H) = AL (H), aw [H,aln

which is injective by Axiom (C1). This defines a morphism ¢4: A — A, of
k-restriction functors (resp. k-algebra restriction functors) on G, which is func-
torial in A.
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Note that if A € k—Res,;(G) is commutative then A (H) is an A(H)-
algebra via 14. If A is not commutative, this map is still a unitary ring ho-
momorphism providing A, (H) with an A(H)-module structure: a - [K,blg =
[K,resf(a)b]y, for a € A(H), b€ A(K), K < H<G.

2.3 For A € k—Res(G) and H < G we define

a, ftK=H
w5 AL (H) = A(H), [K,alp+— {0 £ K < H
By Axiom (C1), 74 is well-defined, and it is clear that 74: Ay — A is a mor-
phism of k-conjugation functors on G. Since 7 : Ay (H) — A(H) is surjective
with kernel Y, indy K (A (K)) for H < G, we call 7# the Brauer mor-
phism in analogy of the Brauer map in modular representation theory, cf. [12,
§58A], and also [28, p. 29]. Moreover, for H < G and z € A, (H) we call
74 (x) € A(H) the residue of z, a notion introduced and studied by Puig in
[20] and by Thévenaz in [28].
Next, for H < G, we define

ply = (it oresy ) ey Ay (H) » AT (H) = ([ Ak)".

K<H

Again by routine calculations one can show that p4: A, — At is a morphism
in k—Mack(G) which is natural in A € k—Res(G). If A € k—Res,;;(G), then
741 Ay — Ais in k—Con,ig(G), and therefore, pA: A, — A* is a morphism
in k—Mack,g(G).

As the following proposition shows, for each H < G, the map

of s AY(H) = A, (H), (2.3.2)

(G’K)KSH = Z |L|/J’(L7 K)[L7 I‘eSf((JIK)]H,
L<K<H

is almost inverse to p4, where u(L,K) denotes the Mébius function of the
poset of subgroups of H evaluated at (L, K'), cf. [21] for generalities on M&bius
functions.

2.4 Proposition For A € k—Res(G) and H < G one has
ofropfy =|H|-ida, ) and pfyoog =|H| ida+m).
In particular, the kernels and cokernels of pfi and of; are annihilated by |H|.

If AL (H) has trivial |H|-torsion, then pp is injective, and if |H| is invertible
n k, then pﬁ is an tsomorphism.
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Proof For U < H and a € A(U) we have
pﬁ([U7 a’] ) ((WIA( ° reS+K)([U a’] ))KSH
h.
= ( Z (KN ", resKihU(ha)]K))K<H
hEK\H/U
h.
= ( Z resKU(ha))KSH,
heH/U
KShU

since for K < H the relation K < U implies KhU = hU. Applying ofy to this
family we obtain

(ohopi)Ualm) = 3 ILEL,K) Y [Lyres;”(

y v ha’)]H
L<K<H h€H/U

K<hU
IZ > (L, K)|L|[L, res, Y (
hel p<cg<ty

ha')]H‘
Considering for h € H the map

Iy R
fAL < U} = Ap(H), L |L|[Lres;” ("a)ly,
the inner sum collapses by M6bius inversion (cf. [21, 3., Prop. 2]) to the element
|hU|[hU, ha)p = |U|[U, a]g which y1e1ds

(o7 © p1)([U, aln) |U| > WUV, alu = [H|[U, a]a-
heH
Conversely, let (ax),

x<u € AT(H). Then the U-component, U < H, of the
element (p4 o o) ((ak), x<n) € AT (H) is given by
(nf} ores; it o

Ié)((aK)KSH)
> |Llu(L, K)xf

L<K<H

(res_,’_g([L, resf (GK)]H))

S LI, K) Y resy (Mresk (ax)))
L<K<H

heH/L
h
U< L
= E u(L, K) E resU aK
L<K<H hen
U< b

"K o h
=y > ulL K)resy™ ("ax)).
heH Ur<L<K<H
Considering for each h € H the map

f{U< K< H}— AU), KHresl}}K(haK)
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the inner sum collapses by Mdbius inversion (cf. [21, 3., Prop. 2]) to ha(Uh) =ay,
and we have

(nfy oressgf o oft)((ar)gn) = Y av = |Hlav,
heH

which completes the proof of the proposition. 0

2.5 Remark Note that the above proposition reproves the explicit formula
of Gluck, cf. [16] and [32], for the idempotents egf) €eQ®OG), H<LG, (and

also in k ® Q(G), if |G| is invertible in G), where eEqG) = pg' ((aK) o) With
ax =1if K =¢ H, and ax = 0 otherwise:
G 1
eff) = ——— > |L|u(L, H)[G/L]. (2.5.2)

INa(H)| /=,

3 The definition of a canonical induction for-
mula

Throughout this section let k be a commutative ring, G a finite group, M a k-
Mackey functor on G, and A C M a k-restriction subfunctor of M, i.e. A(H) C
M(H), H < G, are k-submodules and stable under the conjugation and restric-
tion maps of M.

3.1 For H < G we define

b4 AL (H) » M(H), [K,alg— ind(a),

where K < H and a € A(K). It is easy to see that b4: A, — M is a mor-
phism of k-Mackey functors on G, which we will call the induction morphism
of M from A. If M is a k-Green functor and A C M a k-algebra restriction
subfunctor, then 54 is a morphism of k-Green functors on G.

3.2 Remark and Example Let k =7, M = R the character ring Green
functor, and A = R?" as in Example 1.8 (a). By Brauer’s induction theorem
(cf. [22, Théoréme 20]), the induction morphism bRE"" ; R — R is surjective.
For fixed H < G and x € R(H), the ‘different ways’ of writing x as a Z-
linear combination of induced linear characters correspond bijectively to the set
of elements in Ay (H) that are mapped to x under bg’Rab, provided that one
agrees to identify two such linear combinations, if one arises from the other by
replacing sumands ind# (1)) by conjugate summands indI;{K(hz[J) for K < H,

veK,and he H.

Now we fix H < G. If we want to specify for each x € R(H) a preferred way
of writing x as a Z-linear combination of induced linear characters, this amounts
to choosing a map ag: R(H) — R3*(H) such that bg’Rab oap = idpm. Of
course there are many different possible choices for ag in general.
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Next we consider all subgroups H < G simultaneously. Knowing that Rib
and R are Mackey functors on G and that bRE™ g g morphism of Mackey
functors, it is just natural to require that a: R — Rib be also a morphism of
Mackey functors. However, there is no family of maps ar: R(H) — R3*(H),
H < G, commuting with induction maps and satisfying bg’Rab oap = idg(m)
for all H < G. In fact, if we assume that (am),, .o is such a family, then Artin’s
induction theorem (cf. [12, 15.4]), namely -

|H|-R(H)C > indg(R(K))

K<H
K cyclic

for H < G implies that
|H|-au(R(H)) C Y indy g (RP(K))

K<H
K dyclic

for H < G. Recalling the definition of ind_,_g for K < H < G from 2.2 we
observe from this inclusion that |H| - ag(R(H)) is contained in the Z-span of
the elements [K,v¥]g, where K < H is a cyclic group and ¢ € K. Since these
elements are part of a Z-basis of R3"(G) (as we will see in Lemma 7.2), also

ag(R(H)) must be contained in this span. But then bg’Rab oan = idgm)
implies

R(H)= ) indg(R(K))

K<H
K dyclic

which is certainly not true for arbitrary finite groups H. The best we can hope
for in this example is a morphism a: R — Rib of Z-restriction functors on G

with b®F™ 0 g = idg. Such a morphism was constructed in [2].
The above considerations motivate the following definition.

3.3 Definition A canonical induction formula for M from A is a
morphism a € k—Res(G)(M, A}) with b4 0 a = idy,.

3.4 Remark As examples we will introduce in this paper canonical induc-
tion formulae for R from R?P (as already done in [2]), for Rp from R3P, for Lo
from L, for Tp from T@°, and for Py from P3°, the notation being the one
introduced in Example 1.8.

Note that our notation is different from the one in [2]. What we denote here
by R3’(G) was denoted there by R, (G), which in view of 2.2 has a different
meaning here.

4 An application: Extending morphisms
In this section we will indicate how to use canonical induction formulae in or-

der to extend certain morphisms. In subsequent papers we will apply this to
construct Adams operations and Chern classes on various representation rings.
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4.1 Throughout this section we assume that K is a commutative ring and
G is a finite group. We fix a k-restriction functor M on G (not necessarily a
Mackey functor) and a k-restriction subfunctor A C M. Furthermore we assume
that there is a morphism a € k—Res(G)(M, A, ) such that ag(p) = [H, ¢|g for
all H < G and ¢ € A(H), a condition which will be satisfied in all the examples
of canonical induction formulae considered in this paper, namely for M and A
as listed in Remark 3.4, cf. Proposition 6.12.

4.2 Definition For M, A, and a: M — A, as in 4.1 and for any N €
k—Mack(G) we define a k-linear map

A k—Res(G)(M,N) - k—Res(G)(4,N), F s F|a,

by restricting a morphism on M to one on A. More interestingly, in the other
direction, we define a k-linear map

SN4%: k—Res(G)(4,N) = k—Res(G)(M,N), frb"Nof oa,

and call E]A\}I’A’a( f) the canonical extension of f € k—Res(G)(A, N) with
respect to a.

This terminology is justified by the following theorem.

4.3 Theorem Let M, A, and a: M — A, be as in 4.1, and let N €
k—Mack(G). Then &34 o DA — id. In particular, the map &4 is
surjective, i.e. each morphism f: A — N of k-restriction functors on G can be
extended to a morphism F: M — N of restriction functors on G.

Proof We have to show that (bg’N ofrmoam)(p) = fulp) for all f €
k—Res(G)(A,N), H < G, and ¢ € A(H). Since ag(p) = [H,¢]n, we obtain

)
(o™ o frm o an)(p) = by ™ (fer(H, 9lm) = biy™ (H, fu(@)]mr)
= indj; (fu(p)) = fu(e),

which completes the proof. 0

. . . . M,A

The following theorem describes a situation where ®," and % are
. . . . . . . M,Aq
inverse isomorphisms, in particular where the canonical extension map X
does not depend on a.

4.4 Theorem Let M, A, and a: M — A, be as in 4.1, and let N €
k—Mack(G) be such that A(H) = M(H) for all H € C(N). Then ®* and

M.A . . .
Yy are inverse isomorphisms.

Proof It suffices to show that E]A\}I’A’“ ° QJA\}I’A =id, i.e. bZ’N o(Fla)+m o
ag = Fy for all F € k—Res(G)(M,N) and H < G. By the last property of
C(N) mentioned in 1.7, it is enough to show that

N,N
resfl oby" o frmoam = resi o Fyy
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for all K < H with K € C(N), where f := F|4. Since b, {4, a, and F' commute
with restrictions, it suffices to show bﬁ’No f+roaxg = Fx for all K € C(N). But
for K € C(N) we have A(K) = M(K), hence (bﬁ’N o frroag)(p) = fr(p) =
Fi(p) for all ¢ € M(K) as in the proof of Theorem 4.3. 0

5 Adjunctions

Throughout this section let k¥ be a commutative ring and G a finite group.
We will try to obtain an overview of the set of morphisms a: M — A, of
k-restriction functors on G in the situation of Definition 3.3.

5.1 For A € k—Res(G) and H < G we recall the map
[‘ﬁA(H)%A-F(H)a aH[Haa’]Ha
from 2.2, which is induced by the inclusion A(H) = @, .4 A(K). Note that
74 04 =idy,.
For X € k—Con(G) and H < G we set
W§X+(H)_>X(H)7 (xK)KSHHxH7

i.e. wy is induced by the projection [] <y X(K) — X(H). Then w*: X+ —
X is a morphism of k-conjugation functors on G, even of k-algebra conjugation
functors, if X € k—Cong,(G). Moreover, w* is functorial in X.

A statement similar to part (i) of the following proposition can be found in
[7, Lemme 2.10].

5.2 Proposition (i) The forgetful functor k—Mack(G) — k—Res(G)
is right adjoint to —1 : k—Res(G) — k—Mack(G). More precisely, for A €
k—Res(G) and M € k—Mack(G) one has k-linear inverse isomorphisms

ka,m: k—Mack(G)(A+, M) - k—Res(G)(4, M)
(fH)HSG = (fH © [‘ﬁ)HSG

(K, alu = indig(gx (a)), _ 4 (9m)u<o

which are natural in A and M. The same maps yield inverse natural bijection
between k—Mack,i, (G) (A4, M) and k—Res, 3 (G)(A, M), if A € k—Resa(G)
and M € k—Mack,i;(G).

(ii) The forgetful functor k—Res(G) — k—Con(G) is left adjoint to the
composition k—Con(G) — k—Mack(G) — k—Res(G) of —T with the forgetful
functor of part (i). More precisely, for B € k—Res(G) and X € k—Con(G)
one has k-linear inverse isomorphism

AB,x: k—Res(G)(B,X") = k—Con(G)(B, X)
(TH)HSG = (w;{( ° TH)HSG

(b= (o (resg (0)) e ) - S PH)co

H<G
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which are natural in B an X. The same maps yield inverse natural bijections
between k—Resay(G)(B,X1) and k—Con,iz(G)(B,X), if B € k—Resys(G)
and X € k—Con,i,(G).

Proof All assertions are immediate consequences of the very definitions of
the categories and functors involved. 0

5.3 Our incentive from Section 3 is to obtain an overview of the morphisms
in k—Res(G)(M, A}) for M € k—Mack(G) and A C M a k-restriction sub-
functor. More generally, for arbitrary M, A € k—Res(G), we can now define a
map

O.a: k—Res(G)(M, A, ) — k—Res(G)(M, AT) *35* k—Con(G)(M, A),

aw ptoa,

where the first map in this definition is composition which p“. Since w4 o p4 =
74, we have Oy, 4(a) = 4 oafor a € k—Res(G)(M, A, ), and we call p := O(a
the residue of a. For H < G we can recover ay from p up to |H|-torsion by

Hlar(m) = 3 |LIu(L, KL, rest (p (res (m)))] 1, (5.3.2)
L<K<H

for m € M(H). In fact, we just apply the inverse of Ap,4 to p and compose
)\;,II’A (p)u = piroan with o4, using ofropf = |H|id 4 (#ry from Proposition 2.4.

5.4 Corollary Let M,A € k—Res(G), a € k—Res(G)(M, Ay), and let
p:= 0O, a(a) =74 0a € k—Con(G)(M, A) be the residue of a.
(i) For each H < G the diagram

M(H) A, (H)
(Proresg )k <m \¢ lpﬁ:(ﬂ',’éores_;_g)KSH (5.4.a)

AT (H)

is commutative.
(ii) If A+ (H) has trivial |H|-torsion for oll H < G, then O 4 is injective.
(iii) If |G| is invertible in k, then O, 4 is an isomorphism.
(iv) Assume that M, A € k—Res,;(G) and that p” is injective. Then a €
k—Resa (G)(M, AL ), if and only if p € k—Con,i, (G)(M, A).

Proof (i) For K < H <G we have nd ores; 2 oay = 74 oay orestl =
<HKL K +K K K

Pk orest.

(i) This is immediate from Equation (5.3.a).

(iii) If |G| is invertible in k, then p“ is an isomorphism by Proposition 2.4,
and hence Oy, 4 is an isomorphism by definition.

(iv) If a € k—Resay(G)(M, A1), then p = 74 0 a € k—Con,y, (G)(M, A),
since 74 € k—Cona(G)(Ay, A), cf. 2.3. Now let p € k—Conyi,(G)(M, A).
Since p4 is an injective morphism of k-algebra restriction functors, it suffices
to show that p% o a € k—Res,z(G)(M,A"). But this follows immediately
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from the commutativity of Diagram (5.4.a), since resfl, K < H < G, are k-
algebra homomorphisms and since the k-algebra structure of AT (H) is defined
componentwise.

5.5 Definition Let M, A € k—Res(G) and assume that A, (H) has trivial
| H|-torsion for each H < G. Then

Oum,a: k—Res(G)(M,A,) = k—Con(G)(M, 4), ar 74 0a,
is injective by Corollary 5.4 (ii) and for each p € im(©ar,4) we define
aMAP € k—Res(G)(M, A,)

as the unique preimage of p under Ous, 4.

6 Invertible group order

Throughout this section let G be a finite group and k a commutative ring such
that |G| is invertible in k.

6.1 Our aim is to find canonical induction formulae a € k—Res(G)(M, A;)
for given M € k—Mack(G) and given k-restriction subfunctor A C M. By
Corollary 5.4 (iii) we have an isomorphism

Oum,a: k—Res(G)(M, Ay) = k—Con(G)(M,4), ar 74 oa.
For p € k—Con(G)(M, A) and a™ AP .= @;,I{A(p), as defined in 5.5, we observe
from Equation (5.3.a) the explicit formula
1
ag P (m) = H] > ILI(L, K)[L, rest (px (resig (m)] 7, (6.1.a)
L<K<H

for all H < G and m € M (H), and from Corollary 5.4 (i) the commutativity of
the diagram

M, A,p
M) S A, )

(proresi )k <m N\ lpﬁ:(ﬂ'éores_;_g)KSH (6.1.b)
At (H)

for all H < G, where pﬁ is an isomorphism by Proposition 2.4.

In a first step we will determine those p € k—Con(G)(M, A) which corre-
spond under @7 4 to canonical induction formulae, i.e. which satisfy pM.A o
aM4P = id ;. Before we will do this we have to state a result about a natural
decomposition of a Mackey functor in the invertible group order case, parts of
which can be found in [15, Thm. 2] and [32, Thm. 4.1"].

For the notation of the following proposition we refer to Remark 2.5, Propo-
sition 1.5 (i), and to 1.6 and 1.7.
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6.2 Proposition Let M € k—Mack(G) (resp. M € k—Mack,;(G)). For
each H < G we have a decomposition into k-submodules (resp. ideals)

MH) = MHEH)® (1 -Dy. MH) (6.2.a)
and the summands are given by
. MH) = K(M)(H) and (1—e). M(H) =I(M)(H). (6.2.b)

In particular, M decomposes as k-conjugation functor (resp. k-algebra con-
jugation functor) as M = K(M) @ Z(M) (resp. M = K(M) x Z(M)), and
C(M)=P(M).

Moreover, for an inclusion M C N of k-Green functors we have C(M) =
C(N).

Proof Since |G| is invertible in k we have eg{) € k@ Q(H) by Remark 2.5.
Since the pairing (k ® Q) @, M — M of Proposition 1.5 (i) provides M (H)
with the structure of a k ® Q(H)-module, we clearly have a decomposition as in
(6.2.a).

For the proof of the remaining equations we first claim that for K < H < G

we have resil (eg{)) = 0. In fact, Since p% is an isomorphism by Proposition 2.4,
it, suffices to show that p& (resf (e{7)) = 0 in k+(K). But p* commutes with
restrictions, and the definition of eg{) in Remark 2.5 together with the definition
of restriction on k*(H) proves the claim.

Using this we have resf (el . M(H)) = res (e\)) - rest (M (H)) = 0 for
all K < H < G. Conversely, the explicit formula (2.5.a) yields

11—l = —ﬁ S K |u(K, H)[H/K], (6.2.c)
K<H

and the definition of the pairing (k¥ ® Q) @, M — M shows that K(M)(H) =

N <p ker(resff: M(H) — M(K)) is annihilated by 1 — eS| and hence con-

tained in eg{) - M(H). This proves the first part of (6.2.b).

Again the definition of the pairing (k® Q) ®x M — M and Equation (6.2.¢)
imply (1 — eg{)) -M(H) C Z(M)(H). For the opposite inclusion it suffices to
show that eg{) -ind® (M (K)) = 0 for K < H. But this is immediate from the
Frobenius axioms (P3) in Definition 1.4 and the claim above.

If M C N is an inclusion of k-Green functors, then we have

HeC(M) < K(M)(H)#0 <= i) - MH) #0 <> el 1o #0,

and similar for N. Since 1p(gy = 1y, this shows C(M) = C(N). U

6.3 Corollary Let M € k—Mack(G), H < G, and m € M(H). Then
m =0, if and only if eg{) -m =0 and resti(m) =0 for all K < H.
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Proof The condition resti(m) = 0 for all K < H is equivalent to m €

K(M)(H), hence, by Proposition 6.2, also to m = eg{) - m, and the result
follows. 0

6.4 Proposition Let M € k—Mack(G), A C M a k-restriction sub-
functor, p € k—Con(Q)(M,A), and a™ 4P the corresponding morphism in
k—Res(G)(M,A,), cf. Definition 5.5. Then the following are equivalent:

(i) The morphism a™4? is a canonical indution formula, i.e. bMAog™ AP =
idas.

(if) For oll H < G and m € M(H) one has eg{) - (pp(m) —m) = 0,
ie.pg(m) —m €Y g oy ind¥ (M (K)) by Proposition 6.2.

Proof We set a := a™>4?. From Equation (6.1.a) we obtain

S pMA (g (m)) = (6.4.2)
1
= Feg{) Z |L|p(L, K)(ind¥ o res¥ o px o rest)(m)
|H]| L<K<H

= eg{) 'pH(m)a

for H < G and m € M(H), since eg{) annihilates all summands with L < H
by Proposition 6.2.

If a is a canonical induction formula for M from A, then Equation (6.4.a)
shows that eg{) -m = eg{) -pua(m).

Conversely, if eg{) -m = eg{) -pg(m) for all H < G and m € M(H), then
by Corollary 6.3 it suffices to show that

eg{) -bg]’A(aH(m)) = eg{) -m and resg(bg’A(aH(m))) = rest (m)

for all K < H < G and m € M(H). Under our assumption, the first equation is
just a restatement of Equation (6.4.a), and therefore holds. The second equation
follows by induction on |H|. In fact, since b4 and a commute with restrictions,
it suffices to show that (b%’A oag)(m'y=m'for all m' € M(K), K < H. but
this follows from the first equation and the induction hypothesis on the second
one. L

6.5 Corollary Let M and A be as in the above Proposition. If there exists
a canonical induction formula for M from A, then eg{) -M(H) C A(H) for all
H<AG. L

6.6 Corollary Let M, A, and p be as in Proposition 6.4 and assume that
A(H) = M(H) and py = idpm) for all H € C(M). Then a™ 4 is a canonical
induction formula for M from A.

Proof Condition (ii) in Proposition 6.4 is obviously satisfied for H € C(M),
since under our assumption pg(m) —m = 0, and also generally for H ¢ C(M),
since eg{) -M(H)=0for H ¢ C(M) by Proposition 6.2. N
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Agsuming the notation of 6.1, we next determine those p€ k—Con(G)(M, A)
whose corresponding morphism a*4? € k—Res(G)(M,A,) is even a mor-
phism of Mackey functors.

6.7 Proposition Let M € k—Mack(G), A C M a k-restriction subfunc-
tor, a € k—Res(G)(M,A,), and p := 74 o a, i.e. a = a™ 4P, Then the
following are equivalent:

(i) a € k—Mack(G)(M, A}).

(ii) pr(inde(M(K))) =0 for all K < H<G.

(iii) prr((1 — W) M(H)) =0 for sl H< G.

Proof Statements (ii) and (iii) are equivalent by Proposition 6.2. We show
that (i) and (ii) are equivalent, just assuming that p” is injective which is of
course satisfied if |G| is invertible in k& by Proposition 2.4. By definition, a is a
morphism of Mackey functors, if and only if

ind, L oax = agoindft: M(K) - A, (H)
for all K < H < G. Since p4 is injective, this is equivalent to
mf otes; H oind i o ag = 7} ores i o ay oindfy: M(K) — A(U)

for all H < G and U, K < H. We transform the left hand side by using
the Mackey axiom and commutativity of a with restrictions and conjugations,
and we transform the right hand side by using the commutativity of ¢ with
restrictions, the Mackey axiom, and the relation py = wﬁ o ay to obtain the
equivalent condition

b

A _- U
[e] [e] [e] [e]
> Indy onge © Gy g OTESny © ChK
heU\H/K
h

= Z py o indgnhK o resUIr:hK ocpx: M(K) — A(U)
heU\H/K

for all H < G and K,U < H. Since wﬁ ) ind+gn hye = 0 unless U < "K, this is
equivalent to

e ind? by 7
E ores;; oc = E oin ores o¢ 6.7.a
bu U h,K bu Un'K unti © CmK ( )
h
eU\}{I/K heU\H/K
U< K

forall H< Gand U, K < H.

Now Equation (6.7.a) implies 0 = py o ind® for K < H < G by choosing
U = H. Conversely, if py oindf = 0 for all K < H < G, then Equation (6.7.a)
holds, since the right hand side reduces to the left hand side. 0

6.8 Corollary Let M € k—Mack(G), A C M a k-restriction subfunctor,
and p € k—Con(G)(M, A). Then a™ 4P is a canonical induction formula and
a morphism of k-Mackey functors on G if and only if

(idweary — pr) (M(H)) € (1 — €l7”) - M(H) C ker(ppr)
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forall H<G.
Proof This is immediate from Proposition 6.4 and Proposition 6.7. 0

6.9 Example For each k-Mackey functor M on G there is a canonical
induction formula for M of a minimal type (cf. Corollary 6.5), namely from A
with A(H) := eg{) -M(H), H < G, and associated to pg: M(H) — A(H),
m — eg{) -m, H < G. In fact, this choice of p satisfies the condition in

Corollary 6.8, hence a™4? € k—Mack(G). From Equation (6.1.a) we have the
explicit formula

1 K
a?f”“”’(m:ﬁ 3 KK, €S - resfl (m)]y,
Klécs(flfl)

for H < G and m € M(H), since res¥ is trivial on eg() for L < K (as shown

in the proof of Proposition 6.2) and eg() -M(K)=0for K ¢ C(M). Moreover,
(K)

applying b4 and expanding e} ’ as in Equation (2.5.a) we obtain
1
m= Y LI, K)indf] (resf] (m) (6.9.2)
|H| L<K<H
Kec(M)

for m € M(H), H < G. This generalizes Brauer’s explicit version (cf. [9] or
[11, 15.4]) of Artin’s induction theorem for the character ring tensored with Q,
where C(M) consists of the set of cyclic subgroups of G, and also an explicit
version of Conlon’s induction theorem for the Green ring and various subrings
tensored with Q, where C(M) consists of the set of I-hypo-elementary subgroups
of G (cf. [29, Theorem D’] and see also [12, 81.31]).

Recall from 2.2 that for A € k—Res,,(G) the ring A, (H) is a natural
A(H)-module for all H < G.

6.10 Proposition Let M € k—Macka;(G), A C M a k-algebra restric-
tion subfunctor, and p € k—Con(G)(M, A). Then the maps a}‘}‘“”’: M((H) —»
Ay (H) are k-algebra (resp. A(H)-module) homomorphisms for all H < G, if
and only if the maps py: M(H) — A(H) are k-algebra (resp. A(H)-module)
homomorphisms for all H < G.

Proof The statement about the k-algebra structure follows immediately
from Corollary 5.4 (iv).

We set a := a® 4P, The maps ag, H < G, are A(H)-linear, if and only
if ag(b-m) = [H,blg - ag(m) for all b € A(H) and m € M(H). By the
injectivity and multiplicativity of pA this is equivalent to (pf o am)(b-m) =
ph([H,blu) - pi(am(m)). Since pfy = (7 ores ), ., since a commutes
with restrictions, since 7j o ax = px, and since resfl: M(H) - M(K) is
multiplicative for K < H < @G, this is equivalent to

P (resi (b) - resic (m)) = resi (b) - pi (vesi (m))
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forall K< H<G,mé€ M(H), and b € A(H). This in turn is equivalent to
pr being A(H)-linear for all H < G. N

6.11 Proposition Let M,M' € k—Mack(G), A C M and A’ C M’ be
k-restriction subfunctors, p: M — A and p': M' — A’ be morphisms of k-
conjugation functors on G, and let f: M — M’ be a morphism of k-restriction
functors with f(A) C A'. Then the diagram

oM AP
M 54,

fl lf+

, aMI,AI,PI ,
M — Al
is commutative, if and only if the diagram
M 25 4
£l Lf
M 2

18 commutative.

M,A M A

Proof We write a and o' for ¢ and a " respectively. If the first
diagram commutes we compose it with 74 : A, — A’ and obtain 74 o f{ oa =

! . ! . . !
74 oa’ o f. Since 74 is natural in A’, we have 74 o f, = f o 74, and we also

have 74 0 a = p and 74 oa' = p/, showing that fop=p' o f.

Now we assume that f op = p' o f: M — A’. By Proposition 2.4, p# is
injective, and for the commutativity of the first diagram it suffices to show that
T oresi o fryoay = f oresii ody o fir

for all K < H < G. Now the left hand side is equal to
W}‘}I o fik oak orestt = fr o oak orestt = fx o pk orestt
and the right hand side equals
T 0 dl o fic oTesy = pig o fic o resy,

and the result follows. [

6.12 Proposition Let M € k—Mack(G), A C M be a k-restriction sub-
functor, p € k—Con(G)(M,A), H <G, and m € M(H) such that

resi (ppr(m)) = pk (resti(m)) (6.12.a)

for all K < H, then agj’A’p(m) = [H,m]g. In particular this holds for all
m € A(H) and all H < G, if pal|agr = idaur) for all H < G.
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Proof In view of the explicit formula (6.1.a) we have to show that

> WL, K)\L|[L,rest (pr(m)]; = [H|[H,pr(m)]y-
L<K<H

But this follows by M&bius inversion of the function K — |K|[K, resi (pr (m))]y
on the poset of subgroups of H, cf. [21, 3., Prop. 2].

6.13 Example We assume the notation of Example 1.8.
(a) We define p € Z—Con(G)(R, R??) for H < G and x € Irr(G) by

_)x iEx(1) =1,
pH(X)_{O, if y(1) > 1.

Since R(H) = R*®(H) and py = idp(gy for all cyclic subgroups of G, Corol-
lary 6.5 implies that a = a@®RQSR.Q®P ig 4 canonical induction formula; but
a is not a morphism of Mackey functors, since in general py (ind% (x)) # 0 for
K < H < G and x € R(K), cf. Proposition 6.7 and Remark 3.2. Moreover,
ag is R*"(H)-linear, but not a ring homomorphism, cf. Proposition 6.10. By
Proposition 6.12, ag(p) = [H, | for all H < G and ¢ € R**(H).

(b) We define p € Z—Con(G)(RF, R3P) for H < G and a simple F H-module
V by

[V], ifdimp(V)=1,

pa(lV]) = {0, if dimp (V) > 1.
Since Rp(H) = R2P(H) for all cyclic I-subgroups H of G, Corollary 6.5 implies
that a = aQ®R~Q®RE Q%P ig 5 canonical induction formula. As in part (a), a
is not a morphism of Mackey functors, and ay is R2°(H)-linear but not a ring
homomorphism for H < G. Note that an ([F,]) = [H, [F,]]x for all H < G and
all p € ﬁ(F) by Proposition 6.12.

(c) We define p € Z—Con(G)(Lo, L2) for H < G and an indecomposable
linear source F'H-module V' by

V], ifrkoV =1,
0, if tkoV > 1.

Note that py(To(H)) C T&P(H) and py(Po(H)) C P3*(H). Since Po(H) =
P(H) and py = idp, () for all cyclic I-subgroups of G, Corollary 6.5 implies
that @ = q@®P0.@9P5".Q%P ig 5 canonical induction formula. By the results
of this section we see that a is not a morphism of Mackey functors, but that
apg is P&"(H)-linear for all I'-subgroups H < G (note that P3°(H) = 0, if [
divides [H|), and that ax([O,]) = [H, [Oy]]# for all I'-subgroups H < G and
all € H(O).
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In order to show that a@®L0Q9LE Q8P 4 ¢Q8T0,QVTE QP are canonical
induction formulae we have to go deeper into modular representation theory.
This is done in [4] where we also show that a@®L.Q®LE" Q%P ig integral, i.e. maps
Lo to L#. Note that by Proposition 6.11 these three induction formulae are
restrictions of one-another with respect to the inclusions P» C Tp C Lp and

ng’_ - Tgb_"_ - L?,)l’+, cf. also Lemma, 7.2 and Lemma, 7.5.

7 Change of base ring and stable basis

Throughout this section let k be a commutative ring and G a finite group.

In the previous section we could give complete answers to some questions
about canonical induction formulae in the situation where |G| is invertible in the
base ring k (cf. Propositions 6.4, 6.7, 6.10, and 6.11). However, we are mainly
interested in the base ring Z and therefore have to study how these results over Q
can be used for the base ring Z. More generally we fix a homomorphism k& — &’
between commutative rings for this section and study how the constructions 4
and AT for A € k—Res(G) behave under this extension of base rings.

Moreover, in Poposition 2.4 and Corollary 5.4 (ii) we needed the hypothesis
that Ay (H) has trivial |H|-torsion for all H < G in order to obtain injectivity
of p# and © u,a- First we will establish this situation.

7.1 Definition Let A € k—Res(G). A stable k-basis of A is a family
B = (B(H))u<g of subsets B(H) C A(H), H < G, such that B(H) is a k-basis
of A(H) for each H < G and ¢, 5 (B(H)) = B(°H), for all g € G and H < G.

7.2 Lemma Let A € k—Res(G) and let B = (B(H))u<c be a stable k-
basis of A. For each H < G the set M(H) := {(K,b) | K < H, be B(K)}
is a left H-set via the conjugation maps and isomorphic to the disjoint union
Uk < B(K) as H-set. Moreover, the elements [K,blg € Ay (H), where (K,b)
runs through a set R(H) C M(H) of representatives for the H-orbits of M(H),
form a k-basis of Ay (H).

Proof The first statement is obvious. For each H < G we have a kH-
isomorphism @ gy A(H) = kM(H) and a decomposition

EM(H) = kR(H)® k{b— " | b€ R(H), h € H}.

It is clear that the second summand on the right hand side is just I(kH)-kM(H),
so that the composition

KR(H) C kM(H) = P A(K) — A, (H)

K<H
is an isomorphism of k-modules (cf. 2.2) sending (K,b) € R(H) to [K,blg. U

7.3 Remark Note that in the Examples 1.8 (a)—(e) the k-restriction func-
tors ReP R3P L3 Ta, and P3" have a stable basis, namely, respectively



Canonical induction formulae 28

B(H) = H, H(F), H), H(O),, and H(O) if H is an I'-subgroup, § oth-
erwise, for H < G. By Lemma 7.2, the groups R3*(H), R3> (H), L (H),
Tg> (H), and PZ’ (H) are free abelian with basis [K, ¢]u, (K, ) € H\M(H),
for H < G.

7.4 For any X € k—Con(G) (resp. X € k—Con,i,(G)) there is a cononical
morphism (i.e. natural in X) of k’-Mackey functors (resp. k’-Green functors),

k' Rk Xt > (kl Rk X)+,

which maps & ®p (T )<y 10 (@ Ok Zk ),y for H <G, a €k, zx € X(K),
K < H. Moreover, there is a canonical morphism of k-Mackey functors (resp. k-
Green functors) on G, Xt — k' @ X, mapping (Zk),<py 10 1 ®k (Tk)xen
for H<G,zx € X(K), K <H. h h
For any A € k—Res(G) (resp. A € k—Res,1;(G)) there is a canonical mor-
phism (i.e. natural in A) of k’-Mackey functors (resp. k’-Green functors),

KorAd — (K @A),

which maps a ®;, [K, alig to [K,a@®palg for H< G,a€k’,aec AK), K < H.
Moreover, there is a canonical morphism of k-Mackey functors (resp. k-Green
functors) on G, Ay — k' ®y Ay, which maps [K, a|g to [K,1®a]g for H < G,
a€ AK), K<H.

It is easy to see that for A € k—Res(G) the diagram

A+ _— kl ®k A+ E— (kl ®k A)+
pAl lk'@kpA lpk'®kA
At — s R At —— (kl Rk A)+

is commutative.
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7.5 Lemma Let X € k—Con(G) and A € k—Res(G).

(i) If k' is flat over k, then the canonical morphism k' @, X+ — (k' @ X)™
is an isomorphism.

(if) The canonical morphism k' @, AL — (k' ®r A)+ is always an isomor-
phism.

(iii) If k' and X(H), H <G, are flat over k and if k — k' is injective, then
the canonical morphism X+ — k' @ X7 is injective.

(iv) If AL (H) is flat over k for oll H < G and if k — k' is injective, then
the canonical morphism A, — k' @ Ay is injective.

Proof (i) We show that if M is any kG-module, then the map k' ®; M —
(k' @ M)Y, a®pm = a®pm, where a € k' and m € M, is an isomorphism.
In fact, this map is the composition of the following sequence of natural isomor-
phisms

k' ®p MC = Homy (k', k') @ Hompg(k, M) = Homy g, pa (k' Ok k, k' @5 M)
=~ Homp (k' k' @ M) = (k' ® M)Ga

where we identify k' with Homy (K, k') and M€ with Homyg(k, MY), k be-
ing the trivial kG-module, and where the second canonical map is an isomor-
phism, since &’ is flat over k and % is finitely presented as kG-module (cf. [19,
Lemma 1.4.1 (b)]).

(ii) We show that, for any kG-module M, the map k¥’ ®; Mg — (k' @ M)g,
a®r(m+I(kG)-M)— (a®rm)+I(kG)-(k'®r M), where a € k' and m € M,
is an isomorphism. In fact, identifying Mg with k Qg M, k being the trivial
kG-module, via a ®rg m — am + I(kG) - M for o € k' and m € M, the above
map is the composition of the following sequence of isomorphisms

K @y Mg 2k @ (k®Qreg M) 2k Qpg (K @ M) =2 (k' @ M)g,

where the middle isomorphism is given by o' ®; (@ Qg m) — & Qp g (@ Q@ m)
with inverse o Qg (8' @ m) = &' ® (1 Qpgm) for a € k, o/, 3 € k', and
me M.

(iil) This follows from the commutativity of the diagram

H H

kow ([ X(K))" —— K ow( [I XEK))
K<H K<H

! !

ke [] X(K) —— Ko [] X(K),
K<H K<H

from the injectivity of the vertical maps (since k' is flat over k), and the injec-
tivity of the lower horizontal map (since [] x5 X (K) is flat over k).

(iv) This is obvious. U

7.6 Corollary Let A € k—Res(G). If A has a stable basis, k' is flat over
k, and k — k' is injective, then the left horizontal maps in Diagram (7.4.a)
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are injective, the right horizontal maps are isomorphisms, and the vertical mor-
phisms are injective.
Proof The statement about the vertical morphisms follows from Proposi-

tion 2.4 and Lemma 7.2, and the one about the horizontal morphisms follows
from Lemma, 7.5 and Lemma 7.2. 0

8 The standard situation

In the sequel we will often assume the following standard situation.

8.1 Hypothesis M is a Z-Mackey functor on a finite group G, A is a
Z-restriction subfunctor of M on G, and p € Z—Con(G)(M, A) such that the
following conditions are satisfied:

(i) M(H) is a free abelian group for all H < G.

(ii) A has a stable basis B such that for all K < H < G and ¢ € B(H), the
element resf () € A(K) is a linear combination

res (o) = Y, mip) ¥
YEB(K)
of the basis elements ¢ € B(K) with non-negative coefficients mgg”ﬁ)) €
Np.

8.2 Remark We assume A C M, B, and p as in Hypothesis 8.1.

(a) Hypothesis 8.1 is clearly designed for the various representation rings
of G. Note that the Examples 6.13, namely R*® C R, R3® C Ry, L% C Lo,
T3> C To, and PE C Pp, together with the respective morphisms p and the
stable bases from Remark 7.3, satisfy this hypothesis.

(b) As a convention, the letters x,8,£,( will always denote elements of
M(H), H < G, and ¢,¢, A\, u will always denote elements of A(H), H < G.
This should help the reader to switch from the abstract setting to the standard
example R?® C R.

(c) We call a pair (H,¢) with H < G and ¢ € B(H) a monomial pair.
For H < G the set of monomial pairs (K,) with K < H will be denoted by
M(H), cf. the notation in Lemma 7.2. Note that M(H) is an H-poset (i.e. H
acts via poset automorphisms) by the following definition

(L)) < (K, ) : <= L <K and m{z ) >0,
K, 9) = ("K, e,k (%)),

for (L,A), (K,v) € M(H) and h € H. Note that we need the non-negativity
property in Hypothesis 8.1 (ii) to ensure that the relation < is transitive. We
write (L,A) =g (K,v) if (L,A) and (K,%) lie in the same H-orbit, and we
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denote by Ng (K, 1) the stabilizer of (K,) in H. The posets M(H), H < G,
are subposets of M(G) and inherit the H-action from M(G).

(d) We recollect some results that hold in the situation of Hypothesis 8.1:

For H < G, A{(H) is a free Z-module with basis {[K,%]r}, where (K, 1))
runs through a set of representatives of the H-orbits H\M(H), cf. Lemma 7.2.
We identify this Z-basis of A, (H) with the Q-basis {1®[K,¥]|n} of Q@ A4 (H)
and write just [K,¢¥]p € Q® AL (H). We will always identify Q @ A} with
(Q® A4), and Q ® AT with (Q ® A)T via the natural isomorphisms definied
in 7.4, cf. Corollary 7.6. Under these isomorphisms of Mackey functors, the
structure morphisms 7@®4 and Q ® 7# are also identified, as well as the maps
Q®rE : QoM (H) - Qo At (H) and r3%7: Qo M (H) — (Q® A)T (H), where
we set rf, == )\;,II’A (P)r = (px oresil), _,,, cf. Proposition 5.2 (ii). We will work
with the Mackey functors Q ® Ay and Q ® A' and denote the corresponding
structural maps again by c,,res;,ind,,ct,rest,ind®, 74, p4, 7P, b4, Note
that p4: A, — At is injective and p?: Q® A, = Q® At is an isomorphism
by Proposition 2.4. Under the above identifications we obtain a commutative
diagram

Q-Res(Q) Q@ M,Q®A,) °24%4 0_Con(G)(Q® M,Q® A)
U U

Z-Res(G)(M, A, ) Qung Z—Con(G)(M, A),

where the vertical inclusions are described by extensions of scalars, and O 4
and Oggum,Qea are the maps of taking residues (cf. 5.3). By Proposition 5.4 (ii)
and (iii), © ar, 4 is injective and Oggar,0e4 is an isomorphism. The set of canon-
ical induction formulae for M from A is a subset of Z—Res(G)(M, A} ) and can
be identified via ©ar, 4 with a subset of Z—Con(G)(M, A). In the next section
we will derive sufficient conditions for p € Z—Con(G)(M, A) to be the residue of
a canonical induction formula for M from A, i.e. that a®M:Q94.Q8p(A1) C A4,
in which case we call aQ®M-Q®4.Q%p jntegral. Note that this is equivalent to the
condition p € im(Op,4), i.e. p= O 4(a) for a unique a € Z—Res(G)(M, A, ),
namely a = ™4 with the notation of Definition 5.5.

(e) Now we assume the integrality condition that p = ©as a(a) for some
a = a"4P ¢ Z-Res(G)(M,A;). Then Q ® a = a®®M-®4.0%p ynder the
identifications of part (d). Since we have the commutative diagram

aM,A,p bM,A
M — Ay — M
™ N\ s
Ay
N N N N
Qe Ay
Qr? S N Q®pt
QM — ®A — QM
Q QRaM AP Q T ogpma Q

with vertical inclusions, we know that a is an induction formula (resp. a
morphism of Mackey functors, resp. a morphism of k-algebra restriction func-
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tors, resp. A(H)-linear for all H < G, resp. commuting with a morphism
f € Z-Res(G)(M,M' with f(4) C A’ for some other M', A’ satisfying the
standard hypothesis, cf. Proposition 6.11) if and only if the Q*tensored state-
ment holds for Q® a. Hence we can apply all the results developed in Section 6
to Q ® a and obtain the desired information about a.

(f) From now on we will write a™+4? also for aQ®M-Q®4.0%?  With Propo-
sition 6.4 we already have a nice criterion to decide, whether a®4?: Q@ M —
Q ® A, is a canonical induction formula. What we don’t have so far, are con-
ditions on M, A, B, and p implying that a™+4® is integral. Note that there is
the factor 1/|H| in (6.1.a) which makes this task difficult. We will show in the
next section that under suitable conditions one can get rid of the denominator
|H|. As a first step towards this result we have to refine the summation in
Equation (6.1.a) to an alternating sum by expanding the Mobius coefficient and
using the simplicial complex of chains of the poset M(G) as index set for the
summation.

8.3 We assume M, A, B, and p as in Hypothesis 8.1. For H < G and
X € M(H) we write

pr(x) = Y, my(x) ¢ € A(H)
PEB(H)

and call m,(x) € Z the multiplicity of ¢ in x. Note that these multi-
plicities depend on p without being apparent from the notation. Note also
that my(resft(¢)) = m{y?) for K < H, ¢ € B(H), and y € B(K), if
PK| A(k) = ida(x), but that in general this equality does not hold.

We denote the set of strictly ascending chains ¢ = ((Hp,¢0) < -+ <
(Hny, ©n)) of elements in M(H) by A(M(H)). We write |o| = n for the length
of the above chain. Note that A(M(H)) is an H-set and A(M(H)) C A(M(G))
for all H < G. For o as above we define the multiplicity m, of o by

«— (H17<P1) P (Hniwn)
Mo =M (1, 40) (Horripn_r) € Nos

cf. 8.1 (ii). This multiplicity does not depend on p.

8.4 Lemma Assuming Hypothesis 8.1 and the notation from 8.3, we have

1
7A7 —_
ay P (x) = Il 3 (—=1)"|Ho|momy, (resi_ (x))[Ho, polu
v=((H0a<EPg)(I<V-I-(-§)()Hn som))
(8.4.a)

for all H < G and x € M(H).
Proof We expand the explicit formula (6.1.a) using

wL,K)= > (=D
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the sum running over all chains connecting L and K, cf. [21, 3, Prop. 6]. This
yields

1
7A7 p— n
aig P00 = DL (1) |HollHo, (resigy o par, ovesiy, ) (0
Ho<-<Hn<H
1

= Y (D" |Holmy, (resfs, (0)Ho,resth; (00)]
| | Ho<--<Hp<H
on €EB(Hy)

for H < G and x € M(H). For a fixed chain Hy < --- < H, of subgroups of H
and ¢, € B(H,) we have

resyy (9n) = (resyy) o -~ o vesp _ )(yn)

Hyyom H,_
= X mE. e o ores T (o)
Yn_1€EB(Hn_1)
— (Hny‘Pn) (Hly‘pl)
- Z o Z MY Hy 1,0n—1) " TV (Ho,p0) = $0

poEB(Hyp) Pn—1EB(Hp_1)
= Z Mg - Yo,
o=((Ho,p0)<+<(Hn,pn)) EA(M(H))

since mgg::’_f’;)%_l) = Ounless (H;_1, ;1) < (H;, ;) by definition. Substituting

this formula for resgg (¢n) into the last alternating sum we obtain the result. []

9 An integrality theorem

In this section we are going to transform the alternating sum formula (8.4.a) for

a%’A’p in order to derive an integrality criterion in Theorem 9.3. Throughout

this section we assume A C M, B, and p: M — A as in Hypothesis 8.1 and use
the associated multiplicities mgg’ﬁ)), me, and my, (x) for (K, ¢), (H, ¢) € M(G),
x € MU), ¢ € BU),U <G, 0 € AM(G)).

9.1 Let H <G. For
o = ((Ho,0) <+ < (Hpn,¢n)) € AM(H)) (9.La)
and a set 7w of primes we define
NE (o) :={s € Nu(o) | sm» € Hp},

where Np (o) denotes the stabilizer of o in H and sy the n'-part of s, 7’
being the complement of 7 in the set of all primes. Note that Hy < Ny (o) by
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axiom (C1) in Definition 1.1 and that for s € Ny (o) the condition sy € Hy is
equivalent to sHy being a m-element in Ny (o)/Hy. Hence, we have

|NF ()] = |Hol - |(Nr (o) / Ho)xl, (9.1.b)

where G denotes the set of m-elements in an arbitrary group G.

Our aim is to replace under suitable conditions, which will arise along the
way, the factor |Hp| in Formula (8.4.a) with the bigger factor |[N% (o)| without
changing the result of the alternating sum; thereby obtaining in the case, where
7 is the set of all primes, an integral expression after passing to a sum over
H-orbits in A(M(H)).

For H < G and 7 as above we enlarge A(M(H)) by defining

A™(M(H)) :={(s,0) € H x AM(H)) | s € Nfy(0)}
and we give a partition
AT(M(H)) = AF(M(H)) UAT (M(H)) U AF(M(H)) U AF(M(H)) (9.1.0)

of A™(M(H)) into four disjoint subsets by defining for (s,o) € A™(M(H)) with
o asin (9.1.a):

(s,0) € AJ(M(H)) : < s € Hy,

(s,0) € AT(M(H)) : < s ¢ Hy,

(s,0) € AT(M(H)) : <= s € Hiy1 ~ H; and H;(s) < Hi1
for some i € {0,... ,n — 1},

(s,0) € AT(M(H)): <= s € Hiy1 ~ H; and H;(s) = Hyyy
for some i € {0,... ,n — 1},

where H;(s) denotes the subgroup of G generated by H; and s (s normalizes
H;, since s € Ny (o). Note that the index i in the definition of AT(M(H)) and
AT(M(H)) is uniquely determined by the condition s € Hyy1 ~ H;.

Next we consider the map

f: AF(M(H)) = AT(M(H)) U AT(M(H)),
(8,0) = (5, (Ho,0) <+ < (Hit1,0it1) < -+ < (Hn,n)),
for o as in (9.1.a), where ¢ € {0,... ,n — 1} is given by s € H;;1 ~ H;, and the

pair (Hiy1,@ir1) = (H;(s),@it1) is ommitted from o.

For (s,0) € AT(M(H)) with o as in (9.1.a) we have

f_l((S,O')) = {(37 (Ho, o) < -+ < (Hp,n) < (Hn(S),QO))|

¢ € B(Hn(s)),m{z 7% > 0},
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and for (s,0) € AT(M(H)) with o as in (9.1.a) and i € {0,... ,n — 1} with
s € Hi 1 \ H;, and hence H;(s) < H;;1, we have

F7H(s,0)) = {(s, (Ho, o) < -+ < (Hi, 3) < (Hi(8), ) < -+ < (Hn, ¢n))|

0 € B, mif O iy #0)

9.2 Introducing for H < G, o asin (9.1.a), and x € M (H) the abbreviation

9(x:0) i= (=)l7Im,m,,, (resth () [Ho, polu € Ay (H), (9.2.2)
we can rewrite Equation (8.4.a) as
|H| - az P (x) = > 9(x,9),

(s,0)€AT(M(H))

where the factor |Hp| in Equation (8.4.a) is replaced by summing over pairs
(s,o0) with s € Hy, where ¢ is as in (9.1.a). Using the partition in (9.1.c) and
abbreviating A™(M(H)) (resp. Ef(M(H)) for i =0,1,2,3) by AT (resp. ﬁf),
we may continue with

H|-apf )= Y. gbeo)— D glwo)  (9:2b)
(s,0)€A™ (s,0)EATUATUA]

We examine the last sum in (9.2.b) further using the function f from 9.1:

> gbeo) = Y, (9000 + > gloo) (920

(8,0)€ATUATUAT (s,0)€AT (s',0")ef~((s,0))
+ > (9o + > gxd)
(S,G’)EE; (s',0)ef~1((s:0))

For (s,0) € AT with ¢ as in (9.1.a), i.e. s ¢ Hy,, we have

9x, o) + Y gloo) = (9:2.d)
(Slio'l)ef_l((sio'))
(=D)lelmg (my, (resfl, () = > mGr OV my (resh ) (x)))[Ho, wolu,
wEB(HR(s))

and for (s,0) € AT with o asin (9.1.a) and i € {0,...,n—1} withs € H;y1~H;,
hence H;(s) < H;y1, we have

gbeo)+ Y. glxd) (9:2.¢)
(s',0")EF 1 ((5,0))
4 Mg
= (_1)| ! (Hip1,9i41) My, (resgn (X)) X
(Hi, i)
Hit1,0i41 H;(s), Hiy1,0i41
. (mgH:tpi;p ) - Z mEHiy(ﬂp)i)Lp)mEHi-(‘—s)z;— ))[HO’SOO]H

pEB(H;(s))
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since

(Hig1,0i41) _ (Hi(s),), (Hit1,0i41)
MH; 1) Z M (H; o) Y Hi(s),0)
pEB(H;(s))

by transitivity of restriction.
Finally substituting (9.2.d) and (9.2.e) in (9.2.c) we can rewrite (9.2.b) as

|H| - az P (x) (9.2.0)
= Z 9(x,0) — Z (=1)llmgh(x, s,0)[Ho, polm

(370)65‘” (37‘7:((H07900)<"'<(H"7‘10")))65‘{

for H< G and x € M(H), with

h(x,5,0) =mg, (resfy (X)) = > mir O myresl (X)) (9-2.8)
wEB(Hn(s))

9.3 Theorem Let H < G and x € M(H). Assume that for a set © of
primes the following condition holds:

For gl T QU < H such that U/T is a cyclic w-group
and oll ¢ € B(T) which are fixed under U (i.e. % = ¢
for all w € U), the coefficients of ¢ in the two elements
pr(res%(9)) and res¥ (py(¥)) in A(T) with respect to the

(*x) basis B(T), where ¥ := resf (x), coincide, i.e.
my (tess (9 Z mg%;‘;g o (). (9.3.a)
e€EB(U)

Then one has

1
ai 00 = 1 > (=1)|NF (0)lm, x  (9.3.b)
o=((Ho,0)<-*<(Hn n)) EA(M(H))
xmcpn(resg (x))[Ho, olu

ot (Ve (0)/ Ho)x|

= ( ) = M m,
> N H
o=((Ho,00) <+ <(Hn,pn)) EH\A(M(H)) [N o)/ Hol

X M, (resty (x))[Ho, polu

where the second sum runs over a set of representatives for the H-orbits of
A(M(H)).

Proof We consider the term h(y,s,o) in (9.2.g). With U = H,(s), T =
H,, and ¥ = ¢, condition (x,) implies that h(x,s,o) = 0. Therefore we obtain
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from (9.2.f):
1
ay P (x) = T > gxo)
(,0)€A™(M(H))
1
= H > (—DIN|INE (o) Imy %

o=((Ho,0) <+ <(Hn,n))EA(M(H))

X m, (resqy (X))[Ho, o] a-

This is the first equation of the theorem. Since the summands of the above sum
are constant on H-orbits of A(M(H)), we may collect them and obtain further:

1 |H|

M7A7 J—

Qg p(X) - | | E : (_1)|0| |N (U)llN};(a)lma X
7=ty o) << il ) H

X M, (resir, (x))[Ho, ol
Now the second equation of the theorem follows from Equation (9.1.b):

NG (@)] _ [Hol - |(Nir(0)/Ho)l _ [(Ner(0)/Ho)s]
Nu(@) ~ THol- Wu(o)/Hol  [Nu(0)/Hol -

O

9.4 Corollary Let H < G, x € M(H), and assume that condition (x,)
holds for some set w of primes. Then

|H|x - a3 P(x) € Ay (H),

. . M,A,p
e inag™P(

X) occur only 7' -numbers as denominators.

Proof It is well-known (cf. [17, V.19.14]) that |G| is a multiple of |G|,
for any finite group G. Therefore, the factor |(Nu(o)/Ho)x|/|Nu(o)/Hy| in
the second sum in (9.3.b) splits into an integer and a rational number whose
denominator divides |H |

|(Nu(9)/Ho)r| _ |(Nu(o)/Ho)x| | !
|N#(a)/ Hol |Nt(o)/Holx  |Nu(0)/Holx

O

9.5 Corollary If (%) holds for the set = of all primes and for oll H < G
and x € M(H), then we have

agr P (x) (9.5.a)

= > (=1)"memy, (resii, (X)) [Ho, polm
o=((Hosp0)<-+<(Ho o)) EH\A(M(H))
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for all H < G and all x € M(H); in particular, a®>4? is integral.

If additionally A(H) = M(H) and py = idpy sy for all H € C(M), then
bM:A o gMAP —idy, i.e. a™AP s an integral canonical induction formula.

Proof Formula (9.5.a) is an immediate consequence of Formula (9.3.b).
Since M (H) is free for all H < G, we have C(M) = C(Q @ M). Therefore,
Corollary 6.6 yields the last statement. 0

9.6 Remark Comparing the general formula for a%’A’p (x) in Lemma 8.4
to the second one in (9.3.b), one realizes that under the hypothesis (%) one
can replace the factor |Hy| with the bigger factor |[NF (¢)| without changing the
whole alternating sum. In the standard example, i.e. M = R, A = R?", and
pr(x) = x for linear x € Irr(H) and pg(x) = 0 for non-linear x € Irr(H), this
was observed in [3] for the set 7 of all primes by interpreting both alternating
sums as Euler characteristics of certain chain complexes which could be proven
to be homotopy equivalent. Theorem 9.3 will be the main tool for integrality
proofs of all the canonical induction formulae in Example 6.13.

9.7 Example We show that for M = R, A = R?", B, and p as in Ex-
ample 6.13 (a) and Remark 7.3, condition (%) is satisfied for all H < G and
all x € R(H), where 7 is the set of all primes. Then Corollary 9.5 implies
that ™4+ ig an integral canonical induction formula, and that the explicit for-
mula (9.5.a) holds. Note that in this example m, = 1 for all chains ¢ € M(G).
This formula is the same as the one obtained in [2] with a different proof for
the integrality.

So let U be a finite group and T Q U such that U/T is cyclic. Let furthermore
9 € Irr(U) and ¢ € T such that 1: T — C* is U-stable. Then we have to show
that the multiplicities of v in pr(res¥ (9)) and res¥ (py(9)) coincide. If ¥ is
linear, then pr(res%(9)) = resy (9¥) = res¥ (py(¥)) and we are done. If 9(1) > 1,
then res% (py (9)) = 0 and we have to show that 1 does not occur in pr(res¥. (9))
which is equivalent to

0 = (¢, 1esf.(9)) = (indf (4),9)ys

by Frobenius reciprocity. Since ¢ is U-stable, the cyclic subgroup T'/ker(t)) is
central in U/ker(s), and since U/T is cyclic, U/ker(s)) is abelian. Therefore,
ind¥.(¢), being a character which comes via inflation from a character of the
abelian group U /ker(¢)), splits into linear characters, and hence (ind¥ (¢), 9)y =
0.

Note that by exactly the same proofs we obtain for any field K of char-
acteristic zero containing a primitive exp(G)-th root of unity, an equivalent
canonical induction formula for Rxg = R from R = R® Rg(H) being
the Grothendieck group of K H—mod or equivalently the ring of virtual K-
characters, and R3°(H) C Rk (H) the span of H(K) for H < G.

9.8 Example We show that for M = Rp, A = R, B, and p as in
Example 6.13 (b) and Remark 7.3, condition (x,) is satisfied for all H < G
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and all [V] € Rp(H), V € FH—mod, where 7 is the set of all primes. Again
Corollary 9.5 applies, showing that aPr BE P ig an integral canonical induction
formula. Note that in Equation (9.5.a) we have m, = 1 for all 0 € A(M(G)),
and that m,([V]) counts the multiplicity of F,, as a composition factor in V €
FH-mod for H < G and ¢ € H(F).

Solet T QU be as in the previous example, let S € FU —mod be irreducible,
and let ¢ € T(F) be U-stable. We have to show that the multiplicities of [Fy;] in
pr(res%([S])) and in res¥ (py([S])) coincide. If dimp S = 1, this holds trivially
as in Example 9.7. If dimg S > 1, then res¥ (py ([S])) = 0, and we have to show
that Fy is not a composition factor of res%([S]). But since T' is normal in U,

res%(9) is semisimple and we have to show that

0 = Hompy(Fy,res’ () = Hompy (ind (Fy), S).

As in the previous example, U/ker(1)) is abelian, and ind5(Fy) is the inflation
of an FU/ker())-module. Since U/ker(s)) is abelian, ind%(F,) has only one-
dimensional composition factors, and therefore, Hom gy (ind% (Fy),S) = 0 as
required.

Let d: R — Rp be the decomposition map (cf. [22, 15.2]) which is a mor-
phism of Mackey functors on G with d(R?P) C R2P. We remark that the diagram

R —— R%
a] Lo+
Rr —%— R

with the canonical induction formulae a from Example 9.7 and & from the
present example, is not commutative. In fact, there can’t be any such canonical
induction formula é: Rp — R%bJr, because by Proposition 6.11 we needed

R —2— R*®

a] la
Ry —2— R

to commute for some § € Z—Con(G)(RF, R2?). But for G = Sy, € the sign
character, x2 the unique irreducible character of degree 2, and [ = char(F) = 3,
the virtual character x = 1+ & — x2 is in the kernel of dg, and dg(pa(x)) =
dg(l4+¢)#0.

9.9 Example Let M = Pp, A= P2", B, and p be as in Example 6.13 (c)
and Remark 7.3, ie. B(H) = H(O)for H < G an l'-group and B(H) = 0
otherwise. We will show that aFo-F&"P is integral. First we show that, with
7w = 1’ being the set of all primes distinct from | = char(O/rad(0)), condition

(*p) is satisfied for all H < G and [V] € Po(H), V € OH—-proj.
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Let T 4 U < G with U/T a cyclic I'-group, ¢: T — O* a U-invariant
homomorphism such that Oy is projective. Then in particular, T is an I’-group,
and with T also U. Let V € OU—proj be indecomposable. We have to show
that the multiplicites of [Oy] in pr(res¥.([V])) and res¥ (pu([V])) coincide. But
since U is an I'-group, we have Po(U) = R(U), P*(U) = R*(U), and the
proof of Example 9.7 can be repeated.

Hence, from Theorem 9.3 we have

a§O7P5b7P([V]) — Z (_1)n|(NH(U)/HO)l’|m0 %

Np(o)/H
o=((Ho,0)<+<(Hnpn)) €H\A(M(H)) N (o) Hol
x mg, (vesyr, (V1)) [Ho, [Op, ]l -

Since all occurring groups H; are I’-groups, we have |(Ng(o)/Ho)r| = |Nu(o)r |-
| Ho| and it suffices to show that

\Nu(@el o my, (resgy (V1))
| Nez (o) | |Nr (o)l

are natural numbers. However, | Ny ()| divides |[Ng(o)y| by [17, V.19.14], and
|N#(o); divides my,, (resf; ([V])) by the following argument. Let @ be a Sylow
l-subgroup of Ny (o), H' := QH,,, and let W be an indecomposable sumlmand of
resi, (V). It suffices to show that |Q| divides the multiplicity m.,, (resf; ([W])),
which we may assume to be non-zero. Since W is projective, W is a direct
summand of ind{’ (0) = indgn (ind~ (0)). Since H'/H, = Q is an l-group,
we have W & indg; (X) for some indecomposable OH,-module X by Green’s
indecomposability theorem. Mackey’s decomposition formula then yields
resg; (W) = @ indf" ,  (res (°X)

res . D x
H.,N"H,\ ~H,n°H,
s€EH, \H' /H, scH' /H,

IR

Since Oy, is a direct summand of resg; (W), and since ¢, is stable under H' <
N (o), we have resil (W) = GBLI:{;/ 10, , and therefore m.,, (rest (W) =
|H'/Hy| = Q.

10 A global point of view

10.1 Often it is possible to define a Mackey functor on any finite group not only
on the subgroups of a given group. So let us assume that we have a free abelian
group M (G) for each G € gr, the category of finite groups, such that we have
induction and restriction maps whenever there is a subgroup inclusion H < G,
and that there are conjugation maps ¢4, m: M(H) — M(9H), whenever H < G
and g € G. Moreover let us assume that the axioms in the definition of a Mackey
functor are satisfied. We also assume that with respect to restrictions, we can
extend M to a contravariant functor M: gr — Ab to the category of abelian
groups, i.e. that we now have a map resy: M(G') - M(G) for every group
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homomorphism f: G = G'. We assume that in the situation H < G, g € G, for
f:%H - H, h' — g~'hg, the map resy: M(H) - M(?H) coincides with the
conjugation map ¢4, . Let us furthermore assume that we are given a subfunctor
A C M: gr — Ab, such that A(G) has a stable Z-basis B(G) for every G € gr
with respect to group isomorphisms and such that the restriction of a basis
element in B(G) to a subgroup H < G is a Z-linear combination of B(H) with
non-negative coeflicients. Finally suppose we have for each G € gr a morphism
pa: M(G) - A(G) commuting with resy for each group isomorphism f. To this
situation we will refer in the sequel as the global standard situation. When
restricting our attention to subgroups of a given finite group G we are brought
back to the situation of Hypothesis 8.1. Note that we can consider each of the
Examples in 1.8 (a), (b), (d), (e) as a global standard situation; in part (d) and
(e) we can choose O as the ring of integers of the maximal unramified extension
of ( in an algebraic closure.

10.2 Assume that A C M: gr — Ab is given as in 10.1. Then each group
homomorphism f: G — G’ induces a map

res;: Ay (G) = A4(G), [H.de~ Y. [FUIH)resy, @),
gEFGI\G' /H’
(10.2.a)

where fyr p: f‘l(ng’) — 9H' — H'is the restriction of f to f‘l(ng’)
followed by the conjugation map i+~ g’ 'hg for h € 9H'. Tt is not difficult to
see that res; is a ring homomorphism, if A is a ring valued functor, and that
T€St s O TESty = T€Si (o), if f'1 G' = G" is another group homomorphism,
so that A, is again a contravariant functor gr — Ab and —, is a functor
from the contravariant functor category F°(gr, Ab), resp. F°(gr,Ri) for the
category Ri of rings, to itself. Moreover it is a straight forward calculation that
bMA: A, — M is a functorial morphism. Assuming M, A, B, and p as in
the global standard situation we can define ag’A’p Qe M(G) - Q ALG)
exactly as in Section 8 for each G € gr, and all our previous results which hold
under Hypothesis 8.1 are still valid.

10.3 Proposition Let M, A, B, and p be given as in the global standard
situation 10.1, and assume that pg|ae) = ida) for all G € gr and that
res, (ker(pg/n)) C ker(pg) for all canonical epimorphisms v: G — G/N, N 4
G. Then the diagram

M,A,p

QO M(G) - Q®A.(G")

ress l lres+ s

M,A,p
Qe M(G) =£— Q®AL(G)
commutes for all group homomorphisms f: G = G', i.e. a™4P is a functorial
morphism from Q® M to Q ® AL, considered as functors gr — Q—Mod.
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Proof Since f can be written as a composition e RN f(G) < G of an
epimorphism and an inclusion we may assume that f: G — G is surjective.
Note that, since p commutes with isomorphisms, res; maps ker(pg) to ker(pg).
We will write ay instead of a,ﬂf AP for U € gr, and proceed by induction on
|G|. If |G| = 1, then the result holds trivially. So let |G| > 1. By hypothesis
we have M(G') = A(G") ® ker(pg:). If X' € A(G"), then by Proposition 6.12 we
have ag' (x') = [G', X']e and also ag(ress(x')) = [G,resy(x')]¢ which is equal
to res; ;([G', x]ar) = rest s(acr (x')) by (10.2.a).

Now let X' € ker(pg'). Since pZ is injective, it suffices to show that

(mf ores; & o resy;oag)(x') = (mf ores; & o ag oress)(x') (10.3.a)
for all H < G. We first assume that H < G. The right hand side of (10.3.a) is
equal to (74 o ay ores§ oress)(x') = (pm ores§ oress)(x'). The left hand side
is equal to (74 o T€St f. oy p() © res+?('H) oag)(x') = (7f; o TSt s, oy p(H) ©
af(m) © res?('H))(X’) which is equal to (7§ o am o resy. g () © res?('H))(X) =
(pu o res$ oress)(x') by induction and (10.3.a) holds in this case.

Now let H = G. The right hand side of (10.3.a) is equal to pg(ress(x’))
which is 0, since resy maps ker(pgs) to ker(pg). On the other hand, if we write

agr(x') = Yo af e OHE e
(H',¢")EG'\M(G")

with a(GI;, Lp,)(x’ ) € Q as a linear combination of the basis elements [H', ¢']g,
we obtain for the left hand side of (10.3.a),

(rd otes s oag)(x') = Z a?G:’w:)(Xl)reSf ("),
¢ E€B(G")

since (74 o res; ;)([H',¢'le) = 0 for (H',¢') € M(G') with H' < G'. But
’Lp,)(x’) =0 forall ¢’ €
B(G"), since pg (') = 0, and the proof is complete. U

looking at the explicit formula (6.1.a) we see that a(%,

10.4 Remark In the present treatise we avoided to place ourselves into
the framework of global Mackey functors as they are defined for example by
Webb in [30] or by Bouc in [6], because it would require even more elaborate
technicalities, and because we would like to apply the theory also to the absolute
Galois group G of a field K and work with all subgroups H < G of finite index.
It is possible to establish the notion of a Mackey functor as in Definition 1.1
also in this context.

However, the reader who prefers to work with global Mackey functors should
have no difficulties to translate our results into the language of global Mackey
functors, where one has also induction maps along arbitrary group homomor-
phisms.
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11 Computation of canonical induction formu-
lae

Throughout this section let M, A, B, and p: M — A be given as in Hypoth-
esis 8.1. Let furthermore a := a™4?: Q® M — Q ® A, be the associated
morphism of Q-restriction functors on G.

11.1 For each H < G, x € M(H), and (K,¢) € M(H) we denote by
ag(ﬂp) (x) the coefficient of az(x) at the basis element [K, ], i.e.

a0 = Y. afkyOOIK,Yla. (11.1.a)
(K, ¥)e H\M(H)

The aim of this section is to describe how to compute the coefficients ag(’ ¥) (x)-

Usually, even for small groups it takes too long to use the explicit formula (6.1.a).

More efficient is the use of the commutative diagram (6.1.b). Note that Q ®
. (H H . H
AT (H) has a Q-basis ch’))\) € ([Ix<w AK)) ", (L, A) € H\M(H), with ch’))\)
having entry >, o Nit (L) /Na (L,A) ™\ at the component L, the appropriate con-
jugate entries at all components which are H-conjugate to L, and zero entries

everywhere else. This means that each H-conjugate of A occurs exactly once
in c{j})- Obviously, ez, = c{yy, if and only if (K,9) =x (L,)). Let
7&’ N),(K,p) € L denote the coefficient of i ([K, ) m) at the basis element cgf’))\)
for (K,v),(L,\) € M(H). Then 7&’)\)’(&1&) depends only on the H-orbits
of (L,)) and (K,%) in M(H), and we denote by I'r¢z) the square matrix
(,Ygz,A),(Kﬂﬁ)) indexed by (L, A), (K,¢) € H\M(H), i.e. representatives of the
H-orbits of M(H). Then Diagram (6.1.b) translates into the matrix equation

FM(H) : (ag(,qp) (X))(K,qp): (m¢(resg(X)))(K’¢), (111b)

where (K,t) runs through H\M(H). For (L,A),(K,v¥) € M(H) we write
(L,X\) <g (K, ), if (L, A) < MK, ) for some h € H.

11.2 Proposition With the notation of 11.1, the coefficients 7&’)\)’(&1&)
for H < G and (L, A), (K,v¥) € M(H) are given by

h h
_ (K.9) _ (K.%)
7&)\),(1(,1#) = § : My = E UOSRVEE (11.2.a)
he L\H/K heH/K

In particular, 7&’A)’(K’¢) = 0 wunless (L,\) <y (K,v), and after a suitable
ordering of H\M(H), the matriz T y sy is upper triangular with diagonal entry
| N (K,¥)/ K| at position (K,).
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Proof By the definitions of pf and CEE)A)’ the number v ) . is the
coefficient of A with respect to B(L) in

i (res i (K, 9lm)) = ) mo((LN "K,res ’rfh (")]5)

heINH/K
h
K,
= Y = Y Y ml
heL\H/K hEL\H/K nEB(L)
Latk=L L< %
Now the first equation in 11.2.a follows, since L < "K whenever m( I )\’;p ) #0,
and the second equation follows, since if L < "K then LhK = hK. 0
11.3 Lemma With the notation from 11.1 we have
ok, (X) = N (K, 9] Z (=1)"momy, (resy, (X))
HAP W oo ((Hg.190) <+ <(Hn on EAM (D)
(Hg,p0)=(K,¥)
(11.3.a)
for all H< G and oll x € M(H).
Proof By (8.4.a) we have
|H a4y (X) = > (=1)"Holmgme, (vesi, (x))-

o =((Hg 90) <+ <(Hn,on)) EA(M(H))
(Ho.00)=1 (K, %)
Since in the H-orbit of ¢ = ((Ho,v0) < -+ < (Hp,¢n)) € A(M(H)) with
(Ho,@0) =m (K,v) there are precisely |Ng(K,v)/Nu(o)| chains among its
|H/Ng(0)| elements which start with (K, 1)), the result follows. U

There is one general result about the vanishing of some of the coefficients
A ) (0)-

11.4 Proposition Assume the notation of 11.1 and assume further that
there is a stable Z-basis B(H) of M (H) for oll H < G, containing B(H), such
that resil(x) is a Z-linear combination of B(K) with non-negative coefficients
for each K < H and x € B(H), and that py is the identity on B(H) and zero
on B(H) ~ B(H) for all H < G.

Then for each H < G and x € B(H) the following holds: If (K, 1/1) € M(H)
such that my (resii(x)) =0, (i.e. ¥ does not occur inresil(x)), then a(K ¢)( X) =
0.

Proof We can extend the definitions from 8.1 and 8.3 to multiplicities

mgg”i;g eN for K< H<G@, x € B(H), ¥ € BIK), and mg(¢) € Ny for

¢ € M(K) with respect to B(K). For ¥ € B(K) this definition of my(¢)
coincides with the old one by the hypothesis on px.
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We show that each summand in (11.3.a) is zero, if my(resi(x)) = 0. Let
o = ((Ho, o) <+ < (Hn,¢n)) € AM(H)) with (Ho, po) = (K,%). Then

ni’ﬂ
0=my(resp (X)) = 3 mip ) ms(resy (X))
$eB(H,)

by transitivity of restriction. Since all the factors in the sum are non-negative,

and since mggzﬁ") # 0, we have my, (resf; (x)) = 0, and the summang
in (11.3.a) associated to o vanishes. U
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